CSC 252/452: Computer Organization
Fall 2024: Lecture 10

Instructor: Yanan Guo

Department of Computer Science
University of Rochester

Announcement

* Programming Assignment 1 grade is out
* You got a “O” if dlc could not compile your code
- Mainly due to the “parse error”
- Talk to a TA about this (within two weeks)

Announcement

* Programming Assignment 2

 Details: https://www.cs.rochester.edu/courses/252/fall2024/
labs/assignment2.html

* Due on Oct. 2nd (Wednesday), 11:59 PM (extended two
days)

* You (may still) have 3 slip days
* Programming Assignment 3 will be released Wednesday instead

https://www.cs.rochester.edu/courses/252/fall2024/labs/assignment2.html
https://www.cs.rochester.edu/courses/252/fall2024/labs/assignment2.html
https://www.cs.rochester.edu/courses/252/fall2024/labs/assignment2.html

Announcement

e Midterm on Oct. 9th, Wednesday

* Open-book; e-book allowed.

* No cheat sheet.

* Exams for CSC 252 and CSC 452 will be slightly different

- More problems

» Covers everything until today’s lecture (Sep. 30th)
e Review Lecture (Oct. 7th, Monday)

* Instructor traveling from Oct. 7th to Oct. 11th.

* Lecture Recorded
e Taking a look at previous exams would help

e On course website

Vulnerable Buffer Code

/* Echo Line */

void echo()

{
char buf[4]; /* Way too small! */
gets (buf) ;
puts (buf) ;

void call echo() {
echo() ;

}

Vulnerable Buffer Code

/* Echo Line */

void echo()

{
char buf[4]; /* Way too small! */
gets (buf) ;
puts (buf) ;

void call echo() {
echo() ;

}

unix>. /bufdemo-nsp
Type a string:012345678901234567890123
012345678901234567890123

Vulnerable Buffer Code

/* Echo Line */

void echo()

{
char buf[4]; /* Way too small! */
gets (buf) ;
puts (buf) ;

void call echo() {
echo() ;

}

unix>. /bufdemo-nsp
Type a string:012345678901234567890123
012345678901234567890123

unix>. /bufdemo-nsp
Type a string:0123456789012345678901234
Segmentation Fault

Buffer Overflow Stack Example

After call to gets

Stack Frame
forcall_echo

00

00

00

00

00

40

06

00

33

32

31

30

39

38

37

36

35

34

33

32

31

30

39

38

37

36

35

34

33

32

31

30

buf

register tm clones:

400600:

mov srsp,%rbp

400603: mov $rax, $rdx
400606: shr $S0x3f, $rdx
40060a: add $rdx, $rax
400604d: sar srax
400610: jne 400614
400612: pop %rbp
400613: retq

< srsp

“Returns” to unrelated code
Could be code controlled by attackers!

What to do about buffer overflow attacks

* Avoid overflow vulnerabilities
* Have compiler use “stack canaries”
* Employ system-level protections

1. Avoid Overflow Vulnerabilities in Code (!)

/* Echo Line */
void echo()

{
char buf[4]; /* Way too small! */

fgets (buf, 4, stdin);
puts (buf) ;

* For example, use library routines that limit string lengths
- fgets instead of gets

- strncpy instead of strcpy

2. Stack Canaries can help

e |dea

- Place special value (“canary”) on stack just beyond buffer

- Check for corruption before exiting function
e GCC Implementation

—fstack-protector

- Now the default (disabled earlier)

Stack Frame
forcall_echo

Return Address
(8 bytes)

Canary
(8 bytes)

00| 36| 35| 34

33132|31]30

buf

<

srsp

2. Stack Canaries can help

e |dea

- Place special value (“canary”) on stack just beyond buffer

- Check for corruption before exiting function
e GCC Implementation

—fstack-protector

- Now the default (disabled earlier)

unix>. /bufdemo-sp
Type a string:0123456
0123456

unix>. /bufdemo-sp
Type a string:01234567
*** stack smashing detected ***

Stack Frame

for call echo

Return Address

(8 bytes)

Canary

(8 bytes)

00

36

35

34

33

32

31

30

buf

<

srsp

3. System-Level Protections can help

Stack after call to gets ()
* Nonexecutable code N
segments

- In traditional x86, can mark
region of memory as either
“read-only” or “writeable” e

P stack frame

B
- Can execute anything readable <
- X86-64 added explicit data written < pad
“execute” permission by gets ()
+ Stack marked as non- exploit > Q stack frame
executable N

code
B _>%

Any attempt to execute
this code will falil

10

Buffer Overflow Stack Example

After call to gets

Stack Frame
forcall_echo

00

00

00

00

00

40

06

00

33

32

31

30

39

38

37

36

35

34

33

32

31

30

39

38

37

36

35

34

33

32

31

30

buf

register tm clones:

400600:

mov srsp,%rbp

400603: mov $rax, $rdx
400606: shr $S0x3f, $rdx
40060a: add $rdx, $rax
400604d: sar srax
400610: jne 400614
400612: pop %rbp
400613: retq

< srsp

“Returns” to unrelated code
Could be code controlled by attackers!

11

3. System-Level Protections can help

Stack after call to gets ()
* Nonexecutable code N
segments

- In traditional x86, can mark
region of memory as either
“read-only” or “writeable” e

P stack frame

B
- Can execute anything readable <
- X86-64 added explicit data written < pad
“execute” permission by gets ()
+ Stack marked as non- exploit > Q stack frame
executable N

code
B _>%

Any attempt to execute
this code will falil

12

So far in 252...

C Program

l

Assembly
Program

i

Instruction Set Architecture

i

Processor
Microarchitecture

l

Circuits

13

So far in 252...

C Program

l

Assembly
Program

l

Instruction Set Architecture

i

Processor
Microarchitecture

l

Circuits

ret, call
movq, addqg

jmp, Jjne

13

So far in 252...

C Program

l

Assembly
Program

l

Instruction Set Architecture

i

Processor
Microarchitecture

l

Circuits

movqg $rsi,
imulg S%rdx,
Jjmp .done

ret, call
movdg, addg
Jjmp, jne

$rax
$rax

13

So far in 252...

C Program

l

Assembly
Program

l

Instruction Set Architecture

i

Processor
Microarchitecture

l

Circuits

int, float
1f, else
+, -, >>

H)

movqg $rsi,
imulg S%rdx,
Jjmp .done

ret, call
movdg, addg

jmp, Jjne

$rax
$rax

13

So far in 252...

C Program

l

Assembly
Program

l

Instruction Set Architecture

i

Processor
Microarchitecture

l

Circuits

int, float
1f, else
+, -, >>

H)

movqg $rsi,
imulg S%rdx,
Jjmp .done

ret, call
movdg, addg

jmp, Jjne

Logic gates

$rax
$rax

13

So far in 252...

C Program

l

Assembly
Program

l

Instruction Set Architecture

i

Processor
Microarchitecture

l

Circuits

int, float
1f, else
+, -, >>

movqg $rsi,
imulg S%rdx,
Jjmp .done

ret, call
movdg, addg

jmp, Jjne

Logic gates

Transistors

$rax
$rax

13

So far in 252...

C Program

l

Assembly
Program

i

Instruction Set Architecture

i

Processor
Microarchitecture

l

Circuits

e |[SA is the interface between
assembly programs and
microarchitecture

14

So far in 252...

C Program

l

Assembly
Program

i

Instruction Set Architecture

i

Processor
Microarchitecture

l

Circuits

e |[SA is the interface between
assembly programs and
microarchitecture

* Assembly view:

14

So far in 252...

¢ |SA is the interface between

C Program
assembly programs and

l microarchitecture

Assembly * Assembly view:
Program * How to program the machine,
l based on instructions and
processor states (registers,
Instruction Set Architecture memory, condition codes, etc.)?

Processor

Microarchitecture

l

Circuits

14

So far in 252...

¢ |SA is the interface between

C Program
assembly programs and

l microarchitecture

Assembly * Assembly view:

Program * How to program the machine,
l based on instructions and
processor states (registers,
Instruction Set Architecture memory, condition codes, etc.)?
 |Instructions are executed

l sequentially.

Processor

Microarchitecture

l

Circuits

14

So far in 252...

¢ |SA is the interface between

C Program
assembly programs and

l microarchitecture

Assembly * Assembly view:

Program « How to program the machine,
l based on instructions and
processor states (registers,
Instruction Set Architecture memory, condition codes, etc.)?
 |Instructions are executed

l sequentially.

Processor e Microarchitecture view:

Microarchitecture

l

Circuits

14

So far in 252...

C Program

l

Assembly
Program

i

Instruction Set Architecture

i

Processor
Microarchitecture

l

Circuits

e |[SA is the interface between
assembly programs and
microarchitecture

* Assembly view:

* How to program the machine,
based on instructions and
processor states (registers,
memory, condition codes, etc.)?

e |nstructions are executed
sequentially.

e Microarchitecture view:

 \What hardware needs to be built to
run assembly programs?

14

So far in 252...

C Program

l

Assembly
Program

l

Instruction Set Architecture

i

Processor
Microarchitecture

l

Circuits

e |[SA is the interface between
assembly programs and
microarchitecture

* Assembly view:

* How to program the machine,
based on instructions and
processor states (registers,
memory, condition codes, etc.)?

e |nstructions are executed
sequentially.

e Microarchitecture view:

 \What hardware needs to be built to
run assembly programs?

* How to run programs as fast
(energy-efficient) as possible?

14

(Simplified) x86 Processor State

RF: Program CC: Stat: Program status

registers Condition
codes
srax srsp %r8 %rl2
$rex $rbp $r9 $rl3 ZF|SF|OF DMEM: Memory
Srdx grsi %rl0 %rl4 PC
%$rbx Srdi srll

e Processor state is what'’s visible to assembly programs. Also known as
architecture state.

(Simplified) x86 Processor State

RF: Program CC:)
registers Condition Stat: Program status
codes
srax srsp %r8 %rl2
$rcx $rbp $r9 $rl3 ZF|SF|OF DMEM: Memory
Srdx grsi %rl0 %rl4 PC
%$rbx $rdi $rll

e Processor state is what'’s visible to assembly programs. Also known as
architecture state.

e Program Registers: 15 registers.

(Simplified) x86 Processor State

RF: Program CC:)
registers Condition Stat: Program status
codes
srax srsp %r8 %rl2
$rcx $rbp $r9 $rl3 ZF|SF|OF DMEM: Memory
Srdx grsi %rl0 %rl4 PC
%$rbx $rdi $rll

e Processor state is what'’s visible to assembly programs. Also known as
architecture state.

e Program Registers: 15 registers.

e Condition Codes: Single-bit flags set by arithmetic or logical instructions
(ZF, SF, OF)

15

(Simplified) x86 Processor State

RF: Program CC:
registers Condition
codes
srax srsp %r8 %rl2
$rcx $rbp $r9 $rl3 ZF|SF|OF
Srdx grsi %rl0 %rl4 PC

Stat: Program status

DMEM: Memory

$rbx

Srdi

$rll

e Processor state is what'’s visible to assembly programs. Also known as

architecture state.
e Program Registers: 15 registers.

e Condition Codes: Single-bit flags set by arithmetic or logical instructions

(ZF, SF, OF)

e Program Counter: Indicates address of next instruction

15

(Simplified) x86 Processor State

RF: Program CC:
registers Condition
codes
srax srsp %r8 %rl2
$rcx $rbp $r9 $rl3 ZF|SF|OF
Srdx grsi %rl0 %rl4 PC

Stat: Program status

DMEM: Memory

$rbx

Srdi

$rll

e Processor state is what'’s visible to assembly programs. Also known as

architecture state.
e Program Registers: 15 registers.

e Condition Codes: Single-bit flags set by arithmetic or logical instructions

(ZF, SF, OF)

e Program Counter: Indicates address of next instruction
e Program Status: Indicates either normal operation or error condition

15

(Simplified) x86 Processor State

RF: Program CC:
registers Condition
codes
srax srsp %r8 %rl2
$rcx $rbp $r9 $rl3 ZF|SF|OF
Srdx grsi %rl0 %rl4 PC

Stat: Program status

DMEM: Memory

$rbx

Srdi

$rll

e Processor state is what'’s visible to assembly programs. Also known as

architecture state.
e Program Registers: 15 registers.

e Condition Codes: Single-bit flags set by arithmetic or logical instructions

(ZF, SF, OF)

e Program Counter: Indicates address of next instruction
e Program Status: Indicates either normal operation or error condition

e Memory

* Byte-addressable storage array
* \WWords stored in little-endian byte order

15

Why Have Instructions?

* Why do we need an ISA? Can we directly program the hardware?

16

Why Have Instructions?

* Why do we need an ISA? Can we directly program the hardware?

e Simplifies interface
* Software knows what is available
* Hardware knows what needs to be implemented

16

Why Have Instructions?

* Why do we need an ISA? Can we directly program the hardware?

e Simplifies interface

* Software knows what is available

* Hardware knows what needs to be implemented
* Abstraction protects software and hardware

* Software can run on new machines

* Hardware can run old software

16

Why Have Instructions?

* Why do we need an ISA? Can we directly program the hardware?

e Simplifies interface
* Software knows what is available
* Hardware knows what needs to be implemented

* Abstraction protects software and hardware
e Software can run on new machines
* Hardware can run old software

* Alternatives: Application-Specific Integrated Circuits (ASIC)

* No instructions, (largely) not programmable, fixed-functioned, so
no instruction fetch, decoding, etc.

* So could be implemented extremely efficiently.

* Examples: video/audio codec, (conventional) image signal
processors, (conventional) IP packet router

16

Today: Instruction Encoding

* How to translate assembly instructions to binary
 Essentially how an assembler works
* Using the Y86-64 ISA: Simplified version of x86-64

17

How are Instructions Encoded in Binary?

* Remember that instructions are stored in memory as bits (just
like data)

e Each instruction is fetched (according to the address specified
in the PC), decoded, and executed by the CPU

* The ISA defines the format of an instruction (syntax) and its
meaning (semantics)

* |dea: encode the two major fields, opcode and operand,
separately in bits.

* The OPCODE field says what the instruction does (e.g. ADD)
* The OPERAND field(s) say where to find inputs and outputs

18

Y86-64 Instructions

halt

nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovg D (rB), rA
OPg rA, B

jXX Dest

call Dest

ret

pushg rA

popg rA

19

Y86-64 Instructions

halt

nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovg D (rB), rA
OPg rA, B

jXX Dest

call Dest

ret
pushqg rA

popg rA

Jje

jne

Jjge

qu

19

Y86-64 Instructions

halt
nop
cmovXX rA, rB

. 4
irmovg V, rB addq

rmmovqg FA, D (rB) subqg

mrmovg D (rB), rA andg

OPqg rA, rB
Xorq

jXX Dest

call Dest

ret
pushqg rA

popg rA

Jje

jne

Jjge

qu

19

Y86-64 Instructions

halt
nop
cmovXX rA, rB

. 4
irmovg V, rB addq

rmmovqg FA, D (rB) subqg

mrmovg D (rB), rA andg

OPqg rA, rB

xorq

jXX Dest

call Dest | :

ret

pushqg rA

Jje

Jne

jge

popg rA

qu

[rrmovq
cmovle
cmovl
cmove
cmovne

cmovge

Kcmovg

19

Y86-64 Instructions

halt How to encode them in bits?

nop
cmovXX rA, rB

irmovg V, rB addq

rmmovqg FA, D (rB) subqg

mrmovg D (rB), rA andg

OPqg rA, rB

xorq

jXX Dest

call Dest | :

ret

pushqg rA

Jje

Jne

jge

popg rA

qu

[rrmovq
cmovle
cmov 1
cmove
cmovne

cmovge

Kcmovg

19

Encoding Opcodes

halt

nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovg D (rB), rA
OPg rA, B

jXX Dest

call Dest

ret

pushg rA

popg rA

(
addqg

subg

andqg

{ -

xXorq

Jne
jge

Kjg

[rrmovq
cmovle
cmovl
cmove
cmovne

cmovge

& cmovyg

e 27 Instructions, so need 5 bits
for encoding the operand

20

Encoding Opcodes

(

halt addg e 27 Instructions, so need 5 bits
for encoding the operand
nop subg
< [rrmovg ® Or: group similar instructions,
cmovXX rA, rB andg
use one opcode for them, and
: 1 . . .
irmovg V, rB _xorg "% then use more bits to indicate
rmmovq rA, D (1B) cmov1 specific instructions within a
(Jmp roup.
mrmovg D (rB), rA < crmove g p
Jle
OPg rA, B crovne
J1
jXX Dest cmovge
i
call Dest \Cmovg
Jne
ret
jge
pushg rA
Kjg

popg rA 20

Encoding Opcodes

halt

nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovg D (rB), rA
OPg rA, B

jXX Dest

call Dest

ret

pushg rA

popg rA

(
addqg

subg

andqg

xXorq

\
[jmp
Jle
71
{7
Jne
Jge

Kjg

[rrmovq
cmovle
cmovl
cmove
cmovne

cmovge

& cmovyg

e 27 Instructions, so need 5 bits
for encoding the operand

e Or: group similar instructions,
use one opcode for them, and
then use more bits to indicate
specific instructions within a
group.

* E.g., 12 categories, so 4 bits

20

Encoding Opcodes

oy

halt

nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovg D (rB), rA
OPg rA, B

jXX Dest

call Dest

ret

pushg rA

popg rA

[jmp

Jle

{ -

Jne
jge

Kjg

[rrmovq
cmovle
cmovl
cmove
cmovne

cmovge

& cmovyg

e 27 Instructions, so need 5 bits
for encoding the operand

e Or: group similar instructions,
use one opcode for them, and
then use more bits to indicate
specific instructions within a
group.

* E.g., 12 categories, so 4 bits

* There are four instructions within
the OPg category, so additional
2 bits. Similarly, 3 more bits for
JXX and cmovXX, respectively.

20

Encoding Opcodes

oy

halt

nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovg D (rB), rA
OPg rA, B

jXX Dest

call Dest

ret

pushg rA

popg rA

Jne

Jjge

Kjg

[rrmovq
cmovle
cmovl
cmove
cmovne

cmovge

& cmovg

e 27 Instructions, so need 5 bits
for encoding the operand

e Or: group similar instructions,
use one opcode for them, and
then use more bits to indicate
specific instructions within a
group.

* £E.g., 12 categories, so 4 bits

e There are four instructions within
the OPg category, so additional

2 bits. Similarly, 3 more bits for
JXX and cmovXX, respectively.

e \Which one is better???

20

Encoding

Byte

halt

nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovqg D (rB), rA
Obpg rA, B

jXX Dest

call Dest

ret

pushg rA

popg rA

0

Opcodes

0

0

1

0

fn

0

0

0

fn

fn

4 5 6 7 8 9

* Design decision chosen by the textbook
authors (don’t have to be this way!)

 Use 4 bits to encode the instruction
category

* Another 4 bits to encode the specific
Instructions within a category

* SO 1 bytes for encoding opcode

* |s this better than the alternative of using
5 bits without classifying instructions?

e Jrade-offs.

21

Encoding Registers

Each register has 4-bit ID
- Same encoding as in x86-64
- Register ID 15 (0xF) indicates “no register”

grax 0 %r8 8
grex 1 %r9 9
$rdx 2 $rl0 A
3rbx 3 grll B
3rsp 4 %rl2 Cc
3rbp 5 %rl3 D
3rsi 6 %rl4 E
$rdi 7 No Register| F

Encoding Registers

Byte

halt

nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovg D (rB), rA
OPg rA, B

jXX Dest

call Dest

ret

pushg rA

popg rA

0 1
00

110

2 | fn|rA|rB
3101 F |rB
410 |rA|rB
S| O|rA|rB
6| fn|rA|rB
7| fn

810

910
A|OJrA| F
B|OJrA| F

2

3

23

Instruction Example

Addition Instruction

addqg rA, rB 6 0|rA(rB

- Add value in register rA to that in register rB
- Store result in register rB

- Set condition codes based on result
- e.g., addg %rax,%rsi Encoding: 60 06

- Two-byte encoding
- First indicates instruction type
- Second gives source and destination registers

24

Instruction Example

Addition Instruction

/ Assembly Form

7
addqg rA, rB 6 0|rA(rB

- Add value in register rA to that in register rB
- Store result in register rB

- Set condition codes based on result
- e.g., addg %rax,%rsi Encoding: 60 06

- Two-byte encoding
- First indicates instruction type
- Second gives source and destination registers

24

Instruction Example

Addition Instruction

/

addg rA, rB 6

rA

rB

Assembly Form
/ / Encoded Representation

- Add value in register rA to that in register rB

- Store result in register rB

- Set condition codes based on result

- .0, addg %Srax, srsi

- Two-byte encoding

Encoding: 60 06

- First indicates instruction type
- Second gives source and destination registers

24

Arithmetic and Logical Operations

Add

addqg rA, rB 6 rA|rB
Subtract (rA from rB)

subg rA, rB 6 rA|rB
And

andg rA, rB 6 rArB
Exclusive-Or

xorq rA, rB 6 rArB

- Refer to generically as “0pqg”
- Encodings differ only by “function

code”
- Low-order 4 bits in first instruction
byte

- Set condition codes as side effect

25

Move Instructions

Byte 0 1
halt 00

nop 110
cmovXX rA, rB 2 | fn]rA|rB
irmovg V, rB 31/0]|F|rB
rmmovqg rA, D (rB) 41 0|rA|rB
mrmovg D (rB), rA 510]|rA|rB
OPqg rA, rB o | fn|rA|rB
jXX Dest 71 1fn

call Dest 8|0

ret 910

pushqg rA A|OJrA| F
popg rA B|O|JrA| F

2

3

26

Move Instructions

Byte 0 1
halt 00

nop 110
cmovXX rA, rB 2 | fn]rA|rB
irmovg V, rB 31/0]|F|rB
rmmovqg rA, D (rB) 41 0|rA|rB
mrmovg D (rB), rA 510]|rA|rB
OPqg rA, rB o | fn|rA|rB
jXX Dest 71 1fn

call Dest 8|0

ret 910

pushqg rA A|OJrA| F
popg rA B|O|JrA| F

2

3

irmovg $0xabcd, %rdx
q

26

Move Instructions

Byte 0 1 2 3
halt 00

nop 110
cmovXX rA, rB 2 | fn]rA|rB
irmovg V, rB 31/0]|F|rB
rmmovqg rA, D (rB) 41 0|rA|rB
mrmovg D (rB), rA 510]|rA|rB
OPqg rA, rB o | fn|rA|rB
jXX Dest 71 1fn

call Dest 8|0

ret 910

pushqg rA A|OJrA| F
popg rA B|O|JrA| F

26

Move Instructions

Byte 0 1 2 3 4 5 6 7
halt 010

nop 1|0

cmovXX rA, rB 2 fn|rA|rB

irmovg V, rB 310]F|rB Vv
rmmovqg rA, D (rB) 410 |1rA|rB rmmovqg %rsi,Ox4lc (%rsp)
mrmovg D (rB), rA 510 [rA|rB

OPg rA, B o | fn|rA|rB

jXX Dest 71 1fn

call Dest 810

ret 910

pushqg rA A|OJrA| F

popg rA B|OJ|rA| F

26

Move Instructions

Byte 0 1 2 3
halt 00

nop 110
cmovXX rA, rB 2 | fn]rA|rB
irmovg V, rB 31/0]|F|rB
rmmovqg rA, D (rB) 41 0|rA|rB
mrmovg D (rB), rA 510]|rA|rB
OPqg rA, rB o | fn|rA|rB
jXX Dest 71 1fn

call Dest 8|0

ret 910

pushqg rA A|OJrA| F
popg rA B|O|JrA| F

26

Move Instructions

Byte 0 1 2 3 4 5 6 7
halt 010

nop 110

cmovXX rA, rB 2 fn|rA|rB

irmovg V, rB 310]F|rB Vv
rmmovqg rA, D (rB) 410 |rA|rB D
mrmovg D(rB), rA § 5| 0 |rA|rB mrmovq -12 (%rbp) ,%rcx
OPg rA, B o | fn|rA|rB

jXX Dest 71 1fn

call Dest 810

ret 910

pushqg rA A|OJrA| F

popg rA B|OJ|rA| F

26

Move Instructions

Byte 0 1 2 3
halt 00

nop 110
cmovXX rA, rB 2 | fn]rA|rB
irmovg V, rB 31/0]|F|rB
rmmovqg rA, D (rB) 41 0|rA|rB
mrmovg D (rB), rA 510]|rA|rB
OPqg rA, rB o | fn|rA|rB
jXX Dest 71 1fn

call Dest 8|0

ret 910

pushqg rA A|OJrA| F
popg rA B|O|JrA| F

26

Move Instructions

Byte 0 1 2 3 4 5 6 7 8 9

halt 010

non T The instruction length limits the
Immediate value and displacement.

cmovXX rA, rB 2 |fn|rA|rB

irmovg V, rB 310]F|rB Vv

rmmovqg rA, D (rB) 4 10]|rA|rB D

mrmovg D (rB), rA 510 [rA|rB D

OPqg rA, rB 6 |fn|rA|rB

jXX Dest 71 1fn

call Dest 810

ret 910

pushqg rA A|OJrA| F

popg rA B|O|rA| F

26

Move Instruction Examples

Encoding:

Encoding:

Encoding:

Encoding:

Y86-64

irmovqg $0xabecd, %$rdx

30 £2 cd ab 00 00 00 00 00 0O

rrmovqg 3rsp, 3%rbx

20 43

mrmovq -12 (%$rbp) , $rcx

50 15 f4 ff ff ff f£ff ff ff ff

rmmovqg %rsi,Ox4lc (%rsp)

40 64 1c 04 00 00 00 00 00 0O

27

Jump/Call Instructions

Byte

halt

nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovg D (rB), rA

OPqg rA, rB

jXX Dest

call Dest

ret
pushqg rA

popg rA

0 1 2 3 4
010

110

2 | fn|rA|rB
SO0 F |rB
41 01rA B
S1O0QrA|rB
6 |fn|rA|rB
7 1 fn

810

910
A|OJrA| F
B|OJrA| F

28

Jump/Call Instructions

Byte

halt

nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovg D (rB), rA

OPqg rA, rB

jXX Dest

call Dest

ret
pushqg rA

popg rA

0 1 2 3 4
00

110

2 | fn|rA|rB

3101 F |rB

410 |rA|rB

S| O|rA|rB

6| fn|rA|rB

7 | fn jle .14
810

910

A|OJrA| F

B|OJrA| F

28

Jump/Call Instructions

Byte

halt

nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovg D (rB), rA

OPqg rA, rB

jXX Dest

call Dest

ret
pushqg rA

popg rA

0

0

1

1

2

3 4 5 6 7 8 9

The assembler would assume a start
address of the program, and then calculates
the address of each instruction.

2 |fn|rA|rB

310|F |rB Vv
410 |rA|rB D
S| O|rA|rB D
6 |fn|rA|rB

7 | fn jle .14

810

910

A|OJrA| F

B|OJrA| F

28

Jump/Call Instructions

Byte

halt

nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovg D (rB), rA

OPqg rA, rB

jXX Dest

call Dest

ret
pushqg rA

popg rA

0

0

1

1

2

3 4 5 6 7 8 9

The assembler would assume a start
address of the program, and then calculates
the address of each instruction.

2 [fn|rA|rB

310]F|rB Vv

41 01rA B D
S1O0QrA|rB D

6 |fn|rA|rB

7 1 fn Dest (essentially the target address)
810

910

A|O|JrA| F

B|O|JrA|F

28

Jump/Call Instructions

Byte

halt

nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovg D (rB), rA

OPqg rA, rB

jXX Dest

call Dest

ret
pushqg rA

popg rA

0

0

1

1

2

3 4 5 6 7 8 9

The assembler would assume a start
address of the program, and then calculates
the address of each instruction.

2 [fn|rA|rB

310]F|rB Vv

41 01rA B D
S1O0QrA|rB D

6 |fn|rA|rB

7 1 fn Dest (essentially the target address)
810 call foo

910

A|O|JrA| F

B|O|JrA|F

28

Jump/Call Instructions

Byte

halt

nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovg D (rB), rA

OPqg rA, rB

jXX Dest

call Dest

ret
pushqg rA

popg rA

0

0

1

1

2 3 4 5 6 7 8 9

The assembler would assume a start
address of the program, and then calculates
the address of each instruction.

2 | fn|rA|rB

310]|F|rB Vv

41 01rA|rB D

510]1rA|rB D

6 |fn|rA|rB

7 1 fn Dest (essentially the target address)

8|0 Dest (essentially the start address of the callee)
910

A|OJrA| F

B|OJrA| F

28

How Does An Assembler Work?

rmmovqg rA, D (rB)
OPg rA, rB
jXX Dest

call Dest

0

rA

rB

D

fn

rA

rB

fn

Dest

Dest

29

How Does An Assembler Work?

rmmovqg rA, D (rB) 410 |rA|rB D
OPg rA, B 6 |fn|rA|rB

jXX Dest 71 fn Dest
call Dest 810 Dest

0x100 <foo> | rmmovg %rsi,0x4lc(%rsp)

ret

addq %rax, %rsi

call <foo>

jmp .LO

.LO irmovg $0xabcd, %$rdx

How Does An Assembler Work?

rmmovqg rA, D (rB) 410 |rA|rB D
OPg rA, B 6 |fn|rA|rB

jXX Dest 71 fn Dest
call Dest 810 Dest

0x100 <foo> | rmmovg %rsi,0x4lc(%rsp) 40 64 1lc 04 00 00 00 00 00 OO

ret

addq %rax, %rsi

call <foo>

jmp .LO

.LO irmovg $0xabcd, %$rdx

How Does An Assembler Work?

rmmovqg rA, D (rB) 410 |rA|rB D
OPg rA, B 6 |fn|rA|rB

jXX Dest 71 fn Dest
call Dest 810 Dest

0x100 <foo> | rmmovg %rsi,0x4lc(%rsp) 40 64 1lc 04 00 00 00 00 00 OO

ret 90

addq %rax, %rsi

call <foo>

jmp .LO

.LO irmovg $0xabcd, %$rdx

How Does An Assembler Work?

rmmovqg rA, D (rB) 410 |rA|rB D
OPg rA, B 6 |fn|rA|rB

jXX Dest 71 fn Dest
call Dest 810 Dest

0x100 <foo> | rmmovg %rsi,0x4lc(%rsp) 40 64 1lc 04 00 00 00 00 00 OO

ret 90

addg %rax,%rsi 60 06

call <foo>

jmp .LO

.LO irmovg $0xabcd, %$rdx

How Does An Assembler Work?

rmmovqg rA, D (rB) 410 |rA|rB D
OPg rA, B 6 |fn|rA|rB

jXX Dest 71 fn Dest
call Dest 810 Dest

0x100 <foo> | rmmovg %rsi,0x4lc(%rsp) 40 64 1lc 04 00 00 00 00 00 OO

ret 90

addg %rax,%rsi 60 06

call <foo> 80 00 01 00 00 00 00 0O 0O
jmp .LO

.LO irmovg $0xabcd, %$rdx

How Does An Assembler Work?

rmmovqg rA, D (rB)

OPg rA, B

jXX Dest

call Dest

0x100 <foo>

.LO

410)rA|rB D

6 | fn|rA|rB

7 [fn Dest

810 Dest
rmmovqg %rsi,Ox4lc (%rsp) 40 64 1c 04 00 00 00 00 00 0O
ret 90
addg %rax,%rsi 60 06
call <foo> 80 00 01 00 00 00 00 00 OO
jmp .LO 70 27227227227

irmovg $0xabcd, %$rdx

29

How Does An Assembler Work?

rmmovqg rA, D (rB)

OPg rA, B

jXX Dest

call Dest

0x100 <foo>

.LO

4 1 0 |rA|rB D
6 |fn|rA|rB
7 [fn Dest
810 Dest
rmmovqg %rsi,Ox4lc (%rsp) 40 64 1c 04 00 00 00 00 00 0O

ret

addq %rax, %rsi

call <foo>

jmp .LO

irmovg $0xabcd, %$rdx

90

60

80

70

30

06

00 01 00 00 00 00 00 0O

P AP Ar AP e Bp Bp

f2 cd ab 00 00 00 00 00 OO

29

How Does An Assembler Work?

rmmovqg rA, D (rB)
OPg rA, B
jXX Dest

call Dest

0x100 <foo>

4 1 0 |rA|rB D
6 |fn|rA|rB
7 [fn Dest
810 Dest
rmmovqg %rsi,Ox4lc (%rsp) 40 64 1c 04 00 00 00 00 00 0O

ret

0x100 + the

lengths of all

addq %rax, %rsi

instructions

iNn-between

call <foo>

jmp .LO

v

.LO

irmovg $0xabcd,

$rdx

90

60

80

70

30

06

00 01 00 00 00 00 00 0O

P AP Ar AP e Bp Bp

f2 cd ab 00 00 00 00 00 OO

29

How Does An Assembler Work?

rmmovqg rA, D (rB)
OPg rA, B
jXX Dest

call Dest

0x100 <foo>

4 1 0 |rA|rB D
6 |fn|rA|rB
7 [fn Dest
810 Dest
rmmovqg %rsi,Ox4lc (%rsp) 40 64 1c 04 00 00 00 00 00 0O

ret

0x100 + the

lengths of all

addq %rax, %rsi

instructions

iNn-between

call <foo>

jmp .LO

v

0x200 .LO

irmovg $0xabcd,

$rdx

90

60

80

70

30

06

00 01 00 00 00 00 00 0O

P AP Ar AP e Bp Bp

f2 cd ab 00 00 00 00 00 OO

29

How Does An Assembler Work?

rmmovqg rA, D (rB)
OPg rA, rB
jXX Dest

call Dest

0x100 <foo>

0x100 + the

lengths of all

instructions

iNn-between

v

0x200 .LO

410)rA|rB D

6 | fn|rA|rB

7 [fn Dest

810 Dest
rmmovqg %rsi,Ox4lc (%rsp) 40 64 1c 04 00 00 00 00 00 0O
ret 90
addg %rax,%rsi 60 06
call <foo> 80 00 01 00 00 00 00 00 OO
jmp .LO 70 00 02 00 00 00 00 00 OO
irmovqg $0xabcd, $%$rdx 30 £2 cd ab 00 00 00 00 00 0O

29

How Does An Assembler Work?

* The assembler is a program that translates assembly code to binary code
* The OS tells the assembler the start address of the code (sort of...)
* Translate the assembly program line by line
* Need to build a “label map” that maps each label to its address

O0x1

v

0x2

00 <foo>

Ox100 + the
lengths of all
instructions
iNn-between

00 .LO

rmmovqg %rsi,Ox4lc (%rsp)

ret

addq %rax, %rsi

call <foo>

jmp .LO

irmovg $0xabcd, %$rdx

40

90

60

80

70

30

64 1lc 04 00 00 00 00 00

06

00 01 00 00 00 00 00 0O

00 02 00 00 00 00 00 OO

f2 cd ab 00 00 00 00 00

00

00

30

Jump Instructions

Jump Unconditionally

jmp Dest |7 |0 Dest
Jump When Less or Equal

jleDest |7 |1 Dest
Jump When Less

j1 Dest 7|2 Dest
Jump When Equal

je Dest 73 Dest
Jump When Not Equal

jne Dest |7 | 4 Dest
Jump When Greater or Equal

jge Dest |7 |5 Dest
Jump When Greater

jg Dest 7|6 Dest

31

Subroutine Call and Return

call Dest 8|0 Dest

- Push address of next instruction onto stack
- Start executing instructions at Dest
- Like x86-64

ret 910

- Pop value from stack
- Use as address for next instruction
- Like x86-64

32

One More Complication...

Byte
jXX Dest

call Dest

0 1 2 3 4 5 6 7
7| fn Dest (essentially the target address) jle .L4
810 Dest (essentially the start address of the callee) call foo

33

One More Complication...

Byte
jXX Dest

call Dest

0 2 3 4 5 6 7
7| fn Dest (essentially the target address) jle .L4
810 Dest (essentially the start address of the callee) call foo

e The instruction length limits how far you can jump/call functions. What
if the jump target has a very long address that can’t fit in 8 bytes?

33

One More Complication...

Byte 0 1 2 3 4 5 6 7 8 9
JXX Dest 7 | fn Dest (essentially the target address) jle .14
call Dest 810 Dest (essentially the start address of the callee) call foo

e The instruction length limits how far you can jump/call functions. What
if the jump target has a very long address that can’t fit in 8 bytes?

e One alternative: use a super long instruction encoding format.

« Simple to encode, but space inefficient (waste bits for jumps to short
addr.)

33

One More Complication...

Byte 0 1 2 3 4 5 6 7 8 9
JXX Dest 7 | fn Dest (essentially the target address) jle .14
call Dest 810 Dest (essentially the start address of the callee) call foo

e The instruction length limits how far you can jump/call functions. What
if the jump target has a very long address that can’t fit in 8 bytes?

e One alternative: use a super long instruction encoding format.

« Simple to encode, but space inefficient (waste bits for jumps to short
addr.)

e Another alternative: encode the relative address, not the absolute
address

* £.g., encode (.L4 - current address) in Dest

33

Using Relative Addresses for Jumps

e What if the ISA encoding uses relative address for jump and call?

0x100

0x180

0x185

0x200

<foo>

.LO

rmmovqg %rsi,Ox4lc (%rsp)

ret

addq %rax, %rsi

call <foo>

jmp .LO

irmovg $0xabcd, %$rdx

40

90

60

80

70

30

64

06

06

00

f£2

lc 04 00 00 00 00 00

00 01 00 00 00 OO OO

02 00 00 00 00 00 0O

cd ab 00 00 00 00 0O

00

00

00

34

Using Relative Addresses for Jumps

e What if the ISA encoding uses relative address for jump and call?

0x100 <foo>
A

-0x80
v
0x180
0x185
0x200 .LO

rmmovqg %rsi,Ox4lc (%rsp)

relative addr:

ret

addq %rax, %rsi

call <foo>

jmp .LO

irmovg $0xabcd, %$rdx

40

90

60

80

70

30

64

06

06

00

f£2

lc 04 00 00 00 00 00

00 01 00 00 00 OO OO

02 00 00 00 00 00 0O

cd ab 00 00 00 00 0O

00

00

00

34

Using Relative Addresses for Jumps

e What if the ISA encoding uses relative address for jump and call?

0x100 <foo>
A

-0x80
v
0x180
0x185
0x200 .LO

rmmovqg %rsi,Ox4lc (%rsp)

relative addr:

ret

addq %rax, %rsi

call <foo>

jmp .LO

irmovg $0xabcd, %$rdx

40

90

60

80

70

30

64

06

00

00

f£2

lc 04 00 00 00 00 00 0O

00 00 11 11 11 11 11

02 00 00 00 00 00 0O

cd ab 00 00 00 00 00 00

34

Using Relative Addresses for Jumps

e What if the ISA encoding uses relative address for jump and call?

0x100 <foo>
A

-0x80

v
0x180

0x185

I Ox7B
0x200 .LO

rmmovqg %rsi,Ox4lc (%rsp)

relative addr:

ret

addq %rax, %rsi

call <foo>

jmp .LO

irmovg $0xabcd, %$rdx

40

90

60

80

70

30

64

06

00

00

f£2

lc 04 00 00 00 00 00 0O

00 00 11 11 11 11 11

02 00 00 00 00 00 0O

cd ab 00 00 00 00 00 00

34

Using Relative Addresses for Jumps

e What if the ISA encoding uses relative address for jump and call?

0x100 <foo>
A

-0x80

v
0x180

0x185

I Ox7B
0x200 .LO

rmmovqg %rsi,Ox4lc (%rsp)

relative addr:

ret

addq %rax, %rsi

call <foo>

jmp .LO

irmovg $0xabcd, %$rdx

40

90

60

80

70

30

64

06

00

7B

f£2

lc 04 00 00 00 00 00 0O

00 00 11 11 11 11 11

00 00 00 00 00 00 0O

cd ab 00 00 00 00 00 00

34

Using Relative Addresses for Jumps

e What if the ISA encoding uses relative address for jump and call?

e |f we use relative address, the exact start address of the code
doesn’t matter. Why?

0x100 <foo>
A

-0x80

v
0x180

0x185

I Ox7B
0x200 .LO

rmmovqg %rsi,Ox4lc (%rsp)

relative addr:

ret

addq %rax, %rsi

call <foo>

jmp .LO

irmovg $0xabcd, %$rdx

40

90

60

80

70

30

64

06

00

7B

f£2

lc 04 00 00 00 00 00 0O

00 00 11 11 11 11 11

00 00 00 00 00 00 0O

cd ab 00 00 00 00 00 00

34

Using Relative Addresses for Jumps

e What if the ISA encoding uses relative address for jump and call?

e |f we use relative address, the exact start address of the code
doesn’t matter. Why?

e This code is called Position-Independent Code (PIC)

0x100 <foo>
A

-0x80

v
0x180

0x185

I Ox7B
0x200 .LO

rmmovqg %rsi,Ox4lc (%rsp)

relative addr:

ret

addq %rax, %rsi

call <foo>

jmp .LO

irmovg $0xabcd, %$rdx

40

90

60

80

70

30

64 1c 04 00 00 00 OO0 00 0O

06

00 00 00 11 11 11 11 11

7B 00 00 00 00 00 00 OO

f2 cd ab 00 00 00 00 00 OO

34

One More Complication...

Byte
jXX Dest

call Dest

0 1 2 3 4 5 6 7
7| fn Dest (essentially the target address) jle .L4
810 Dest (essentially the start address of the callee) call foo

35

One More Complication...

Byte 0 2 3 4 5 6 7
JXX Dest 7 | fn Dest (essentially the target address) jle .14
call Dest 810 Dest (essentially the start address of the callee) call foo

e What if you want to jump really far away from the current instruction?

e indirect jump, use a combination of absolute + relative addresses
(“Far jumps” in x86). Elegant design.

35

Stack Operations

pushqg rA A|O|rAF

- Decrement $rsp by 8
- Store word from rA to memory at $rsp
- Like x86-64

popq rA B/ O|rA| F

- Read word from memory at $rsp
- Save in rA

- Increment $rsp by 8

- Like x86-64

36

Miscellaneous Instructions

nop 10

- Don’t do anything

halt 00

- Stop executing instructions
- Usually can’t be executed in the user mode, only by the OS
- Encoding ensures that program hitting memory initialized to zero will halt

Variable Length Instructions

38

Variable Length Instructions

* X86 (and Y86) is a variable length ISA (1 to 15 bytes), where
different instructions have different lengths.

38

http://www.c-jump.com/CIS77/CPU/x86/lecture.html

Variable Length Instructions

* X86 (and Y86) is a variable length ISA (1 to 15 bytes), where
different instructions have different lengths.

* There are fixed length ISAs: all instructions have the same length

38

http://www.c-jump.com/CIS77/CPU/x86/lecture.html

Variable Length Instructions

* X86 (and Y86) is a variable length ISA (1 to 15 bytes), where
different instructions have different lengths.

* There are fixed length ISAs: all instructions have the same length

* ARM’s ISA for micro-controllers have a 4-bit ISA. Very Long Instruction Word
(VLIW) ISAs have instructions that are hundreds of bytes long.

38

http://www.c-jump.com/CIS77/CPU/x86/lecture.html

Variable Length Instructions

* X86 (and Y86) is a variable length ISA (1 to 15 bytes), where
different instructions have different lengths.
* There are fixed length ISAs: all instructions have the same length

* ARM’s ISA for micro-controllers have a 4-bit ISA. Very Long Instruction Word
(VLIW) ISAs have instructions that are hundreds of bytes long.

* Or you can have a combination of both: e.g., 16-bit ISA with 32-bit extensions
(e..g, ARM Thumb-extension).

38

http://www.c-jump.com/CIS77/CPU/x86/lecture.html

Variable Length Instructions

* X86 (and Y86) is a variable length ISA (1 to 15 bytes), where
different instructions have different lengths.
* There are fixed length ISAs: all instructions have the same length

* ARM’s ISA for micro-controllers have a 4-bit ISA. Very Long Instruction Word
(VLIW) ISAs have instructions that are hundreds of bytes long.

* Or you can have a combination of both: e.g., 16-bit ISA with 32-bit extensions
(e..g, ARM Thumb-extension).

* Advantages of variable length ISAs

38

http://www.c-jump.com/CIS77/CPU/x86/lecture.html

Variable Length Instructions

* X86 (and Y86) is a variable length ISA (1 to 15 bytes), where
different instructions have different lengths.
* There are fixed length ISAs: all instructions have the same length

* ARM’s ISA for micro-controllers have a 4-bit ISA. Very Long Instruction Word
(VLIW) ISAs have instructions that are hundreds of bytes long.

* Or you can have a combination of both: e.g., 16-bit ISA with 32-bit extensions
(e..g, ARM Thumb-extension).

* Advantages of variable length ISAs

* More compact. Some instructions do not need that many bits. (Actually what'’s
the optimal way of encoding instructions in a variable length ISA?)

38

http://www.c-jump.com/CIS77/CPU/x86/lecture.html

Variable Length Instructions

* X86 (and Y86) is a variable length ISA (1 to 15 bytes), where
different instructions have different lengths.

* There are fixed length ISAs: all instructions have the same length

* ARM’s ISA for micro-controllers have a 4-bit ISA. Very Long Instruction Word
(VLIW) ISAs have instructions that are hundreds of bytes long.

* Or you can have a combination of both: e.g., 16-bit ISA with 32-bit extensions
(e..g, ARM Thumb-extension).

* Advantages of variable length ISAs

* More compact. Some instructions do not need that many bits. (Actually what'’s
the optimal way of encoding instructions in a variable length ISA?)

* Can have arbitrary number of instructions: easy to add new inst.

38

http://www.c-jump.com/CIS77/CPU/x86/lecture.html

Variable Length Instructions

* X86 (and Y86) is a variable length ISA (1 to 15 bytes), where
different instructions have different lengths.

* There are fixed length ISAs: all instructions have the same length

* ARM’s ISA for micro-controllers have a 4-bit ISA. Very Long Instruction Word
(VLIW) ISAs have instructions that are hundreds of bytes long.

* Or you can have a combination of both: e.g., 16-bit ISA with 32-bit extensions
(e..g, ARM Thumb-extension).

* Advantages of variable length ISAs

* More compact. Some instructions do not need that many bits. (Actually what'’s
the optimal way of encoding instructions in a variable length ISA?)

* Can have arbitrary number of instructions: easy to add new inst.
* What is the down side?

38

http://www.c-jump.com/CIS77/CPU/x86/lecture.html

Variable Length Instructions

* X86 (and Y86) is a variable length ISA (1 to 15 bytes), where
different instructions have different lengths.

* There are fixed length ISAs: all instructions have the same length

* ARM’s ISA for micro-controllers have a 4-bit ISA. Very Long Instruction Word
(VLIW) ISAs have instructions that are hundreds of bytes long.

* Or you can have a combination of both: e.g., 16-bit ISA with 32-bit extensions
(e..g, ARM Thumb-extension).

* Advantages of variable length ISAs

* More compact. Some instructions do not need that many bits. (Actually what'’s
the optimal way of encoding instructions in a variable length ISA?)

* Can have arbitrary number of instructions: easy to add new inst.

* What is the down side?
* Fetch and decode are harder to implement. More on this later.

38

http://www.c-jump.com/CIS77/CPU/x86/lecture.html

Variable Length Instructions

* X86 (and Y86) is a variable length ISA (1 to 15 bytes), where
different instructions have different lengths.
* There are fixed length ISAs: all instructions have the same length

* ARM’s ISA for micro-controllers have a 4-bit ISA. Very Long Instruction Word
(VLIW) ISAs have instructions that are hundreds of bytes long.

* Or you can have a combination of both: e.g., 16-bit ISA with 32-bit extensions
(e..g, ARM Thumb-extension).

* Advantages of variable length ISAs

* More compact. Some instructions do not need that many bits. (Actually what'’s
the optimal way of encoding instructions in a variable length ISA?)

* Can have arbitrary number of instructions: easy to add new inst.

* What is the down side?
* Fetch and decode are harder to implement. More on this later.

* A good writeup showing some of the complexity involved:

38

http://www.c-jump.com/CIS77/CPU/x86/lecture.html

