CSC 252/452: Computer Organization
Fall 2024: Lecture 13

Instructor: Yanan Guo

Department of Computer Science
University of Rochester



Announcement

* Programming assignment 3 is out

 Details: https://www.cs.rochester.edu/courses/252/fall2024/
labs/assignment3.html

* Due on Oct. 25th, 11:59 PM
* You (may still) have 3 slip days



https://www.cs.rochester.edu/courses/252/fall2024/labs/assignment3.html
https://www.cs.rochester.edu/courses/252/fall2024/labs/assignment3.html
https://www.cs.rochester.edu/courses/252/fall2024/labs/assignment3.html

Announcement

* Programming assignment 3 is in x86 assembly language. Seek
help from TAs.

* TAs are best positioned to answer your questions about
programming assignments!!!

* Programming assignments do NOT repeat the lecture materials.
They ask you to synthesize what you have learned from the
lectures and work out something new.



Single-Cycle Microarchitecture
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Combinational Logic

Read current_states;
next_states = calculate_new_state(current_states);
When clock rises, current_states = next_states;

next_states has to be ready before the close rises




Single-Cycle Microarchitecture
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Single-Cycle Microarchitecture: lllustration

Think of it as a state machine
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Cycle 1:| 0x000: irmovg $0x100,%rbx # %rbx <-- 0x100
Cycle2:| 0x00a: irmovg $0x200,%rdx # %$rdx <-- 0x200
Cycle3:| 0x014: addg %rdx, $rbx # %$rbx <-- 0x300 CC <-- 000
Cycle 4:
Cycle5:| 0x01f: rmmovqg %$rbx, 0 (%$rdx) # M[0x200] <-- 0x300

Data
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Srbx = 0x300

e state set according to addg
instruction

e combinational logic generates
results for je instruction

10



Processor Microarchitecture

* Pipelined microarchitecture implementation
 Basic Principles
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Performance Model

Execution time
of a program
(in seconds)

# of Dynamic Instructions

X # of cycles taken to execute an instruction (on average)

/' number of cycles per second
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Performance Model

Execution time
of a program
(in seconds)

# of Dynamic Instructions CPI

X| # of cycles taken to execute an instruction (on average)

Clock Frequency

/| number of cycles per second (1/cycle time)




Improving Performance

Execution time
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the compiler and/or programmer).
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Improving Performance

Execution time
of a program
(in seconds)

# of Dynamic Instructions

X # of cycles taken to execute an instruction (on average)
/' number of cycles per second

1. Reduce the total number of instructions executed (mainly done by
the compiler and/or programmer).

- 2. Increase the clock frequency (reduce the cycle time). Has huge
power implications.

- 3. Reduce the CPI, i.e., execute more instructions in one cycle.
« We will talk about one technique that simultaneously achieves 2 & 3.
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Limitations of a Single-Cycle CPU
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Limitations of a Single-Cycle CPU

« Cycle time
 Every instruction finishes in one cycle.

* The absolute time takes to execute each instruction varies.
Consider for instance an ADD instruction and a JMP instruction.

 But the cycle time is uniform across instructions, so the cycle time
needs to accommodate the worst case, i.e., the slowest
instruction.

- How do we shorten the cycle time (increase the frequency)?
- CPI

* The entire hardware is occupied to execute one instruction at a
time. Can’t execute multiple instructions at the same time.

- How do execute multiple instructions in one cycle?

14



A Motivating Example

300 ps 20 ps
Combinational z
logic
g
|
Clock

- Computation requires total of 300 picoseconds
- Additional 20 picoseconds to save result in register
* Must have clock cycle time of at least 320 ps



Pipeline Diagrams

» Time to finish 3 insts = 960 ps
- Each inst.’s latency is 320 ps

OP1 320

OP2 320

OP3 . 320
Time

- 3 Instructions will take 960 ps to finish

- First cycle: Inst 1 takes 300 ps to compute new state,
20 ps to store the new states

+ Second cycle: Inst 2 starts; it takes 300 ps to
compute new states, 20 ps to store new states

- And so on...

16



3-Stage Pipelined Version

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Comb. R Comb. R Comb. R

logic e logic e logic e

A g B g C g
Clock

- Divide combinational logic into 3 stages of 100 ps each

- Insert registers between stages to store intermediate data between
stages. These are call pipeline registers (ISA-invisible)

- Can begin a new instruction as soon as the previous one finishes
stage A and has stored the intermediate data.

- Begin new operation every 120 ps
- Cycle time can be reduced to 120 ps

17



3-Stage Pipelined Version

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps
Comb. R Comb. R Comb. R
logic e logic e logic e
A g B g C g
Clock
3-Stage Pipelined
|
ori_ A | B | [C
OP2 A| B | C
OP3 A B

Time
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Comparison

« Time to finish 3 insts = 960 ps

Unpipelinea - Each inst.’s latency is 320 ps
OP1 320
OP2 320
OP3 Time 320
3-Stage Pipelined
« Time to finish 3 insets = 120 *
opiA 1 B 1 6 5 = 600 ps
OP2 A B C _
OP3 A B c - But each inst.’s latency
Time increases: 120 * 3 = 360 ps
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Benefits of Pipelining

« Time to finish 3 insts = 960 ps
- Each inst.’s latency is 320 ps

OP1
OP2
OP3

Time

Reduce the cycle time from 320 ps to 120 ps

* Time to finish 3 insets = 120 *

opil A | B | C 5 — 600 pS
OP2 Al B | C |
oP A B C * But each inst.’s latency
3 . increases: 120 * 3 = 360 ps
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One Requirement of Pipelining

* The stages need to be using different hardware structures.

- That is, Stage A, Stage B, and Stage C need to exercise
different parts of the combination logic.

OP1| A B C
OP2 A B C
OP3 A B

Time

* Time to finish 3 insets = 120 *

5 =600 ps

« But each inst.’s latency

increases: 120 * 3 = 360 ps
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Pipeline Trade-offs

* Pros: Decrease the total execution time (Increase the “throughput’).
e Cons: Increase the latency of each instruction as new registers are

needed between pipeline stages.

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Comb. R Comb. R Comb. R
logic e logic e logic e
A g B g C g
300 ps 20 ps Clock
Combinational z
logic
g
|

Clock -



Throughput

* The rate at which the processor can finish executing an
instruction (at the steady state).

Inst 1
Inst 2

Inst 3
Inst 4

Inst 5

Time

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps
Comb. R Comb. R Comb. R
logic e logic e logic e
A g B g C g
B | C Clock
A B C
A B C Throughput of this 3-stage
A B c processor is 1 instruction every
120 ps, or 8.3 Giga (billion)
A B Instructions per Second (GIPS).
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Aside: Unbalanced Pipeline

* A pipeline’s delay is limited by the slowest stage. This limits the

cycle time and the throughput

Cycle time: 120 ps
Delay: 360 ps
Thrupt: 8.3 GIPS
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Comb.
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A
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R
e

g
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Comb.
logic
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R
e

g
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Comb.
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20 ps

R
e

g

Clock
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Aside: Unbalanced Pipeline

* A pipeline’s delay is limited by the slowest stage. This limits the
cycle time and the throughput
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Delay: 360 ps logic e logic e logic e
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Clock
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Aside: Unbalanced Pipeline

* A pipeline’s delay is limited by the slowest stage. This limits the
cycle time and the throughput
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Aside: Unbalanced Pipeline

* A pipeline’s delay is limited by the slowest stage. This limits the
cycle time and the throughput

Cycle time: 120 ps
Delay: 360 ps
Thrupt: 8.3 GIPS

Cycle time: 170 ps
Delay: 510 ps
Thrupt: 5.9 GIPS

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps
Comb. R Comb. R Comb. R
logic e logic e logic e
A g B g C g

Clock

50ps 20 ps 150 ps 20 ps 100 ps 20 ps
Comb. R Comb. R Comb. R
'Og\'c e logic e logic e
g B g C g

Clock
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Aside: Unbalanced Pipeline

* A pipeline’s delay is limited by the slowest stage. This limits the
cycle time and the throughput

170 ps
P
OP1 | A C
OP2 A B
OP3 A
Time
>
50ps 20 ps 150 ps 20 ps 100 ps
Cycle time: 170 ps
Delav: 51 Comb. R Comb. R Comb.
elay: 510 ps 'Og\'c e logic e logic
Thrupt: 5.9 GIPS g B g C

20 ps

®

Clock
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Aside: Mitigating Unbalanced Pipeline

e Solution 1: Further pipeline the slow stages

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps
Comb. R Comb. R Comb. R
Iog\ic e logic e logic e
g B g C g
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Aside: Mitigating Unbalanced Pipeline

e Solution 1: Further pipeline the slow stages
e Not always possible. What to do if we can’t further pipeline a stage”?
e Solution 2: Use multiple copies of the slow component
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Comb.
logic
B
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Aside: Mitigating Unbalanced Pipeline

e Solution 1: Further pipeline the slow stages
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Aside: Mitigating Unbalanced Pipeline

e Solution 1: Further pipeline the slow stages
e Not always possible. What to do if we can’t further pipeline a stage”?

e Solution 2: Use multiple copies of the slow component

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps
C opy . selectl
)
Comb. R Comb. R Comb. R
Io'g\ic \ivg/hiig e logic e logic e
91 g B M g C g
¢ U
Clock X
Copy 2
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Aside: Mitigating Unbalanced Pipeline

e Data sent to copy 1 in odd cycles and to copy 2 in even cycles.

50 ps

Comb.
logic

20 ps 100 ps
Copy 1 selec;t_l\
What R Comb.
4 e logic
\ioglc? g B M
¢ U
Clock X
Copy 2
R Comb.
e logic —
B

20 ps

R
e
9

50 ps

Comb.
logic

20 ps

R
e
9
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Aside: Mitigating Unbalanced Pipeline

e Data sent to copy 1 in odd cycles and to copy 2 in even cycles.

e This is called 2-way interleaving. Effectively the same as pipelining
Comb. logic B into two sub-stages.

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps
C opy . selec;t_l\
Comb. R Comb. R Comb. R
Io'g\ic \ivg/h.ig e logic e logic e
IC ¢
d g B M g C g
¢ U
Clock X
Copy 2
R Comb.
e logic ~—
g B
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Aside: Mitigating Unbalanced Pipeline

e Data sent to copy 1 in odd cycles and to copy 2 in even cycles.

e This is called 2-way interleaving. Effectively the same as pipelining
Comb. logic B into two sub-stages.

e The cycle time is reduced to 70 ps (as opposed to 120 ps) at the cost
of extra hardware.

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps
C opy . selec;t_l\
Comb. R Comb. R Comb. R
Iog\ic \ivg/h.ig e logic e logic e
IC ¢
d g B M g C g
¢ U
Clock X
Copy 2
R Comb.
e logic ~—
g B




Another Way to Look At the Microarchitecture

Principles:

» Execute each instruction one at a time, one after another
» EXpress every instruction as series of simple steps

» Dedicated hardware structure for completing each step
 Follow same general flow for each instruction type

Fetch: Read instruction from instruction memory
Decode: Read program registers

Execute: Compute value or address

Memory: Read or write data

Write Back: Write program registers

PC: Update program counter

28



newPC
PC

valE,valM

Write back

Memory

Addr, Data

Execute

aluA, aluB

valA,valB

D d
A B
ecoagae dstA, dstB e

file

icode ifun
rA ,rB
valC

Instruction PC

FetCh memory increment

Fetch

= Read instruction from instruction memory

Decode
= Read program registers

Execute
= Compute value or address

Memory
= Read or write data

Write Back
= Write program registers

PC
= Update program counter
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Stage Computation: Arith/Log. Ops

ObPq rA, rB

6

fn

rA

rB

OPqrA, rB
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Stage Computation: Arith/Log. Ops

ObPq rA, rB

6

fn

rA rB

OPqrA, rB

Fetch

icode:ifun < M,[PC]
rA:rB < M,[PC+1]

valP < PC+2

Read instruction byte
Read register byte

Compute next PC
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Stage Computation: Arith/Log. Ops

ObPq rA, rB

fn

rA rB

OPqrA, rB

icode:ifun < M,[PC]
rA:rB < M,[PC+1]

Fetch
valP < PC+2
Decode valA < R[rA]
valB <— R[rB]

Read instruction byte
Read register byte

Compute next PC
Read operand A
Read operand B
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Stage Computation: Arith/Log. Ops

ObPq rA, rB

fn

rA rB

OPqrA, rB

Fetch

icode:ifun < M,[PC]
rA:rB < M,[PC+1]

valP < PC+2

Decode

valA < R[rA]
valB < R[rB]

Execute

valE < valB OP valA
Set CC

Read instruction byte
Read register byte

Compute next PC

Read operand A

Read operand B

Perform ALU operation

Set condition code register
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Stage Computation: Arith/Log. Ops

Read instruction byte
Read register byte

Compute next PC

Perform ALU operation
Set condition code register

Opq rA, rB fn [rA|rB

OPqrA, rB
icode:ifun < M,[PC]

Fetch rA:rB < M[PC+1]
valP < PC+2

Decode valA < R[rA] Read operand A
valB < R[rB] Read operand B
valE < valB OP valA

Execute
Set CC

Memory

30



Stage Computation: Arith/Log. Ops

Read instruction byte
Read register byte

Compute next PC

Perform ALU operation

Set condition code register

Write back result

OPq rA, rB fn [rA|rB

OPqrA, rB
icode:ifun < M,[PC]

Fetch rA:rB < M[PC+1]
valP < PC+2

Decode valA < R[rA] Read operand A
valB < R[rB] Read operand B
valE < valB OP valA

Execute
Set CC

Memory

back
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Stage Computation: Arith/Log. Ops

Read instruction byte
Read register byte

Compute next PC

Perform ALU operation

Set condition code register

Write back result

ObPq rA, rB fn|rA|rB
OPqrA, rB
icode:ifun < M,[PC]
Fetch rA:rB < M,[PC+1]
valP < PC+2
Decode valA < R[rA] Read operand A
valB < R[rB] Read operand B
valE < valB OP valA
Execute
Set CC
Memory
Write R[rB] < valE
back
PC update |[PC < valP Update PC
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Stage Computation: rmmovg

rmmovg rA, D(rB) |4 | O |rA|rB D

rmmovq rA, D(rB)




Stage Computation: rmmovg

rmmovqrA, D(rB) | 4 | O |[rA|rB

D

rmmovq rA, D(rB)

Fetch

icode:ifun < M,[PC]
rA:rB < M,[PC+1]
valC < My[PC+2]
valP < PC+10

Read instruction byte
Read register byte
Read displacement D
Compute next PC
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Stage Computation: rmmovg

rmmovqrA, D(rB) | 4 | O |[rA|rB

D

rmmovq rA, D(rB)

icode:ifun < M,[PC]
rA:rB < M,[PC+1]

Fetch
valC < My[PC+2]
valP < PC+10
Decode valA < R[rA]

valB < R[rB]

Read instruction byte
Read register byte
Read displacement D
Compute next PC
Read operand A
Read operand B
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Stage Computation: rmmovg

rmmovqrA, D(rB) | 4 | O |[rA|rB

D

rmmovq rA, D(rB)

Fetch

icode:ifun < M,[PC]
rA:rB < M,[PC+1]
valC < My[PC+2]
valP < PC+10

Decode

valA < R[rA]
valB < R[rB]

Execute

valE < valB + valC

Read instruction byte
Read register byte

Read displacement D
Compute next PC

Read operand A

Read operand B

Compute effective address

31



Stage Computation: rmmovg

rmmovqrA, D(rB) | 4 | O |[rA|rB

D

rmmovq rA, D(rB)

icode:ifun < M,[PC]
Fetch rA:rB < M,[PC+1]

valC < My[PC+2]

valP < PC+10
Decode valA < R[rA]

valB < R[rB]

valE <— valB + valC
Execute
Memory Mg[valE] <— valA

Read instruction byte
Read register byte

Read displacement D
Compute next PC

Read operand A

Read operand B

Compute effective address

Write value to memory
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Stage Computation: rmmovg

rmmovqrA, D(rB) | 4 | O |[rA|rB

D

rmmovq rA, D(rB)

icode:ifun < M,[PC]
Fetch rA:rB < M,[PC+1]
valC < My[PC+2]
valP < PC+10
Decode valA < R[rA]
valB < R[rB]
valE <— valB + valC
Execute
Memory Mg[valE] <— valA
Write
back

Read instruction byte
Read register byte

Read displacement D
Compute next PC

Read operand A

Read operand B

Compute effective address

Write value to memory
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Stage Computation: rmmovg

rmmovqrA, D(rB) | 4 | O |[rA|rB

D

rmmovq rA, D(rB)

icode:ifun < M,[PC]
Fetch rA:rB < M,[PC+1]

valC < My[PC+2]

valP < PC+10

<— R[rA

Decode valA < RIrAl

valB < R[rB]

valE <— valB + valC
Execute
Memory Mg[valE] <— valA
Write
back
PC update |PC < valP

Read instruction byte
Read register byte

Read displacement D
Compute next PC

Read operand A

Read operand B

Compute effective address

Write value to memory

Update PC
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Stage Computation: Jumps

jXX Dest

e Compute both addresses
e Choose based on setting of condition codes and branch condition
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Stage Computation: Jumps

jXX Dest

Fetch

icode:ifun < M,[PC]

valC < M;[PC+1]
valP < PC+9

e Compute both addresses

Read instruction byte

Read destination address
Fall through address

e Choose based on setting of condition codes and branch condition
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Stage Computation: Jumps

jXX Dest

Fetch

icode:ifun < M,[PC]

valC < M;[PC+1]
valP < PC+9

Decode

e Compute both addresses

Read instruction byte

Read destination address
Fall through address

e Choose based on setting of condition codes and branch condition
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Stage Computation: Jumps

jXX Dest
icode:ifun < M,[PC]
Fetch
valC < M;[PC+1]
valP < PC+9
Decode
Execute .
Cnd < Cond(CC,ifun)

e Compute both addresses
e Choose based on setting of condition codes and branch condition

Read instruction byte

Read destination address
Fall through address

Take branch?
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Stage Computation: Jumps

jXX Dest
icode:ifun < M,[PC]
Fetch
valC < M;[PC+1]
valP < PC+9
Decode
Execute .
Cnd < Cond(CC,ifun)
Memory

e Compute both addresses
e Choose based on setting of condition codes and branch condition

Read instruction byte

Read destination address
Fall through address

Take branch?
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Stage Computation: Jumps

jXX Dest
icode:ifun < M,[PC]
Fetch
valC < M;[PC+1]
valP < PC+9
Decode
Execute .
Cnd < Cond(CC,ifun)
Memory
Write
back

e Compute both addresses

Read instruction byte

Read destination address
Fall through address

Take branch?

e Choose based on setting of condition codes and branch condition

32



Stage Computation: Jumps

jXX Dest
icode:ifun < M,[PC]
Fetch
valC < M;[PC+1]
valP < PC+9
Decode
Execute .
Cnd < Cond(CC,ifun)
Memory
Write
back
PC update [PC < Cnd ? valC : valP

e Compute both addresses

Read instruction byte

Read destination address
Fall through address

Take branch?

Update PC

e Choose based on setting of condition codes and branch condition

32



Pipeline Stages

Fetch

- Select current PC

- Read instruction

- Compute incremented PC
Decode

- Read program registers
Execute

- Operate ALU
Memory

- Read or write data memory
Write Back

- Update register file

W_icode, W_valM W_valE, W_valM, W_dstE, W_dstM

Memory

Execute

aluA, aluB

valA, valB

d_srcA,
d_srcB

Decode

A B
Register™
file -

Write back

Instruction
memory

Fetch

PC
increment

predPC

PC
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Real-World Pipelines: Car Washes
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Sequential
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Real-World Pipelines: Car Washes

Sequential

Pipelined

...........

|dea
- Divide process into independent stages
- Move objects through stages in sequence
- At any given times, multiple objects being processed
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Pipeline lllustration

Fetch

Decode

Execute

Memory

Write
back
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Pipeline lllustration

Inst0

Fetch

Decode

Execute

Memory

Write
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Pipeline lllustration

Insti

Fetch

Inst0

Decode

Execute

Memory

Write
back
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Pipeline lllustration

Inst2

Fetch

Insti

Decode

Inst0

Execute

Memory

Write
back
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Pipeline lllustration

Inst3

Fetch

Inst2

Decode

Insti

Execute

Inst0

Memory

Write
back
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Pipeline lllustration

Inst4

Fetch

Inst3

Decode

Inst2

Execute

Insti

Memory

Inst0

Write
back
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Pipeline lllustration

Fetch

Inst4

Decode

Inst3

Execute

Inst2

Memory
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Write
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Pipeline lllustration

Fetch

Decode

Inst4

Execute

Inst3

Memory

Inst2

Write
back

35



Pipeline lllustration

Fetch

Decode

Execute

Inst4

Memory

Inst3

Write
back
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Pipeline lllustration

Fetch

Decode

Execute

Memory

Inst4

Write
back
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Another lllustration

239
Clock -
OP1
OoP2 A B C
OP3 A B C
0 120 240 360 480 640
Time
100 ps 20 ps 100 ps 20 ps 100 ps 20 ps
Comb. Comb. R
= logic — logic F=>e
A C g
Clock
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Another lllustration

241
Clock B
OP1
OP2 A B C
OP3 A B C
0 120 240 360 480 640
Time
100 ps 20 ps 100 ps 20 ps 100 ps 20 ps
Comb. R Comb. Comb. R
= logic =I>el=)y logic logic =I>e
A g B C g
Clock
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Another lllustration

640

300
Clock
OP1
OP2 A 3 C
OP3 B C
0 120 240 360 480
Time
100 ps 20 ps 100 ps 20 ps 100 ps 20 ps
Comb. R Comb. : R
=1 logic F=>lef=1{ logi — e
A g B g
Clock
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Another lllustration

359
Clock | B
OP1 _
OP2 A B C
OP3 A B C
Io 1I20 2|40 3|60 4|80 6|4O

Time

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Comb. R Comb.
':{> logic :|'> e :|'> logic
A g B

Clock
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Making the Pipeline Really Work

e Control Dependencies
 What is it?
« Software mitigation: Inserting Nops
e Software mitigation: Delay Slots
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Control Dependency

- Definition: Outcome of instruction A determines whether or not
instruction B should be executed.

- Jump instruction example below:

- jne L1 determines whether irmovg $1, %rax should be
executed
- But jne doesn’t know its outcome until after its Execute stage

X0rg %sSrax, srax

jne L1 # Not taken
irmovg $1, %rax # Fall Through
L1 irmovg $4, S%rcx # Target

irmovg $3, %$rax # Target + 1
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instruction B should be executed.

- Jump instruction example below:
- jne L1 determines whether irmovg $1, %rax should be
executed
- But jne doesn’t know its outcome until after its Execute stage

1 2 3

XOrg %srax, %srax F | D | E
jne L1 # Not taken F D
nop F
irmovg $1, %rax # Fall Through

L1 irmovg $4, S%rcx # Target

irmovg $3, %rax # Target + 1
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Control Dependency

- Definition: Outcome of instruction A determines whether or not
instruction B should be executed.

- Jump instruction example below:

- jne L1 determines whether irmovg $1, %rax should be
executed

- But jne doesn’t know its outcome until after its Execute stage

1 2 3 4
X0rg %sSrax, srax F| D E | M
jne L1 # Not taken F D E
nop F D

irmovg $1, %rax # Fall Through
L1 irmovg $4, S%rcx # Target
irmovg $3, %rax # Target + 1
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Control Dependency

- Definition: Outcome of instruction A determines whether or not
instruction B should be executed.

- Jump instruction example below:

- jne L1 determines whether irmovg $1, %rax should be

executed

- But jne doesn’t know its outcome until after its Execute stage

X0rg %sSrax, srax

jne L1 #

nop
nop
irmovg $1, %rax
L1 irmovg $4, S%rcx
irmovg $3, %rax

H= =

1 2 3 4

F D| E M

Not taken F | D | E
F | D

F

Fall Through
Target
Target + 1
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Control Dependency

- Definition: Outcome of instruction A determines whether or not
instruction B should be executed.

- Jump instruction example below:
- jne L1 determines whether irmovg $1, $%rax should be

executed

- But jne doesn’t know its outcome until after its Execute stage

X0rg %sSrax, srax

jne L1 #

nop
nop
irmovg $1, %rax
L1 irmovg $4, S%rcx
irmovg $3, %rax

H= =

1 2 3 4 5

F | D
Not taken F

m O m

momZ

Mmoo mZ=zZ S

Fall Through
Target
Target + 1
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Control Dependency

- Definition: Outcome of instruction A determines whether or not
instruction B should be executed.

- Jump instruction example below:
- jne L1 determines whether irmovg $1, $%rax should be

executed

- But jne doesn’t know its outcome until after its Execute stage

X0rg %sSrax, srax

jne L1 #

nop
nop
irmovg $1, %rax
L1 irmovg $4, S%rcx
irmovg $3, %rax

H= =

1 2 3 4 5

F | D
Not taken F

m O m

m O mn | <Z

W
M
E
D

Fall Through
Target
Target + 1

41



Control Dependency

- Definition: Outcome of instruction A determines whether or not
instruction B should be executed.

- Jump instruction example below:

- jne L1 determines whether irmovg $1, %rax should be
executed

- But jne doesn’t know its outcome until after its Execute stage

1 2 3 4 5 6 7 8 9

X0rg %sSrax, srax F D E M W

jne L1 # Not taken F D E M| W

nop F D\E M W

nop F\D E M W

irmovg $1, %rax # Fall Through D E M W
L1 irmovqg $4, %rcx # Target F D E M

irmovg $3, %rax # Target + 1 F D |E
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Delay Slots

X0rg %srax, srax

L1 irmovg $4, %

Jores Ll S
, ™, Can we make use of

the 2 wasted slots?

1 2

F | D

# Fall Through
# Target
# Target + 1

m O m

mom<

w
M | W
E M W
D E M W
F D E M| W
F ' D  E M
F | D | E
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Delay Slots

™ Can we make use of
the 2 wasted slots?

1 2 3

F | D

n
m O m

# Fall Through
# Target
# Target + 1

1f (cond)
do_A();

} else {
do_B();

}

do C() ;

mom<

{

mom<Z s

momz=z =

<

momZ =S

omZ =S
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Delay Slots

™ Can we make use of
the 2 wasted slots?

# Target

Have to make sure do C doesn’t
dependondo Aanddo B!!!

1 2 3

F | D

n
m O m

# Fall Through

# Target + 1

1f (cond)
do_A();

} else {
do_B();

}

do C();

Mmoo m

{

mom<Z s

m o mI s

<

momZ =S

omZ =S

42



Delay Slots

1

F

™ Can we make use of
the 2 wasted slots?

# Fall Through
# Target
# Target + 1

do C();
_ if (cond) {
A less obvious
example do_A();
} else {
do_B();

m O m

m o mZZ

w
M | W
E M W
D E M W
F D E | M| W
F ' D  E M
F | D | E
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Delay Slots

™ Can we make use of
the 2 wasted slots?

# Target

do C() ;
_ if (cond) {
A less obvious
example do_A();
} else {
do_B();
}

# Fall Through

# Target + 1

i 2 3 4 5 6 7 8 9
F D E M W
F D E M W
F D E M W
F D E M W
F D E M W
F D E M
F D | E
add A, B
or C, D
sub E, F
Jle 0x200
add A, C

43



Delay Slots

™ Can we make use of
the 2 wasted slots?

# Target

do C() ;

_ if (cond) {
A less obvious

example do_A();
} else {
do_B();

# Fall Through

# Target + 1

1 2 3 4 5 6 7 8
F D E M| W
F D E M| W
F D E M W

F D E M W
F D E M| W
F D E M

F D

add A, B add A, B

or C, D sub E, F
sub E, F Jle 0x200

Jle 0x200 or C, D

add A, C add A, C
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Delay Slots

™ Can we make use of
the 2 wasted slots?

# Target

do C() ;

_ if (cond) {
A less obvious

example do_A();
} else {
do_B();

# Fall Through

# Target + 1

1 2 3 4 5 6 7 8 9

F D E M| W
F D E M| W
F D E M W
F D E M W
F D E M| W
F D E M
F D E
add A, B add A, B
or C, D sub E, F
sub E, F Jle 0x200
Jle 0x200 or C, D
add A, C add A, C

Why don’t we move
the sub instruction?
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Resolving Control Dependencies

e Software Mechanisms

* Adding NOPs: requires compiler to insert nops, which also take
memory space — not a good idea

* Delay slot: insert instructions that do not depend on the effect
of the preceding instruction. These instructions will execute
even if the preceding branch is taken — old RISC approach

* Hardware mechanisms
e Stalling (Think of it as hardware automatically inserting nops)
* Branch Prediction
e Return Address Stack
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