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Announcement
• Programming assignment 3 is out


• Details: https://www.cs.rochester.edu/courses/252/fall2024/
labs/assignment3.html


• Due on Oct. 25th, 11:59 PM

• You (may still) have 3 slip days

https://www.cs.rochester.edu/courses/252/fall2024/labs/assignment3.html
https://www.cs.rochester.edu/courses/252/fall2024/labs/assignment3.html
https://www.cs.rochester.edu/courses/252/fall2024/labs/assignment3.html
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Announcement
• Programming assignment 3 is in x86 assembly language. Seek 

help from TAs.

• TAs are best positioned to answer your questions about 

programming assignments!!!

• Programming assignments do NOT repeat the lecture materials. 

They ask you to synthesize what you have learned from the 
lectures and work out something new.
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Combinational Logic

Single-Cycle Microarchitecture
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Single-Cycle Microarchitecture: Illustration
Think of it as a state machine

Every cycle, one instruction gets 

executed. At the end of the 
cycle, architecture states get 
modified.


States (All updated as clock 
rises)


■ PC register

■ Cond. Code register

■ Data memory

■ Register file
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• state set according to second 
irmovq instruction


• combinational logic starting to 
react to state changes

7

 0x014:   addq %rdx,%rbx      # %rbx <-- 0x300 CC <-- 000

 0x016:   je dest             # Not taken

 0x01f:   rmmovq %rbx,0(%rdx) # M[0x200] <-- 0x300

Cycle 3:

Cycle 4:

Cycle 5:

 0x00a:   irmovq $0x200,%rdx  # %rdx <-- 0x200Cycle 2:

 0x000:   irmovq $0x100,%rbx  # %rbx <-- 0x100Cycle 1:
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• state set according to second 
irmovq instruction


• combinational logic generates 
results for addq instruction
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• state set according to addq 
instruction


• combinational logic starting 
to react to state changes
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• state set according to addq 
instruction


• combinational logic generates 
results for je instruction
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Processor Microarchitecture
• Sequential, single-cycle microarchitecture implementation


• Basic idea

• Hardware implementation


• Pipelined microarchitecture implementation

• Basic Principles

• Difficulties: Control Dependency

• Difficulties: Data Dependency
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Performance Model

# of Dynamic Instructions
Execution time 
of a program 
(in seconds)

X

=

/

# of cycles taken to execute an instruction (on average)

number of cycles per second
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Performance Model

# of Dynamic Instructions
Execution time 
of a program 
(in seconds)

X

=

/

# of cycles taken to execute an instruction (on average)

number of cycles per second

CPI

Clock Frequency
(1/cycle time)
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Improving Performance

# of Dynamic Instructions
Execution time 
of a program 
(in seconds)

X

=

/

# of cycles taken to execute an instruction (on average)

number of cycles per second

• 1. Reduce the total number of instructions executed (mainly done by 
the compiler and/or programmer).
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Improving Performance

# of Dynamic Instructions
Execution time 
of a program 
(in seconds)

X

=

/

# of cycles taken to execute an instruction (on average)

number of cycles per second

• 1. Reduce the total number of instructions executed (mainly done by 
the compiler and/or programmer).

• 2. Increase the clock frequency (reduce the cycle time). Has huge 
power implications.

• 3. Reduce the CPI, i.e., execute more instructions in one cycle.
• We will talk about one technique that simultaneously achieves 2 & 3.
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Limitations of a Single-Cycle CPU
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Limitations of a Single-Cycle CPU
• Cycle time

• Every instruction finishes in one cycle.
• The absolute time takes to execute each instruction varies. 

Consider for instance an ADD instruction and a JMP instruction.
• But the cycle time is uniform across instructions, so the cycle time 

needs to accommodate the worst case, i.e., the slowest 
instruction.

• How do we shorten the cycle time (increase the frequency)?
• CPI

• The entire hardware is occupied to execute one instruction at a 
time. Can’t execute multiple instructions at the same time.

• How do execute multiple instructions in one cycle?
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A Motivating Example

• Computation requires total of 300 picoseconds

• Additional 20 picoseconds to save result in register

• Must have clock cycle time of at least 320 ps

15
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Pipeline Diagrams
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Time

OP1
OP2
OP3

320
320

320

• 3 instructions will take 960 ps to finish

• First cycle: Inst 1 takes 300 ps to compute new state, 

20 ps to store the new states

• Second cycle: Inst 2 starts; it takes 300 ps to 

compute new states, 20 ps to store new states

• And so on…

• Time to finish 3 insts = 960 ps

• Each inst.’s latency is 320 ps
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3-Stage Pipelined Version

• Divide combinational logic into 3 stages of 100 ps each

• Insert registers between stages to store intermediate data between 

stages. These are call pipeline registers (ISA-invisible)

• Can begin a new instruction as soon as the previous one finishes 

stage A and has stored the intermediate data.

• Begin new operation every 120 ps 
• Cycle time can be reduced to 120 ps
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3-Stage Pipelined Version
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Comparison
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Time

OP1
OP2
OP3

Time

A B C
A B C

A B C

OP1
OP2
OP3

320
320

320

3-Stage Pipelined

Unpipelined
• Time to finish 3 insts = 960 ps

• Each inst.’s latency is 320 ps

• Time to finish 3 insets = 120 * 
5 = 600 ps


• But each inst.’s latency 
increases: 120 * 3 = 360 ps
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Benefits of Pipelining
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Reduce the cycle time from 320 ps to 120 ps 

• Time to finish 3 insts = 960 ps

• Each inst.’s latency is 320 ps

• Time to finish 3 insets = 120 * 
5 = 600 ps


• But each inst.’s latency 
increases: 120 * 3 = 360 ps



Carnegie Mellon

One Requirement of Pipelining
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Time

A B C
A B C

A B C

OP1
OP2
OP3

• Time to finish 3 insets = 120 * 
5 = 600 ps


• But each inst.’s latency 
increases: 120 * 3 = 360 ps

• The stages need to be using different hardware structures.

• That is, Stage A, Stage B, and Stage C need to exercise 

different parts of the combination logic.
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Pipeline Trade-offs
• Pros: Decrease the total execution time (Increase the “throughput”).

• Cons: Increase the latency of each instruction as new registers are 

needed between pipeline stages.
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Throughput
• The rate at which the processor can finish executing an 

instruction (at the steady state).
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Aside: Unbalanced Pipeline
• A pipeline’s delay is limited by the slowest stage. This limits the 

cycle time and the throughput
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Aside: Unbalanced Pipeline
• A pipeline’s delay is limited by the slowest stage. This limits the 

cycle time and the throughput

24

R

e

g

Clock

R

e

g

Comb.

logic


B

R

e

g

Comb.

logic


C

50 ps 20 ps 150 ps 20 ps 100 ps 20 ps

Comb.

logic

A

R

e

g

Clock

Comb.

logic


A

R

e

g

Comb.

logic


B

R

e

g

Comb.

logic


C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Cycle time: 120 ps
Delay: 360 ps

Cycle time: 170 ps

Thrupt: 8.3 GIPS



Carnegie Mellon
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cycle time and the throughput
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Aside: Unbalanced Pipeline
• A pipeline’s delay is limited by the slowest stage. This limits the 

cycle time and the throughput
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Aside: Unbalanced Pipeline
• A pipeline’s delay is limited by the slowest stage. This limits the 

cycle time and the throughput
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Aside: Mitigating Unbalanced Pipeline
• Solution 1: Further pipeline the slow stages
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Aside: Mitigating Unbalanced Pipeline
• Solution 1: Further pipeline the slow stages

• Not always possible. What to do if we can’t further pipeline a stage?
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Aside: Mitigating Unbalanced Pipeline
• Solution 1: Further pipeline the slow stages

• Not always possible. What to do if we can’t further pipeline a stage?
• Solution 2: Use multiple copies of the slow component
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Aside: Mitigating Unbalanced Pipeline
• Data sent to copy 1 in odd cycles and to copy 2 in even cycles.
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Aside: Mitigating Unbalanced Pipeline
• Data sent to copy 1 in odd cycles and to copy 2 in even cycles.
• This is called 2-way interleaving. Effectively the same as pipelining 

Comb. logic B into two sub-stages.
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Aside: Mitigating Unbalanced Pipeline
• Data sent to copy 1 in odd cycles and to copy 2 in even cycles.
• This is called 2-way interleaving. Effectively the same as pipelining 

Comb. logic B into two sub-stages.
• The cycle time is reduced to 70 ps (as opposed to 120 ps) at the cost 

of extra hardware.
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Principles:

• Execute each instruction one at a time, one after another

• Express every instruction as series of simple steps

• Dedicated hardware structure for completing each step

• Follow same general flow for each instruction type


Fetch: Read instruction from instruction memory

Decode: Read program registers

Execute: Compute value or address

Memory: Read or write data

Write Back: Write program registers

PC: Update program counter

28

Another Way to Look At the Microarchitecture
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Fetch

■ Read instruction from instruction memory

Decode

■ Read program registers

Execute

■ Compute value or address

Memory

■ Read or write data

Write Back

■ Write program registers

PC

■ Update program counter
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Stage Computation: Arith/Log. Ops

30
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Stage Computation: Arith/Log. Ops
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OPq rA, rB
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]
 
valP ← PC+2

Fetch

Read instruction byte
Read register byte
 
Compute next PC

valA ← R[rA]
valB ← R[rB]

Decode Read operand A
Read operand B

valE ← valB OP valA
Set CC

Execute Perform ALU operation
Set condition code register
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R[rB] ← valE
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back

Write back result
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OPq rA, rB 6 fn rA rB
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rmmovq rA, D(rB)
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]
valC ← M8[PC+2]
valP ← PC+10

Fetch

Read instruction byte
Read register byte
Read displacement D
Compute next PC

valA ← R[rA]
valB ← R[rB]

Decode Read operand A
Read operand B

valE ← valB + valCExecute Compute effective address
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Stage Computation: Jumps

• Compute both addresses

• Choose based on setting of condition codes and branch condition

32

jXX Dest
icode:ifun ← M1[PC]

valC ← M8[PC+1]
valP ← PC+9

Fetch

Read instruction byte

Read destination address
Fall through address

Decode

Cnd ← Cond(CC,ifun)
Execute

Take branch?
  Memory   

 
Write
back  

PC ← Cnd ? valC : valPPC update Update PC
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Pipeline Stages
Fetch


• Select current PC

• Read instruction

• Compute incremented PC


Decode

• Read program registers


Execute

• Operate ALU


Memory

• Read or write data memory


Write Back

• Update register file

33
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Carnegie Mellon

Real-World Pipelines: Car Washes

Idea

• Divide process into independent stages

• Move objects through stages in sequence

• At any given times, multiple objects being processed

34

Sequential Pipelined
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Another Illustration
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Making the Pipeline Really Work
• Control Dependencies


• What is it?

• Software mitigation: Inserting Nops

• Software mitigation: Delay Slots


• Data Dependencies

• What is it?

• Software mitigation: Inserting Nops

40
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Control Dependency
• Definition: Outcome of instruction A determines whether or not 

instruction B should be executed.

• Jump instruction example below:


• jne L1 determines whether irmovq $1, %rax should be 
executed


• But jne doesn’t know its outcome until after its Execute stage

    xorg %rax, %rax 
    jne L1            # Not taken

irmovq $3, %rax   # Target + 1

irmovq $1, %rax   # Fall Through
L1  irmovq $4, %rcx   # Target
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instruction B should be executed.


• Jump instruction example below:
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• Jump instruction example below:

• jne L1 determines whether irmovq $1, %rax should be 
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• Jump instruction example below:
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instruction B should be executed.


• Jump instruction example below:
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• But jne doesn’t know its outcome until after its Execute stage

    xorg %rax, %rax 
    jne L1            # Not taken

irmovq $3, %rax   # Target + 1

irmovq $1, %rax   # Fall Through
L1  irmovq $4, %rcx   # Target

  nop
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Delay Slots
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jne L1           
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the 2 wasted slots?
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the 2 wasted slots?

if (cond) {

  do_A();

} else {

  do_B();

}

do_C();

Have to make sure do_C doesn’t 
depend on do_A and do_B!!!
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  do_A();

} else {

  do_B();

}

A less obvious 
example
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or C, D
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jle 0x200

add A, C

A less obvious 
example
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jne L1           

irmovq $3, %rax   # Target + 1

irmovq $1, %rax   # Fall Through
L1  irmovq $4, %rcx   # Target

  nop

6

W
M
E
DD

7

W
M
EE

8

W
MM

9

WW
FF DD EE MM WW

FF DD EE MM

Can we make use of 
the 2 wasted slots?

do_C();

if (cond) {

  do_A();

} else {

  do_B();

}

add A, B
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sub E, F

jle 0x200

add A, C

A less obvious 
example

add A, B

sub E, F

jle 0x200

or C, D

add A, C

Why don’t we move 
the sub instruction?



Carnegie Mellon

Resolving Control Dependencies
• Software Mechanisms


• Adding NOPs: requires compiler to insert nops, which also take 
memory space — not a good idea


• Delay slot: insert instructions that do not depend on the effect 
of the preceding instruction. These instructions will execute 
even if the preceding branch is taken — old RISC approach


• Hardware mechanisms

• Stalling (Think of it as hardware automatically inserting nops)

• Branch Prediction

• Return Address Stack
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