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Announcements
• Programming assignment 3 is out


• Details: https://www.cs.rochester.edu/courses/252/fall2024/
labs/assignment3.html


• Due on Oct. 25th, 11:59 PM

https://www.cs.rochester.edu/courses/252/fall2024/labs/assignment3.html
https://www.cs.rochester.edu/courses/252/fall2024/labs/assignment3.html
https://www.cs.rochester.edu/courses/252/fall2024/labs/assignment3.html
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Pipeline Stages
Fetch


• Use PC to read instruction

• Compute new PC for non-

jump instructions 
Decode


• Read program registers

Execute


• Operate ALU

• Compute new PC for jump 

instructions 
Memory


• Read or write data memory

Write Back


• Update register file
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  nop
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Control Dependency
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• Definition: Outcome of instruction A determines whether or not 
instruction B should be executed.


• Jump instruction example below:

• jne L1 determines whether irmovq $1, %rax should be 

executed

• But jne doesn’t know its outcome until after its Execute stage

    xorg %rax, %rax 
    jne L1            # Not taken

irmovq $3, %rax   # Target + 1

irmovq $1, %rax   # Fall Through
L1  irmovq $4, %rcx   # Target

  nop
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Better Pipelining
Fetch


• Use PC to read instruction

• Compute new PC for non-

jump instructions 
Decode


• Read program registers
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instructions 
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  nop
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Saving One Cycle

1

F

2

D
F

3

E
D

4

M
E

F

5

M
W

D
FF

• Definition: Outcome of instruction A determines whether or not 
instruction B should be executed.


• Jump instruction example below:

• jne L1 determines whether irmovq $1, %rax should be 

executed

• But jne doesn’t know its outcome until after its Execute stage

    xorg %rax, %rax 
    jne L1            # Not taken

irmovq $3, %rax   # Target + 1

irmovq $1, %rax   # Fall Through
L1  irmovq $4, %rcx   # Target
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Resolving Control Dependencies
• Software Mechanisms


• Adding NOPs: requires compiler to insert nops, which also take 
memory space — not a good idea


• Delay slot: insert instructions that do not depend on the effect 
of the preceding instruction. These instructions will execute 
even if the preceding branch is taken — old RISC approach


• Hardware mechanisms

• Stalling (Think of it as hardware automatically inserting nops)

• Branch Prediction

• Return Address Stack

7
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Hardware Generated Nops (Bubble and 
Stalling)

 ·  Stall : the pipeline register shouldn’t be written

 ·  Bubble : signals correspond to a nop

 ·  Why is it good for the hardware to do so anyways?
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How are Stall and Bubble Implemented in Hardware?
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Branch Prediction
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    xorg %rax, %rax 
    jne L1            # Not taken

irmovq $3, %rax   # Target + 1

irmovq $1, %rax   # Fall Through
L1  irmovq $4, %rcx   # Target
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Idea: instead of waiting, why not just guess the direction of jump?

Also takes a guess of 
the jump direction
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Branch Prediction
Idea: instead of waiting, why not just guess the direction of jump?

If prediction is correct: pipeline moves forward without stalling

If mispredicted: kill mis-executed instructions, start from the correct target


Static Prediction

• Always Taken

• Always Not-taken


Dynamic Prediction

• Dynamically predict taken/not-taken for each specific jump instruction

20
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Static Prediction
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Observation (Assumption really): Two uses of jumps

• People use jumps to check corner cases. These branches are mostly 

not taken because corner cases are rare.

• People use jumps to implement loops. These branches are mostly 

taken because a loop takes multiple iterations.
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   cmpq    %rsi,%rdi

   jle     .corner_case
   <do_A>

.corner_case:

   <do_B>

   ret
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     <before>

.L1: <body>

     cmpq B, A

     jl .L1

     <after>

   cmpq    %rsi,%rdi

   jle     .corner_case
   <do_A>

.corner_case:

   <do_B>

   ret

Static Prediction

21

Observation (Assumption really): Two uses of jumps

• People use jumps to check corner cases. These branches are mostly 

not taken because corner cases are rare.

• People use jumps to implement loops. These branches are mostly 

taken because a loop takes multiple iterations.
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     <before>

.L1: <body>

     cmpq B, A

     jl .L1

     <after>

   cmpq    %rsi,%rdi

   jle     .corner_case
   <do_A>

.corner_case:

   <do_B>

   ret

Static Prediction
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Observation (Assumption really): Two uses of jumps

• People use jumps to check corner cases. These branches are mostly 

not taken because corner cases are rare.

• People use jumps to implement loops. These branches are mostly 

taken because a loop takes multiple iterations.
Strategy:


• Forward jumps (i.e., if-else): always predict not-taken

• Backward jumps (i.e., loop): always predict taken

Mostly not taken

Mostly taken
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Static Prediction

22

Knowing branch prediction strategy helps us write faster code

• Any difference between the following two code snippets?

• What if you know that hardware uses the always non-taken 

branch prediction?

if (cond) {

  do_A()

} else {

  do_B()

}

if (!cond) {

  do_B()

} else {

  do_A()

}
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Dynamic Prediction
• Simplest idea:


• If last time taken, predict taken; if last time not-taken, predict 
not-taken


• Called 1-bit branch predictor

• Works nicely for loops

23
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Dynamic Prediction
• With 1-bit prediction, we change our mind instantly if mispredict

• Might be too quick. Thus 2-bit branch prediction: we have to 

mispredict twice in a row before changing our mind

24
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More Advanced Dynamic Prediction
• Look for past histories across instructions 
• Branches are often correlated


• Direction of one branch determines another

25

x = 0

if (cond1) x = 3

if (cond2) y = 19

if (x <= 0) z = 13

cond1 branch not-
taken means (x <=0) 
branch taken



Carnegie Mellon

What Happens If We Mispredict?

26

Cancel instructions when mispredicted

• Assuming we detect branch not-taken in execute stage

• On following cycle, replace instructions in execute and 

decode by bubbles

• No side effects have occurred yet
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 Stalling for Return

 ■  As ret passes through pipeline, stall at fetch stage

	 ●  While in decode, execute, and memory stage

 ■  Inject bubble into decode stage

 ■  Release stall when reach write-back stage

 15
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 Return Address Stack (RAS)
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• Stalling for return is silly since we know where exactly we 
need to jump to, except the jump target is retrieved later in 
the memory stage.


• Can we get that sooner? Where should we get it?



 Carnegie Mellon

 Return Address Stack (RAS)


Branch Predictor


	 A hardware stack;

different from the

stack in memory.

 17
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Today: Making the Pipeline Really Work
• Control Dependencies


• Inserting Nops

• Stalling

• Delay Slots

• Branch Prediction


• Data Dependencies

• Inserting Nops

• Stalling

• Out-of-order execution

30
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Data Dependencies

31

1    irmovq $50,  %rax

2    addq   %rax, %rbx

3    mrmovq 100(%rbx),  %rdx



Carnegie Mellon

Data Dependencies

31

1    irmovq $50,  %rax

2    addq   %rax, %rbx

3    mrmovq 100(%rbx),  %rdx



Carnegie Mellon

Data Dependencies

31

1    irmovq $50,  %rax

2    addq   %rax, %rbx

3    mrmovq 100(%rbx),  %rdx



Carnegie Mellon

Data Dependencies

• Result from one instruction used as operand for another

• Read-after-write (RAW) dependency


• Very common in actual programs

• Must make sure our pipeline handles these properly


• Get correct results

• Minimize performance impact

31

1    irmovq $50,  %rax

2    addq   %rax, %rbx

3    mrmovq 100(%rbx),  %rdx
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irmovq $3, %rax   # Target + 1

irmovq $1, %rax   # Fall Through
L1  irmovq $4, %rcx   # Target

32

A Subtle Data Dependency
• Jump instruction example below:


• jne L1 determines whether irmovq $1, %rax should be executed

• But jne doesn’t know its outcome until after its Execute stage. 

Why?

    xorg %rax, %rax 
    jne L1            # Not taken
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irmovq $3, %rax   # Target + 1

irmovq $1, %rax   # Fall Through
L1  irmovq $4, %rcx   # Target

32

A Subtle Data Dependency
• Jump instruction example below:


• jne L1 determines whether irmovq $1, %rax should be executed

• But jne doesn’t know its outcome until after its Execute stage. 

Why?
• There is a data dependency between xorg and jne. The “data” is the 

status flags.

    xorg %rax, %rax 
    jne L1            # Not taken
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Data Dependencies in Single-Cycle Machines

In Single-Cycle Implementation:

• Each operation starts only after the previous operation finishes. 

Dependency always satisfied.

33
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Data Dependencies in Pipeline Machines

Data Hazards happen when:

• Result does not feed back around in time for next operation

34
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Data Dependencies: No Nop

35

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M
W0x00a: irmovq $3,%rax F D E M

W

F D E M W0x014: addq %rdx,%rax

F D E M W0x016: halt

Remember registers get 
updated in the Write-back stage
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Data Dependencies: No Nop

35

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M
W0x00a: irmovq $3,%rax F D E M

W

F D E M W0x014: addq %rdx,%rax

F D E M W0x016: halt

addq reads wrong %rdx and %rax

Remember registers get 
updated in the Write-back stage
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Data Dependencies: 1 Nop

36

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8 9

F D E M
W0x00a: irmovq $3,%rax F D E M

W

0x014: nop F D E M WF D E M W
0x015: addq %rdx,%rax F D E M WF D E M W
0x017: halt F D E M WF D E M W

addq still reads wrong %rdx and %rax
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Data Dependencies: 2 Nop’s

37

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8 9

F D E M WF D E M W
0x00a: irmovq $3,%rax F D E M WF D E M W
0x014: nop F D E M WF D E M W
0x015: nop F D E M WF D E M W
0x016: addq %rdx,%rax F D E M WF D E M W
0x018: halt F D E M WF D E M W

10

addq reads the correct %rdx, 
but %rax still wrong



Carnegie Mellon

Data Dependencies: 3 Nop’s

38

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8 9

F D E M WF D E M W
0x00a: irmovq $3,%rax F D E M WF D E M W
0x014: nop F D E M WF D E M W
0x015: nop F D E M WF D E M W
0x016: nop F D E M WF D E M W
0x017: addq %rdx,%rax F D E M WF D E M W

10 11

0x019: halt F D E M WF D E M W

addq reads the correct %rdx 
and %rax
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Hardware Generated Nops (Bubble and Stalling)

39

Can we have the hardware automatically generates a nop?

• Why is it good for the hardware to do so anyways?
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Detecting Stall Condition

40

• Using a “scoreboard”. Each register has a bit.

• Every instruction that writes to a register sets the bit.

• Every instruction that reads a register would have to check the bit first.


• If the bit is set, then generate a bubble

• Otherwise, free to go!!
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Data Forwarding
Naïve Pipeline


• Register isn’t written until completion of write-back stage

• Source operands read from register file in decode stage

• The decode stage can’t start until the write-back stage finishes


Observation

• Value generated in execute or memory stage


Trick

• Pass value directly from generating instruction to decode stage

• Needs to be available at end of decode stage

41
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Data Forwarding Example

•  irmovq writes %rax to the register file at the end of the write-back 
stage


• But the value of %rax is already available at the beginning of the write-
back stage


• Forward %rax to the decode stage of addq.

42

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8 9

F D E M WF D E M W
0x00a: irmovq $3,%rax F D E M WF D E M W
0x014: nop F D E M WF D E M W
0x015: nop F D E M WF D E M W
0x016: addq %rdx,%rax F D E M WF D E M W
0x018: halt F D E M WF D E M W

10
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Data Forwarding Example #2

Register %rdx

• Forward from the memory stage


Register %rax

• Forward from the execute stage

43

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M
W0x00a: irmovq  $3,%rax F D E M

W

F D E M W0x014: addq %rdx,%rax

F D E M W0x016: halt



Carnegie Mellon

Data Forwarding Example #2

Register %rdx

• Forward from the memory stage


Register %rax

• Forward from the execute stage

43

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M
W0x00a: irmovq  $3,%rax F D E M

W

F D E M W0x014: addq %rdx,%rax

F D E M W0x016: halt



Carnegie Mellon

Data Forwarding Example #2
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0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M
W0x00a: irmovq  $3,%rax F D E M

W
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Bypass Paths
Decode Stage


• Forwarding logic selects valA and valB

• Normally from register file

• Forwarding: get valA or valB from later pipeline stage


Forwarding Sources

• Execute: valE

• Memory: valE, valM

• Write back: valE, valM

44
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Out-of-order Execution

45

r0 = r1 + r2

r3 = MEM[r0]

r4 = r3 + r6

r7 = r5 + r1


…

Long-latency instruction. 
Forces the pipeline to stall.

r0 = r1 + r2

r3 = MEM[r0]

r7 = r5 + r1


…

r4 = r3 + r6

• Compiler could do this, but has limitations

• Generally done in hardware



Carnegie Mellon

Out-of-order Execution

45

r0 = r1 + r2

r3 = MEM[r0]

r4 = r3 + r6

r7 = r5 + r1


…

Long-latency instruction. 
Forces the pipeline to stall.

r0 = r1 + r2

r3 = MEM[r0]

r7 = r5 + r1


…

r4 = r3 + r6

• Compiler could do this, but has limitations

• Generally done in hardware



Carnegie Mellon

Out-of-order Execution

46

r0 = r1 + r2

r3 = MEM[r0]

r4 = r3 + r6

r6 = r5 + r1


…



Carnegie Mellon

Out-of-order Execution

46

r0 = r1 + r2

r3 = MEM[r0]

r4 = r3 + r6

r6 = r5 + r1


…

r0 = r1 + r2

r3 = MEM[r0]

r6 = r5 + r1


…

r4 = r3 + r6

Is this correct?



Carnegie Mellon

Out-of-order Execution

46

r0 = r1 + r2

r3 = MEM[r0]

r4 = r3 + r6

r6 = r5 + r1


…

r0 = r1 + r2

r3 = MEM[r0]

r6 = r5 + r1


…

r4 = r3 + r6

Is this correct?

r0 = r1 + r2

r3 = MEM[r0]

r4 = r3 + r6

r4 = r5 + r1


…



Carnegie Mellon

Out-of-order Execution

46

r0 = r1 + r2

r3 = MEM[r0]

r4 = r3 + r6

r6 = r5 + r1


…

r0 = r1 + r2

r3 = MEM[r0]

r6 = r5 + r1


…

r4 = r3 + r6

Is this correct?

r0 = r1 + r2

r3 = MEM[r0]

r4 = r3 + r6

r4 = r5 + r1


…

r0 = r1 + r2

r3 = MEM[r0]

r4 = r5 + r1


…

r4 = r3 + r6

Is this correct?



Carnegie Mellon

Out-of-order Execution

46

r0 = r1 + r2

r3 = MEM[r0]

r4 = r3 + r6

r6 = r5 + r1


…

r0 = r1 + r2

r3 = MEM[r0]

r6 = r5 + r1


…

r4 = r3 + r6

Is this correct?

r0 = r1 + r2

r3 = MEM[r0]

r4 = r3 + r6

r4 = r5 + r1


…

r0 = r1 + r2

r3 = MEM[r0]

r4 = r5 + r1


…

r4 = r3 + r6

Is this correct?

“Tomasolu Algorithm” is the algorithm that is most 
widely implemented in modern hardware to get out-of-

order execution right.


