
CSC 252/452: Computer Organization 
 Fall 2024: Lecture 14 

Instructor: Yanan Guo

Department of Computer Science

University of Rochester

Carnegie Mellon

2

Announcements
• Programming assignment 3 is out

• Details: https://www.cs.rochester.edu/courses/252/fall2024/
labs/assignment3.html

• Due on Oct. 25th, 11:59 PM

https://www.cs.rochester.edu/courses/252/fall2024/labs/assignment3.html
https://www.cs.rochester.edu/courses/252/fall2024/labs/assignment3.html
https://www.cs.rochester.edu/courses/252/fall2024/labs/assignment3.html

Carnegie Mellon

Pipeline Stages
Fetch

• Use PC to read instruction

• Compute new PC for non-

jump instructions
Decode

• Read program registers

Execute

• Operate ALU

• Compute new PC for jump

instructions
Memory

• Read or write data memory

Write Back

• Update register file

3

Carnegie Mellon

 nop

4

Control Dependency

1

F

2

D
F

3

E
D
F

4

M
E
D
F

5

M
W

E
D
FF

• Definition: Outcome of instruction A determines whether or not
instruction B should be executed.

• Jump instruction example below:

• jne L1 determines whether irmovq $1, %rax should be

executed

• But jne doesn’t know its outcome until after its Execute stage

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

 nop

6

W
M
E
DD

7

W
M
EE

8

W
MM

9

WW
FF DD EE MM WW

FF DD EE MM

Carnegie Mellon

Better Pipelining
Fetch

• Use PC to read instruction

• Compute new PC for non-

jump instructions
Decode

• Read program registers

• Compute new PC for jump

instructions
Execute

• Operate ALU

Memory

• Read or write data memory

Write Back

• Update register file

5

Carnegie Mellon

Better Pipelining
Fetch

• Use PC to read instruction

• Compute new PC for non-

jump instructions
Decode

• Read program registers

• Compute new PC for jump

instructions
Execute

• Operate ALU

Memory

• Read or write data memory

Write Back

• Update register file

5

Another
ALU

Carnegie Mellon

 nop

6

Saving One Cycle

1

F

2

D
F

3

E
D

4

M
E

F

5

M
W

D
FF

• Definition: Outcome of instruction A determines whether or not
instruction B should be executed.

• Jump instruction example below:

• jne L1 determines whether irmovq $1, %rax should be

executed

• But jne doesn’t know its outcome until after its Execute stage

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

6

W
E
DD

7

M
EE

8

W
MM

9

WW
FF DD EE MM WW

FF DD EE MM WW

Carnegie Mellon

Resolving Control Dependencies
• Software Mechanisms

• Adding NOPs: requires compiler to insert nops, which also take
memory space — not a good idea

• Delay slot: insert instructions that do not depend on the effect
of the preceding instruction. These instructions will execute
even if the preceding branch is taken — old RISC approach

• Hardware mechanisms

• Stalling (Think of it as hardware automatically inserting nops)

• Branch Prediction

• Return Address Stack

7

Carnegie Mellon

Hardware Generated Nops (Bubble and
Stalling)

 · Stall : the pipeline register shouldn’t be written

 · Bubble : signals correspond to a nop

 · Why is it good for the hardware to do so anyways?

 Fetch
 R

 e

 g

 Decode
 R

 e

 g

 Execute
 R

 e

 g

 Memory
 R

 e

 g

 Write

 back

 R

 e

 g

 5

Carnegie Mellon

Hardware Generated Nops (Bubble and
Stalling)

 · Stall : the pipeline register shouldn’t be written

 · Bubble : signals correspond to a nop

 · Why is it good for the hardware to do so anyways?

 Fetch
 R

 e

 g

 Decode
 R

 e

 g

 Execute
 R

 e

 g

 Memory
 R

 e

 g

 Write

 back

 R

 e

 g

 5

xorq

Carnegie Mellon

Hardware Generated Nops (Bubble and
Stalling)

 · Stall : the pipeline register shouldn’t be written

 · Bubble : signals correspond to a nop

 · Why is it good for the hardware to do so anyways?

 Fetch
 R

 e

 g

 Decode
 R

 e

 g

 Execute
 R

 e

 g

 Memory
 R

 e

 g

 Write

 back

 R

 e

 g

 5

 jle	 xorq

Carnegie Mellon

Hardware Generated Nops (Bubble and
Stalling)

 · Stall : the pipeline register shouldn’t be written

 · Bubble : signals correspond to a nop

 · Why is it good for the hardware to do so anyways?

 Fetch
 R

 e

 g

 Decode
 R

 e

 g

 Execute
 R

 e

 g

 Memory
 R

 e

 g

 Write

 back

 R

 e

 g

 5

 Stall	 jle	 xorq

Carnegie Mellon

Hardware Generated Nops (Bubble and
Stalling)

 · Stall : the pipeline register shouldn’t be written

 · Bubble : signals correspond to a nop

 · Why is it good for the hardware to do so anyways?

 Fetch
 R

 e

 g

 Decode
 R

 e

 g

 Execute
 R

 e

 g

 Memory
 R

 e

 g

 Write

 back

 R

 e

 g

 5

 Stall (Bubble)

 nop

 jle xorq

Carnegie Mellon

Hardware Generated Nops (Bubble and
Stalling)

 · Stall : the pipeline register shouldn’t be written

 · Bubble : signals correspond to a nop

 · Why is it good for the hardware to do so anyways?

 Fetch
 R

 e

 g

 Decode
 R

 e

 g

 Execute
 R

 e

 g

 Memory
 R

 e

 g

 Write

 back

 R

 e

 g

 5

 (Bubble)

 nop

 jle xorq (Bubble)

 nop

 add

Carnegie Mellon

Hardware Generated Nops (Bubble and
Stalling)

 · Stall : the pipeline register shouldn’t be written

 · Bubble : signals correspond to a nop

 · Why is it good for the hardware to do so anyways?

 Fetch
 R

 e

 g

 Decode
 R

 e

 g

 Execute
 R

 e

 g

 Memory
 R

 e

 g

 Write

 back

 R

 e

 g

 5

 (Bubble)

 nop

 jle (Bubble)

 nop

 add

Carnegie Mellon

Hardware Generated Nops (Bubble and
Stalling)

 · Stall : the pipeline register shouldn’t be written

 · Bubble : signals correspond to a nop

 · Why is it good for the hardware to do so anyways?

 Fetch
 R

 e

 g

 Decode
 R

 e

 g

 Execute
 R

 e

 g

 Memory
 R

 e

 g

 Write

 back

 R

 e

 g

 5

 (Bubble)

 nop

 (Bubble)

 nop

 add

Carnegie Mellon

Hardware Generated Nops (Bubble and
Stalling)

 · Stall : the pipeline register shouldn’t be written

 · Bubble : signals correspond to a nop

 · Why is it good for the hardware to do so anyways?

 Fetch
 R

 e

 g

 Decode
 R

 e

 g

 Execute
 R

 e

 g

 Memory
 R

 e

 g

 Write

 back

 R

 e

 g

 5

 (Bubble)

 nop

 add

Carnegie Mellon

Hardware Generated Nops (Bubble and
Stalling)

 · Stall : the pipeline register shouldn’t be written

 · Bubble : signals correspond to a nop

 · Why is it good for the hardware to do so anyways?

 Fetch
 R

 e

 g

 Decode
 R

 e

 g

 Execute
 R

 e

 g

 Memory
 R

 e

 g

 Write

 back

 R

 e

 g

 5

 add

Carnegie Mellon

How are Stall and Bubble Implemented in Hardware?

18

Carnegie Mellon

How are Stall and Bubble Implemented in Hardware?

18

Output = xInput = y

stall
= 0

bubble
= 0

xxNormal

Carnegie Mellon

How are Stall and Bubble Implemented in Hardware?

18

Rising
clock
Rising
clock  Output = y

yy
Output = xInput = y

stall
= 0

bubble
= 0

xxNormal

Carnegie Mellon

How are Stall and Bubble Implemented in Hardware?

18

Rising
clock
Rising
clock  Output = y

yy
Output = xInput = y

stall
= 0

bubble
= 0

xxNormal

Output = xInput = y

stall
= 1

bubble
= 0

xxStall

Carnegie Mellon

How are Stall and Bubble Implemented in Hardware?

18

Rising
clock
Rising
clock  Output = y

yy

Rising
clock
Rising
clock  Output = x

xx

Output = xInput = y

stall
= 0

bubble
= 0

xxNormal

Output = xInput = y

stall
= 1

bubble
= 0

xxStall

Carnegie Mellon

How are Stall and Bubble Implemented in Hardware?

18

Rising
clock
Rising
clock  Output = y

yy

Rising
clock
Rising
clock  Output = x

xx

Output = xInput = y

stall
= 0

bubble
= 0

xxNormal

Output = xInput = y

stall
= 1

bubble
= 0

xxStall

xx
Output = xInput = y

stall
= 0

bubble
= 1

Bubble

Carnegie Mellon

How are Stall and Bubble Implemented in Hardware?

18

Rising
clock
Rising
clock  Output = y

yy

Rising
clock
Rising
clock  Output = x

xx

n
o
p

Rising
clock
Rising
clock  Output = nop

Output = xInput = y

stall
= 0

bubble
= 0

xxNormal

Output = xInput = y

stall
= 1

bubble
= 0

xxStall

xx
Output = xInput = y

stall
= 0

bubble
= 1

Bubble

Carnegie Mellon

19

Branch Prediction

1

F

2

D
F

3

E
D

4

M
E

5

M
W

FF

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

6

W
DD

7

EE

8

MM

9

WW
FF DD EE MM WW

FF DD EE MM WW

Idea: instead of waiting, why not just guess the direction of jump?

Also takes a guess of
the jump direction

Carnegie Mellon

19

Branch Prediction

1

F

2

D
F

3

E
D

4

M
E

5

M
W

FF

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

6

W
DD

7

EE

8

MM

9

WW
FF DD EE MM WW

FF DD EE MM WW

Idea: instead of waiting, why not just guess the direction of jump?
If prediction is correct: pipeline moves forward without stalling

Also takes a guess of
the jump direction

Carnegie Mellon

19

Branch Prediction

1

F

2

D
F

3

E
D

4

M
E

5

M
W

FF

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

6

W
DD

7

EE

8

MM

9

WW
FF DD EE MM WW

FF DD EE MM WW

Idea: instead of waiting, why not just guess the direction of jump?
If prediction is correct: pipeline moves forward without stalling
If mispredicted: kill mis-executed instructions, start from the correct target

Also takes a guess of
the jump direction

Carnegie Mellon

Branch Prediction
Idea: instead of waiting, why not just guess the direction of jump?

If prediction is correct: pipeline moves forward without stalling

If mispredicted: kill mis-executed instructions, start from the correct target

Static Prediction

• Always Taken

• Always Not-taken

Dynamic Prediction

• Dynamically predict taken/not-taken for each specific jump instruction

20

Carnegie Mellon

Static Prediction

21

Carnegie Mellon

Static Prediction

21

Observation (Assumption really): Two uses of jumps

• People use jumps to check corner cases. These branches are mostly

not taken because corner cases are rare.

• People use jumps to implement loops. These branches are mostly

taken because a loop takes multiple iterations.

Carnegie Mellon

 cmpq %rsi,%rdi

 jle .corner_case
 <do_A>

.corner_case:

 <do_B>

 ret

Static Prediction

21

Observation (Assumption really): Two uses of jumps

• People use jumps to check corner cases. These branches are mostly

not taken because corner cases are rare.

• People use jumps to implement loops. These branches are mostly

taken because a loop takes multiple iterations.

Carnegie Mellon

 cmpq %rsi,%rdi

 jle .corner_case
 <do_A>

.corner_case:

 <do_B>

 ret

Static Prediction

21

Observation (Assumption really): Two uses of jumps

• People use jumps to check corner cases. These branches are mostly

not taken because corner cases are rare.

• People use jumps to implement loops. These branches are mostly

taken because a loop takes multiple iterations.

Mostly not taken

Carnegie Mellon

 <before>

.L1: <body>

 cmpq B, A

 jl .L1

 <after>

 cmpq %rsi,%rdi

 jle .corner_case
 <do_A>

.corner_case:

 <do_B>

 ret

Static Prediction

21

Observation (Assumption really): Two uses of jumps

• People use jumps to check corner cases. These branches are mostly

not taken because corner cases are rare.

• People use jumps to implement loops. These branches are mostly

taken because a loop takes multiple iterations.

Mostly not taken

Carnegie Mellon

 <before>

.L1: <body>

 cmpq B, A

 jl .L1

 <after>

 cmpq %rsi,%rdi

 jle .corner_case
 <do_A>

.corner_case:

 <do_B>

 ret

Static Prediction

21

Observation (Assumption really): Two uses of jumps

• People use jumps to check corner cases. These branches are mostly

not taken because corner cases are rare.

• People use jumps to implement loops. These branches are mostly

taken because a loop takes multiple iterations.

Mostly not taken

Mostly taken

Carnegie Mellon

 <before>

.L1: <body>

 cmpq B, A

 jl .L1

 <after>

 cmpq %rsi,%rdi

 jle .corner_case
 <do_A>

.corner_case:

 <do_B>

 ret

Static Prediction

21

Observation (Assumption really): Two uses of jumps

• People use jumps to check corner cases. These branches are mostly

not taken because corner cases are rare.

• People use jumps to implement loops. These branches are mostly

taken because a loop takes multiple iterations.
Strategy:

• Forward jumps (i.e., if-else): always predict not-taken

• Backward jumps (i.e., loop): always predict taken

Mostly not taken

Mostly taken

Carnegie Mellon

Static Prediction

22

Knowing branch prediction strategy helps us write faster code

• Any difference between the following two code snippets?

• What if you know that hardware uses the always non-taken

branch prediction?

if (cond) {

 do_A()

} else {

 do_B()

}

if (!cond) {

 do_B()

} else {

 do_A()

}

Carnegie Mellon

Dynamic Prediction
• Simplest idea:

• If last time taken, predict taken; if last time not-taken, predict
not-taken

• Called 1-bit branch predictor

• Works nicely for loops

23

Carnegie Mellon

Dynamic Prediction
• Simplest idea:

• If last time taken, predict taken; if last time not-taken, predict
not-taken

• Called 1-bit branch predictor

• Works nicely for loops

23

for (i=0; i <5; i++) {…}

Carnegie Mellon

Dynamic Prediction
• Simplest idea:

• If last time taken, predict taken; if last time not-taken, predict
not-taken

• Called 1-bit branch predictor

• Works nicely for loops

23

for (i=0; i <5; i++) {…}

Iteration #1 0 1 2 3 4

Predicted Outcome N T T T T

Actual Outcome T T T T N

Carnegie Mellon

Dynamic Prediction
• Simplest idea:

• If last time taken, predict taken; if last time not-taken, predict
not-taken

• Called 1-bit branch predictor

• Works nicely for loops

23

for (i=0; i <5; i++) {…}

Iteration #1 0 1 2 3 4

Predicted Outcome N T T T T

Actual Outcome T T T T N

Carnegie Mellon

Dynamic Prediction
• With 1-bit prediction, we change our mind instantly if mispredict

• Might be too quick. Thus 2-bit branch prediction: we have to

mispredict twice in a row before changing our mind

24

Carnegie Mellon

Dynamic Prediction
• With 1-bit prediction, we change our mind instantly if mispredict

• Might be too quick. Thus 2-bit branch prediction: we have to

mispredict twice in a row before changing our mind

24

for (i=0; i <5; i++) {…}

Predict with 1-bit N T T T T

Actual Outcome T T T T N

Predict with 2-bit N N T T T

Carnegie Mellon

Dynamic Prediction
• With 1-bit prediction, we change our mind instantly if mispredict

• Might be too quick. Thus 2-bit branch prediction: we have to

mispredict twice in a row before changing our mind

24

for (i=0; i <5; i++) {…}

Predict with 1-bit N T T T T

Actual Outcome T T T T N

Predict with 2-bit N N T T T

N T T T T

T T T T N

T T T T T

Carnegie Mellon

Dynamic Prediction
• With 1-bit prediction, we change our mind instantly if mispredict

• Might be too quick. Thus 2-bit branch prediction: we have to

mispredict twice in a row before changing our mind

24

for (i=0; i <5; i++) {…}

Predict with 1-bit N T T T T

Actual Outcome T T T T N

Predict with 2-bit N N T T T

N T T T T

T T T T N

T T T T T

N T T T T

T T T T N

T T T T T

Carnegie Mellon

Dynamic Prediction
• With 1-bit prediction, we change our mind instantly if mispredict

• Might be too quick. Thus 2-bit branch prediction: we have to

mispredict twice in a row before changing our mind

24

for (i=0; i <5; i++) {…}

Predict with 1-bit N T T T T

Actual Outcome T T T T N

Predict with 2-bit N N T T T

N T T T T

T T T T N

T T T T T

N T T T T

T T T T N

T T T T T

N T T T T

T T T T N

T T T T T

Carnegie Mellon

More Advanced Dynamic Prediction
• Look for past histories across instructions
• Branches are often correlated

• Direction of one branch determines another

25

x = 0

if (cond1) x = 3

if (cond2) y = 19

if (x <= 0) z = 13

cond1 branch not-
taken means (x <=0)
branch taken

Carnegie Mellon

What Happens If We Mispredict?

26

Cancel instructions when mispredicted

• Assuming we detect branch not-taken in execute stage

• On following cycle, replace instructions in execute and

decode by bubbles

• No side effects have occurred yet

 Carnegie Mellon

 Stalling for Return

 ■ As ret passes through pipeline, stall at fetch stage

	 ● While in decode, execute, and memory stage

 ■ Inject bubble into decode stage

 ■ Release stall when reach write-back stage

 15

 Carnegie Mellon

 Return Address Stack (RAS)

 16

• Stalling for return is silly since we know where exactly we
need to jump to, except the jump target is retrieved later in
the memory stage.

• Can we get that sooner? Where should we get it?

 Carnegie Mellon

 Return Address Stack (RAS)

Branch Predictor

	 A hardware stack;

different from the

stack in memory.

 17

Carnegie Mellon

Today: Making the Pipeline Really Work
• Control Dependencies

• Inserting Nops

• Stalling

• Delay Slots

• Branch Prediction

• Data Dependencies

• Inserting Nops

• Stalling

• Out-of-order execution

30

Carnegie Mellon

Data Dependencies

31

1 irmovq $50, %rax

2 addq %rax, %rbx

3 mrmovq 100(%rbx), %rdx

Carnegie Mellon

Data Dependencies

31

1 irmovq $50, %rax

2 addq %rax, %rbx

3 mrmovq 100(%rbx), %rdx

Carnegie Mellon

Data Dependencies

31

1 irmovq $50, %rax

2 addq %rax, %rbx

3 mrmovq 100(%rbx), %rdx

Carnegie Mellon

Data Dependencies

• Result from one instruction used as operand for another

• Read-after-write (RAW) dependency

• Very common in actual programs

• Must make sure our pipeline handles these properly

• Get correct results

• Minimize performance impact

31

1 irmovq $50, %rax

2 addq %rax, %rbx

3 mrmovq 100(%rbx), %rdx

Carnegie Mellon

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

32

A Subtle Data Dependency
• Jump instruction example below:

• jne L1 determines whether irmovq $1, %rax should be executed

• But jne doesn’t know its outcome until after its Execute stage.

Why?

 xorg %rax, %rax
 jne L1 # Not taken

Carnegie Mellon

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

32

A Subtle Data Dependency
• Jump instruction example below:

• jne L1 determines whether irmovq $1, %rax should be executed

• But jne doesn’t know its outcome until after its Execute stage.

Why?
• There is a data dependency between xorg and jne. The “data” is the

status flags.

 xorg %rax, %rax
 jne L1 # Not taken

Carnegie Mellon

Data Dependencies in Single-Cycle Machines

In Single-Cycle Implementation:

• Each operation starts only after the previous operation finishes.

Dependency always satisfied.

33

Clock

Combinational

logic

R

e

g

Time

OP1
OP2
OP3

Carnegie Mellon

Data Dependencies in Pipeline Machines

Data Hazards happen when:

• Result does not feed back around in time for next operation

34

R

e

g

Clock

Comb.

logic

A

R

e

g

Comb.

logic

B

R

e

g

Comb.

logic

C

Time

OP1
OP2
OP3

A B C
A B C

A B C
OP4 A B C

Carnegie Mellon

Data Dependencies in Pipeline Machines

Data Hazards happen when:

• Result does not feed back around in time for next operation

34

R

e

g

Clock

Comb.

logic

A

R

e

g

Comb.

logic

B

R

e

g

Comb.

logic

C

Time

OP1
OP2
OP3

A B C
A B C

A B C
OP4 A B C

Carnegie Mellon

Data Dependencies: No Nop

35

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M
W0x00a: irmovq $3,%rax F D E M

W

F D E M W0x014: addq %rdx,%rax

F D E M W0x016: halt

Remember registers get
updated in the Write-back stage

Carnegie Mellon

Data Dependencies: No Nop

35

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M
W0x00a: irmovq $3,%rax F D E M

W

F D E M W0x014: addq %rdx,%rax

F D E M W0x016: halt

addq reads wrong %rdx and %rax

Remember registers get
updated in the Write-back stage

Carnegie Mellon

Data Dependencies: 1 Nop

36

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8 9

F D E M
W0x00a: irmovq $3,%rax F D E M

W

0x014: nop F D E M WF D E M W
0x015: addq %rdx,%rax F D E M WF D E M W
0x017: halt F D E M WF D E M W

addq still reads wrong %rdx and %rax

Carnegie Mellon

Data Dependencies: 2 Nop’s

37

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8 9

F D E M WF D E M W
0x00a: irmovq $3,%rax F D E M WF D E M W
0x014: nop F D E M WF D E M W
0x015: nop F D E M WF D E M W
0x016: addq %rdx,%rax F D E M WF D E M W
0x018: halt F D E M WF D E M W

10

addq reads the correct %rdx,
but %rax still wrong

Carnegie Mellon

Data Dependencies: 3 Nop’s

38

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8 9

F D E M WF D E M W
0x00a: irmovq $3,%rax F D E M WF D E M W
0x014: nop F D E M WF D E M W
0x015: nop F D E M WF D E M W
0x016: nop F D E M WF D E M W
0x017: addq %rdx,%rax F D E M WF D E M W

10 11

0x019: halt F D E M WF D E M W

addq reads the correct %rdx
and %rax

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

39

Can we have the hardware automatically generates a nop?

• Why is it good for the hardware to do so anyways?

R

e

g

R

e

g

R

e

g

R

e

g

R

e

g

Fetch Decode Execute Memory Write

back

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

39

Can we have the hardware automatically generates a nop?

• Why is it good for the hardware to do so anyways?

R

e

g

R

e

g

R

e

g

R

e

g

R

e

g

Fetch Decode Execute Memory Write

back

irmov

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

39

Can we have the hardware automatically generates a nop?

• Why is it good for the hardware to do so anyways?

R

e

g

R

e

g

R

e

g

R

e

g

R

e

g

Fetch Decode Execute Memory Write

back

irmovirmov

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

39

Can we have the hardware automatically generates a nop?

• Why is it good for the hardware to do so anyways?

R

e

g

R

e

g

R

e

g

R

e

g

R

e

g

Fetch Decode Execute Memory Write

back

irmovirmov add

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

39

Can we have the hardware automatically generates a nop?

• Why is it good for the hardware to do so anyways?

R

e

g

R

e

g

R

e

g

R

e

g

R

e

g

Fetch Decode Execute Memory Write

back

irmovirmov addInst3

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

39

Can we have the hardware automatically generates a nop?

• Why is it good for the hardware to do so anyways?

R

e

g

R

e

g

R

e

g

R

e

g

R

e

g

Fetch Decode Execute Memory Write

back

irmovirmov addInst3
Stall

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

39

Can we have the hardware automatically generates a nop?

• Why is it good for the hardware to do so anyways?

R

e

g

R

e

g

R

e

g

R

e

g

R

e

g

Fetch Decode Execute Memory Write

back

irmovirmov addInst3 bubble
(nop)

Stall

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

39

Can we have the hardware automatically generates a nop?

• Why is it good for the hardware to do so anyways?

R

e

g

R

e

g

R

e

g

R

e

g

R

e

g

Fetch Decode Execute Memory Write

back

irmovirmov addInst3 bubble
(nop)

StallStall

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

39

Can we have the hardware automatically generates a nop?

• Why is it good for the hardware to do so anyways?

R

e

g

R

e

g

R

e

g

R

e

g

R

e

g

Fetch Decode Execute Memory Write

back

irmov addInst3 bubble
(nop)

bubble
(nop)

StallStall

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

39

Can we have the hardware automatically generates a nop?

• Why is it good for the hardware to do so anyways?

R

e

g

R

e

g

R

e

g

R

e

g

R

e

g

Fetch Decode Execute Memory Write

back

addInst3 bubble
(nop)

bubble
(nop)

Inst4

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

39

Can we have the hardware automatically generates a nop?

• Why is it good for the hardware to do so anyways?

R

e

g

R

e

g

R

e

g

R

e

g

R

e

g

Fetch Decode Execute Memory Write

back

addInst3 bubble
(nop)

Inst4

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

39

Can we have the hardware automatically generates a nop?

• Why is it good for the hardware to do so anyways?

R

e

g

R

e

g

R

e

g

R

e

g

R

e

g

Fetch Decode Execute Memory Write

back

addInst3Inst4

Carnegie Mellon

Detecting Stall Condition

40

• Using a “scoreboard”. Each register has a bit.

• Every instruction that writes to a register sets the bit.

• Every instruction that reads a register would have to check the bit first.

• If the bit is set, then generate a bubble

• Otherwise, free to go!!

Carnegie Mellon

Data Forwarding
Naïve Pipeline

• Register isn’t written until completion of write-back stage

• Source operands read from register file in decode stage

• The decode stage can’t start until the write-back stage finishes

Observation

• Value generated in execute or memory stage

Trick

• Pass value directly from generating instruction to decode stage

• Needs to be available at end of decode stage

41

Carnegie Mellon

Data Forwarding Example

• irmovq writes %rax to the register file at the end of the write-back
stage

• But the value of %rax is already available at the beginning of the write-
back stage

• Forward %rax to the decode stage of addq.

42

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8 9

F D E M WF D E M W
0x00a: irmovq $3,%rax F D E M WF D E M W
0x014: nop F D E M WF D E M W
0x015: nop F D E M WF D E M W
0x016: addq %rdx,%rax F D E M WF D E M W
0x018: halt F D E M WF D E M W

10

Carnegie Mellon

Data Forwarding Example

• irmovq writes %rax to the register file at the end of the write-back
stage

• But the value of %rax is already available at the beginning of the write-
back stage

• Forward %rax to the decode stage of addq.

42

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8 9

F D E M WF D E M W
0x00a: irmovq $3,%rax F D E M WF D E M W
0x014: nop F D E M WF D E M W
0x015: nop F D E M WF D E M W
0x016: addq %rdx,%rax F D E M WF D E M W
0x018: halt F D E M WF D E M W

10

Carnegie Mellon

Data Forwarding Example #2

Register %rdx

• Forward from the memory stage

Register %rax

• Forward from the execute stage

43

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M
W0x00a: irmovq $3,%rax F D E M

W

F D E M W0x014: addq %rdx,%rax

F D E M W0x016: halt

Carnegie Mellon

Data Forwarding Example #2

Register %rdx

• Forward from the memory stage

Register %rax

• Forward from the execute stage

43

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M
W0x00a: irmovq $3,%rax F D E M

W

F D E M W0x014: addq %rdx,%rax

F D E M W0x016: halt

Carnegie Mellon

Data Forwarding Example #2

Register %rdx

• Forward from the memory stage

Register %rax

• Forward from the execute stage

43

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M
W0x00a: irmovq $3,%rax F D E M

W

F D E M W0x014: addq %rdx,%rax

F D E M W0x016: halt

Carnegie Mellon

Bypass Paths
Decode Stage

• Forwarding logic selects valA and valB

• Normally from register file

• Forwarding: get valA or valB from later pipeline stage

Forwarding Sources

• Execute: valE

• Memory: valE, valM

• Write back: valE, valM

44

Carnegie Mellon

Out-of-order Execution

45

r0 = r1 + r2

r3 = MEM[r0]

r4 = r3 + r6

r7 = r5 + r1

…

Long-latency instruction.
Forces the pipeline to stall.

r0 = r1 + r2

r3 = MEM[r0]

r7 = r5 + r1

…

r4 = r3 + r6

• Compiler could do this, but has limitations

• Generally done in hardware

Carnegie Mellon

Out-of-order Execution

45

r0 = r1 + r2

r3 = MEM[r0]

r4 = r3 + r6

r7 = r5 + r1

…

Long-latency instruction.
Forces the pipeline to stall.

r0 = r1 + r2

r3 = MEM[r0]

r7 = r5 + r1

…

r4 = r3 + r6

• Compiler could do this, but has limitations

• Generally done in hardware

Carnegie Mellon

Out-of-order Execution

46

r0 = r1 + r2

r3 = MEM[r0]

r4 = r3 + r6

r6 = r5 + r1

…

Carnegie Mellon

Out-of-order Execution

46

r0 = r1 + r2

r3 = MEM[r0]

r4 = r3 + r6

r6 = r5 + r1

…

r0 = r1 + r2

r3 = MEM[r0]

r6 = r5 + r1

…

r4 = r3 + r6

Is this correct?

Carnegie Mellon

Out-of-order Execution

46

r0 = r1 + r2

r3 = MEM[r0]

r4 = r3 + r6

r6 = r5 + r1

…

r0 = r1 + r2

r3 = MEM[r0]

r6 = r5 + r1

…

r4 = r3 + r6

Is this correct?

r0 = r1 + r2

r3 = MEM[r0]

r4 = r3 + r6

r4 = r5 + r1

…

Carnegie Mellon

Out-of-order Execution

46

r0 = r1 + r2

r3 = MEM[r0]

r4 = r3 + r6

r6 = r5 + r1

…

r0 = r1 + r2

r3 = MEM[r0]

r6 = r5 + r1

…

r4 = r3 + r6

Is this correct?

r0 = r1 + r2

r3 = MEM[r0]

r4 = r3 + r6

r4 = r5 + r1

…

r0 = r1 + r2

r3 = MEM[r0]

r4 = r5 + r1

…

r4 = r3 + r6

Is this correct?

Carnegie Mellon

Out-of-order Execution

46

r0 = r1 + r2

r3 = MEM[r0]

r4 = r3 + r6

r6 = r5 + r1

…

r0 = r1 + r2

r3 = MEM[r0]

r6 = r5 + r1

…

r4 = r3 + r6

Is this correct?

r0 = r1 + r2

r3 = MEM[r0]

r4 = r3 + r6

r4 = r5 + r1

…

r0 = r1 + r2

r3 = MEM[r0]

r4 = r5 + r1

…

r4 = r3 + r6

Is this correct?

“Tomasolu Algorithm” is the algorithm that is most
widely implemented in modern hardware to get out-of-

order execution right.

