CSC 252/452: Computer Organization
Fall 2024: Lecture 14

Instructor: Yanan Guo

Department of Computer Science
University of Rochester

Announcements

* Programming assignment 3 is out

 Details: https://www.cs.rochester.edu/courses/252/fall2024/
labs/assignment3.html

e Due on Oct. 25th, 11:59 PM

https://www.cs.rochester.edu/courses/252/fall2024/labs/assignment3.html
https://www.cs.rochester.edu/courses/252/fall2024/labs/assignment3.html
https://www.cs.rochester.edu/courses/252/fall2024/labs/assignment3.html

Pipeline Stages

Fetch
- Use PC to read instruction

- Compute new PC for non-
jump instructions

Decode

- Read program registers
Execute

 Operate ALU

- Compute new PC for jump
instructions

Memory
- Read or write data memory

Write Back
- Update register file

Memory

Execute

Decode

Fetch

PC

W_icode, W_valM

aluA, aluB

d_srcA,
d_srcB

Instruction
memory

W_valE, W_valM, W_dstE, W_dstM

valA, valB

A B
Register™
file -

Write back

PC
increment

predPC

Control Dependency

- Definition: Outcome of instruction A determines whether or not
instruction B should be executed.

- Jump instruction example below:

- jne L1 determines whether irmovg $1, %rax should be
executed

- But jne doesn’t know its outcome until after its Execute stage

1 2 3 4 5 6

X0rg %sSrax, srax F D E M W
jne L1 # Not taken F D E M| W
nop F D\E M| W
nop F\D E M W
irmovg $1, %rax # Fall Through D E M W
L1 dirmovg $4, %rcx # Target F D E M
F D

irmovg $3, %rax Target + 1

Better Pipelining

Fetch
- Use PC to read instruction

- Compute new PC for non-
jump instructions

Decode
- Read program registers

- Compute new PC for jump
instructions

Execute

 Operate ALU
Memory

- Read or write data memory
Write Back

- Update register file

W_icode, W_valM W_valE, W_valM, W_dstE, W_dstM

Memory

Execute

aluA, aluB

valA, valB

d_srcA,
d_srcB

A B
Decode Register™
file -

Write back

Instruction
memory

Fetch

PC
increment

predPC

PC

Better Pipelining

Fetch
- Use PC to read instruction

- Compute new PC for non-
jump instructions

Decode
- Read program registers

- Compute new PC for jump
instructions

Execute

 Operate ALU
Memory

- Read or write data memory
Write Back

- Update register file

W_icode, W_valM W_valE, W_valM, W_dstE, W_dstM

Memory

Execute

aluA, aluB

valA, valB

Another PN
Decode ALU d_srcB

A B
Register™
file -

Write back

Instruction
memory

Fetch

PC
increment

predPC

PC

Saving One Cycle

- Definition: Outcome of instruction A determines whether or not
instruction B should be executed.

- Jump instruction example below:

- jne L1 determines whether irmovg $1, %rax should be
executed

- But jne doesn’t know its outcome until after its Execute stage

X0rg %sSrax, srax F D E M W

jne L1 # Not taken F DyE M W

nop F\D|E M W

irmovg $1, %rax # Fall Through Y ' D E M W
L1 irmovg $4, %rcx # Target F D E M W

irmovg $3, %rax # Target + 1 F D E M

Resolving Control Dependencies

e Software Mechanisms

* Adding NOPs: requires compiler to insert nops, which also take
memory space — not a good idea

* Delay slot: insert instructions that do not depend on the effect
of the preceding instruction. These instructions will execute
even if the preceding branch is taken — old RISC approach

* Hardware mechanisms
e Stalling (Think of it as hardware automatically inserting nops)
* Branch Prediction
e Return Address Stack

Hardware Generated Nops (Bubble and
Stalling)

- Stall : the pipeline register shouldn’t be written
- Bubble : signals correspond to a nop
- Why is it good for the hardware to do so anyways?

R R R R Write
Fetch e Decode |e Execute |e Memory |e
g g g g back

Hardware Generated Nops (Bubble and
Stalling)

- Stall : the pipeline register shouldn’t be written
- Bubble : signals correspond to a nop
- Why is it good for the hardware to do so anyways?

xorq

R R R R Write
Fetch e Decode |e Execute |e Memory |e
g g g g back

Hardware Generated Nops (Bubble and
Stalling)

- Stall : the pipeline register shouldn’t be written
- Bubble : signals correspond to a nop
- Why is it good for the hardware to do so anyways?

jle xorq

R R R R Write
Fetch e Decode |e Execute |e Memory |e
g g g g back

Hardware Generated Nops (Bubble and
Stalling)

- Stall : the pipeline register shouldn’t be written
- Bubble : signals correspond to a nop

- Why is it good for the hardware to do so anyways?

Stall jle xorq

Fetch c Decode |e Execute |e Memory |e AL
g 9 g g back

Hardware Generated Nops (Bubble and
Stalling)

- Stall : the pipeline register shouldn’t be written
- Bubble : signals correspond to a nop
- Why is it good for the hardware to do so anyways?

Stall (Bubble) jle xorq
nop
R R R R :
Fetch c Decode |e Execute |e Memory |e \k/)VrltE
g g g g =le

Hardware Generated Nops (Bubble and
Stalling)

- Stall : the pipeline register shouldn’t be written
- Bubble : signals correspond to a nop
- Why is it good for the hardware to do so anyways?

2dd (Bubble) (Bubble)

nop nop jle xorq

R R R R Write
Fetch e Decode |e Execute |e Memory |e
g g g g back

Hardware Generated Nops (Bubble and
Stalling)

- Stall : the pipeline register shouldn’t be written
- Bubble : signals correspond to a nop
- Why is it good for the hardware to do so anyways?

2dd (Bubble) (Bubble)

jle
nop nop

R R R R Write
Fetch e Decode |e Execute |e Memory |e
g g g g back

Hardware Generated Nops (Bubble and
Stalling)

- Stall : the pipeline register shouldn’t be written
- Bubble : signals correspond to a nop
- Why is it good for the hardware to do so anyways?

2dd (Bubble) (Bubble)
nop nop

R R R R Write
Fetch e Decode |e Execute |e Memory |e
g g g g back

Hardware Generated Nops (Bubble and

Stalling)

- Stall : the pipeline register shouldn’t be written
- Bubble : signals correspond to a nop

- Why is it good for the hardware to do so anyways?

Fetch

Decode

Execute

add

Memory

(Bubble)
nop

R Write
9 back

Hardware Generated Nops (Bubble and
Stalling)

- Stall : the pipeline register shouldn’t be written
- Bubble : signals correspond to a nop
- Why is it good for the hardware to do so anyways?

add

R R R R Write
Fetch e Decode |e Execute |e Memory |e
g g g g back

How are Stall and Bubble Implemented in Hardware?

18

How are Stall and Bubble Implemented in Hardware?

Input =y Output = x

Normal =DIX—>

stall ﬁ bubble

=0 =0

How are Stall and Bubble Implemented in Hardware?

] Risin]
Input =y Output = x I:> clockg |:> Output =y

Normal —Dix—> — D y—=>

stall ﬁ bubble —

=0 =0

How are Stall and Bubble Implemented in Hardware?

] Risin
Input =y Output = x I:> clockg |:> Output =y
Normal —DIX—> - =1 y—>
stall bubble —
To — g

Input =y Output = x

Stall —DIX—>

stall bubble
stall R bubble

How are Stall and Bubble Implemented in Hardware?

] Risin
Input =y Output = x I:> clockg |:> Output =y
Normal —DIX—> - =1 y—>
stall bubble —
To — g
] Risin]
Input =y Output = x |:> cIockg |:> Output = x
Stall =DIX = — = =D
stall bubble —
=1 j— =0

18

How are Stall and Bubble Implemented in Hardware?

Input =y

Output = x

Normal =DIX—>

=0

Input =y

stall ﬁ bubble
=0

Output = x

Stall =DIX =D

Input =y

stall bubble
stall_y bubdle

Output = x

Bubble =X >

bubble

stall
=0 —ﬂ— =1

=

=S

Rising
clock

Rising
clock

=

—>

Output =y

V=

Output = x

18

How are Stall and Bubble Implemented in Hardware?

Input =y

Output = x

Normal —DIX

=0

Input =y

stall ﬁ bubble

—>

=0

Output = x

Stall =DIX =D

Input =y
Bubble —DiX

stall bubble
stall_y bubdle

Output = x

—>

bubble

stall
=0 —ﬂ— =1

=

=S

=

Rising
clock

Rising
clock

Rising
clock

Output =y
= ol

Output = x
=

I:> Output =nop

Dl o>
p

18

Branch Prediction

|dea: instead of waiting, why not just guess the direction of jump?

Ll

X0rg %sSrax, srax
jne L1

irmovg $1, %rax
irmovg $4, %rcx
irmovg $3, %rax

= =

Also takes a guess of
the jump direction

Not taken
Fall Through
Target
Target + 1

/E
D

<

19

Branch Prediction

|dea: instead of waiting, why not just guess the direction of jump?
If prediction is correct: pipeline moves forward without stalling

Also takes a guess of
the jump direction

X0rg %sSrax, srax FI D/E M W
jne L1 # Not taken F¥ D E M| W
irmovg $1, %rax # Fall Through F D E M
L1 irmovg $4, %rcx # Target F| D|E W
irmovg $3, %rax # Target + 1 F ' D M | W

19

Branch Prediction

|dea: instead of waiting, why not just guess the direction of jump?
If prediction is correct: pipeline moves forward without stalling
If mispredicted: kill mis-executed instructions, start from the correct target

Also takes a guess of
the jump direction

X0rg %sSrax, srax FI D/E M W
jne L1 # Not taken F¥ D E M| W
irmovg $1, %rax # Fall Through F D E M W
L1 irmovg $4, %rcx # Target F D E M W
irmovg $3, %rax # Target + 1 F' D E M| W

19

Branch Prediction

|dea: instead of waiting, why not just guess the direction of jump?
If prediction is correct: pipeline moves forward without stalling
If mispredicted: kill mis-executed instructions, start from the correct target

Static Prediction

e Always Taken

e Always Not-taken
Dynamic Prediction

e Dynamically predict taken/not-taken for each specific jump instruction

20

Static Prediction

Static Prediction

Observation (Assumption really): Two uses of jumps

e People use jumps to check corner cases. These branches are mostly
not taken because corner cases are rare.

e People use jumps to implement loops. These branches are mostly
taken because a loop takes multiple iterations.

21

Static Prediction

Observation (Assumption really): Two uses of jumps

e People use jumps to check corner cases. These branches are mostly
not taken because corner cases are rare.

e People use jumps to implement loops. These branches are mostly
taken because a loop takes multiple iterations.

cmpg $rsi, srdi
Jle .corner case
<do A>

.corner case:
<do B>

ret

21

Static Prediction

Observation (Assumption really): Two uses of jumps

e People use jumps to check corner cases. These branches are mostly
not taken because corner cases are rare.

e People use jumps to implement loops. These branches are mostly
taken because a loop takes multiple iterations.

cmpg srsi, Srdi

Jle .corner case

<do A> \
.corner case:

<do B> Mostly not taken

ret

21

Static Prediction

Observation (Assumption really): Two uses of jumps

e People use jumps to check corner cases. These branches are mostly
not taken because corner cases are rare.

e People use jumps to implement loops. These branches are mostly
taken because a loop takes multiple iterations.

gmpq $rsi, srdi <before>
Jle .corner case L1: <body>
<do A>
r \ cmpg B, A
.corner case: .
<do B> Mostly not taken jl .L1

ret <after>

21

Static Prediction

Observation (Assumption really): Two uses of jumps

e People use jumps to check corner cases. These branches are mostly
not taken because corner cases are rare.

e People use jumps to implement loops. These branches are mostly
taken because a loop takes multiple iterations.

C.:qu srsi, srdi <before>
idi . .corner case L1: <body> Vostly taken
r \ cmpg B, A

.corner case:

<do B> Mostly not taken jl L1
ret <after>

21

Static Prediction

Observation (Assumption really): Two uses of jumps

e People use jumps to check corner cases. These branches are mostly
not taken because corner cases are rare.

e People use jumps to implement loops. These branches are mostly
taken because a loop takes multiple iterations.

Strategy:
e Forward jumps (i.e., 1 f-else): always predict not-taken
e Backward jumps (i.e., loop): always predict taken

C.:qu srsi, srdi <before>
idi . .corner case L1: <body> Vostly taken
r \ cmpg B, A

.corner case:

<do B> Mostly not taken jl L1
ret <after>

21

Static Prediction

Knowing branch prediction strategy helps us write faster code
e Any difference between the following two code snippets?

e \What if you know that hardware uses the always non-taken
branch prediction”?

1f (cond) { 1f (!cond) {
do A() do B ()
} else { } else {

do B() do A()

22

Dynamic Prediction

e Simplest idea:

* |f last time taken, predict taken; if last time not-taken, predict
not-taken

e Called 1-bit branch predictor
* \Works nicely for loops

23

Dynamic Prediction

e Simplest idea:

* |f last time taken, predict taken; if last time not-taken, predict
not-taken

e Called 1-bit branch predictor
* \Works nicely for loops

for (1i=0; 1 <5; 1i++) {..}

23

Dynamic Prediction

e Simplest idea:

* |f last time taken, predict taken; if last time not-taken, predict
not-taken

e Called 1-bit branch predictor
* \Works nicely for loops

for (1i=0; 1 <5; 1i++) {..}

Iteration #1 0 1 2 3 4

Predicted Outcome N T T T T

Actual Outcome T T T T N

23

Dynamic Prediction

e Simplest idea:

* |f last time taken, predict taken; if last time not-taken, predict
not-taken

e Called 1-bit branch predictor
* \Works nicely for loops

for (1i=0; 1 <5; 1i++) {..}

Iteration #1 0 1 2 3 4

Predicted Outcome N T T T T

Actual Outcome T T T T N

23

Dynamic Prediction

* With 1-bit prediction, we change our mind instantly if mispredict

e Might be too quick. Thus 2-bit branch prediction: we have to
mispredict twice in a row before changing our mind

24

Dynamic Prediction

* With 1-bit prediction, we change our mind instantly if mispredict
e Might be too quick. Thus 2-bit branch prediction: we have to
mispredict twice in a row before changing our mind

for (1i=0; 1 <5; i++) {..}

Predict with 1-bit N|T |T|T|T

Actual Outcome TI(T(T|T|N

Predict with 2-bit N|N|T|(T|T

Dynamic Prediction

* With 1-bit prediction, we change our mind instantly if mispredict
e Might be too quick. Thus 2-bit branch prediction: we have to
mispredict twice in a row before changing our mind

for (1i=0; 1 <5; i++) {..}

Predict with 1-bit N|T |T|T|TN|T [T|T|T

Actual Outcome T[T [T|T|NT [T|T|T|N

Predict with 2-bit N|N|T[T|TiT|T|T|T|T

Dynamic Prediction

* With 1-bit prediction, we change our mind instantly if mispredict
e Might be too quick. Thus 2-bit branch prediction: we have to
mispredict twice in a row before changing our mind

for (1i=0; 1 <5; i++) {..}

Predict with 1-bit N|T |T|T|TiN|T |T|T|TiN[T[T[T|T

Actual Outcome T [T [T|T|NT [T|T|T INiT [T|T|T [N

Predict with 2-bit N|N|T[T|TT [T/T|T|TiT|TIT|T|T

24

Dynamic Prediction

* With 1-bit prediction, we change our mind instantly if mispredict
e Might be too quick. Thus 2-bit branch prediction: we have to
mispredict twice in a row before changing our mind

for (1i=0; 1 <5; i++) {..}

Predict with 1-bit N|T [T|T|TiN|T [T|T|TiN[T|T |T|TIN[T|T[T|T

Actual Outcome T [T [T[T|NIT [T|T [T |NiT [T|T[T|NiT T[T |T|N

Predict with 2-bit N|N|T|[T|TiT[TTIT|ITT [TITTIT T[T [TIT]T

24

More Advanced Dynamic Prediction

* ook for past histories across instructions

e Branches are often correlated

e Direction of one branch determines another

cond1 branch not-
taken means (x <=0)
branch taken

x =0

if (condl) x = 3
1f (cond2) vy = 19
if (x <= 0) z = 13

25

What Happens If We Mispredict?

demo-7.ys 1 2 3 B! 5 6 7 8 9 10
0x000: xorqg %*rax, 3rax F D E M| W
0x002: jne target # Not taken F D E M| W
0x016: irmovq $2,%rdx # Target F D
bubble LE|mM|w
0x020: irmovqg $3, %rbx # Target+l F
bubble LpleE|[M]|w
0x00b: irmovq $1,%rax # Fall through F D E M| W
0x015: halt F D E M| W

Cancel instructions when mispredicted
* Assuming we detect branch not-taken in execute stage

* On following cycle, replace instructions in execute and
decode by bubbles

* No side effects have occurred yet

26

Stalling for Return

= As ret passes through pipeline, stall at fetch stage
e While in decode, execute, and memory stage

= |nject bubble into decode stage
= Release stall when reach write-back stage

15

Return Address Stack (RAS)

Stalling for return is silly since we know where exactly we
need to jump to, except the jJump target is retrieved later in
the memory stage.

Can we get that sooner? Where should we get it?

16

Return Address Stack (RAS)

Branch Predictor

PC

push return link
on procedure call

A hardware stack;
different from the
stack in memory.

pop return address
on procedure return

¢

eturn-address
stack

) S—_
/ / 4
/
/

predicted
next PC

17

Today: Making the Pipeline Really Work

* Data Dependencies
* Inserting Nops
e Stalling
 Out-of-order execution

30

Data Dependencies

1 irmovg $50, %rax
2 addqg srax, Ssrbx

3 mrmovqg 100 (%rbx),

$rdx

31

Data Dependencies

1 irmovg $50, %rax
2 addqg srax, 5srbx

3 mrmovqg 100 (%rbx),

$rdx

31

Data Dependencies

1 irmovg $50,
2 addqg srax,

$rax

$rbx

¥

3 mrmovqg 100 (%rbx),

$rdx

31

Data Dependencies

1 irmovg $50, S%Srax
2 addqg srax, 5%rbx
¥

3 mrmovqg 100 (%rbx), %rdx

- Result from one instruction used as operand for another
- Read-after-write (RAW) dependency

- Very common in actual programs

- Must make sure our pipeline handles these properly
- Get correct results
+ Minimize performance impact

31

A Subtle Data Dependency

- Jump instruction example below:
- Jne L1 determines whether irmovg $1, $%rax should be executed

- But jne doesn’t know its outcome until after its Execute stage.
Why?

X0rg %sSrax, srax

jne L1 # Not taken

irmovg $1, %rax # Fall Through
L1 irmovg $4, S%rcx # Target

irmovg $3, %rax # Target + 1

32

A Subtle Data Dependency

- Jump instruction example below:
- Jne L1 determines whether irmovg $1, $%rax should be executed

- But jne doesn’t know its outcome until after its Execute stage.
Why?
- There is a data dependency between xorg and jne. The “data” is the
status flags.

X0rg %sSrax, srax

jne L1 # Not taken

irmovg $1, %rax # Fall Through
L1 irmovg $4, S%rcx # Target

irmovg $3, %rax # Target + 1

32

Data Dependencies in Single-Cycle Machines

Combinational z
logic g
Clock
OP1
OP2 <
OP3

Time

In Single-Cycle Implementation:

- Each operation starts only after the previous operation finishes.
Dependency always satisfied.

Data Dependencies in Pipeline Machines

Comb. R Comb. Comb. R
logic e logic logic e
A g B C g
Clock
opi[[A [B | C o°
OP2 A B C
OP3 A B C
OP4 A B C
Time

Data Hazards happen when:

- Result does not feed back around in time for next operation

34

Data Dependencies in Pipeline Machines

Comb. R Comb. R Comb. R
logic e logic e logic e
A g B g C g
Clock
OP1 A B C ,
OP2 A| B| C
OP3 A | B | C
OP4 A B C
Time

Data Hazards happen when:
- Result does not feed back around in time for next operation

Data Dependencies: No Nop

0x000:
0x00a:
0x014:
0x016:

irmovg $10, $rdx
irmovg $3,%rax
addg %rdx, srax

halt

Remember registers get

updated in the Write-back stage

1

2

3

4

5

6

7

F| D| E|] M| W
F| D[E| M| W
F| D| E| M| W
F| D| E|{ M

35

Data Dependencies: No Nop

0x000:
0x00a:
0x014:
0x016:

1

2

3

4

5

irmovg $10, $rdx F

6

irmovg $3,%rax
addg %rdx, srax

halt

Remember registers get
updated in the Write-back stage

addq reads wrong %rdx and %rax

7

D| E| M| W
F| D[E| M| W
F| D| E| M| W
F| D| E|{ M

35

Data Dependencies:

0x000:
0x00a:
0x014:
0x015:
0x017:

addq still reads wrong %rdx and %rax

irmovg $10, %$rdx
irmovg $3,%rax
nop

addg %rdx, $Srax

halt

1

2 3 4 5 6 7 8
F| D| E| M| W
F| D] Ef M| W
F| D] E{ M| W
F| D| E| M| W
F| D| E{ M

36

Data Dependencies: 2 Nop’s

0x000:
0x00a:
0x014:
0x015:
Ox01l6:
0x018:

addq reads the correct %rdx,
but %rax still wrong

irmovg $10, $rdx
irmovg $3,%rax
nop
nop
addg %rdx, Srax

halt

1 2 3 4 5 6 7 8 9 10
F| D| E| M| W
F| D| E| M| W
F| D| Ef M| W
F| D] E{ M| W
F| D| E| M| W
F| D| E| M| W

37

Data Dependencies: 3 Nop’s

0x000:
0x00a:
0x014:
0x015:
O0x01l6:
0x017:
0x019:

addq reads the correct %rdx

irmovg $10, $rdx
irmovg $3,%rax
nop
nop
nop

addg %rdx, $Srax

halt

and %rax

1 2 3 4 5 6 7 8 9 10 11
F| D| E| M| W
F| D| E| M| W
F| D| Ef M| W
F| D] E| M| W
F| D] E| M| W
F| D| E| M| W

F| D| E| M| W

38

Hardware Generated Nops (Bubble and Stalling)

Can we have the hardware automatically generates a nop?
- Why is it good for the hardware to do so anyways?

R R R Rl write R

Fetch el Decode |e| Execute |[e| Memory |e e
g g g g back g

Hardware Generated Nops (Bubble and Stalling)

Can we have the hardware automatically generates a nop?
- Why is it good for the hardware to do so anyways?

irmov

R R R Rl write R

Fetch el Decode |e| Execute |[e| Memory |e e
g g g g back g

Hardware Generated Nops (Bubble and Stalling)

Can we have the hardware automatically generates a nop?
- Why is it good for the hardware to do so anyways?

irmov irmov

R R R Rl write R

Fetch el Decode |e| Execute |[e| Memory |e e
g g g g back g

Hardware Generated Nops (Bubble and Stalling)

Can we have the hardware automatically generates a nop?
- Why is it good for the hardware to do so anyways?

add irmov irmov

R R R Rl write R

Fetch el Decode |e| Execute |[e| Memory |e e
g g g g back g

Hardware Generated Nops (Bubble and Stalling)

Can we have the hardware automatically generates a nop?
- Why is it good for the hardware to do so anyways?

Inst3 add irmov irmov

R R R Rl write R

Fetch el Decode |e| Execute |[e| Memory |e e
g g g g back g

39

Hardware Generated Nops (Bubble and Stalling)

Can we have the hardware automatically generates a nop?
- Why is it good for the hardware to do so anyways?

Stall
Inst3 add irmov irmov
R R R R - R
Fetch el Decode |e| Execute |[e| Memory |e Write e

g g g g back g

39

Hardware Generated Nops (Bubble and Stalling)

Can we have the hardware automatically generates a nop?
- Why is it good for the hardware to do so anyways?

Stall
Inst3 add bubble irmov irmov
(nop)
R R R R - R
Fetch el Decode |e| Execute |[e| Memory |e Write e

g g g g back g

39

Hardware Generated Nops (Bubble and Stalling)

Can we have the hardware automatically generates a nop?
- Why is it good for the hardware to do so anyways?

Stall Stall
Inst3 add bubble irmov irmov
(nop)
R R R R - R
Fetch el Decode |e| Execute |[e| Memory |e Write e

g g g g back g

39

Hardware Generated Nops (Bubble and Stalling)

Can we have the hardware automatically generates a nop?
- Why is it good for the hardware to do so anyways?

Stall Stall
Inst3 add bubble bubble irmov
(nop) (nop)
R R R R - R
Fetch el Decode |e| Execute |[e| Memory |e Write e

g g g g back g

39

Hardware Generated Nops (Bubble and Stalling)

Can we have the hardware automatically generates a nop?
- Why is it good for the hardware to do so anyways?

Inst4 Inst3 add bubble bubble
(nop) (nop)

R R R R - R

Fetch el Decode |e| Execute |[e| Memory |e Write e

g g g g back g

39

Hardware Generated Nops (Bubble and Stalling)

Can we have the hardware automatically generates a nop?
- Why is it good for the hardware to do so anyways?

Inst4 Inst3 add bubble
(nop)
R R R R - R
Fetch el Decode |e| Execute |[e| Memory |e Write e

g g g g back g

39

Hardware Generated Nops (Bubble and Stalling)

Can we have the hardware automatically generates a nop?
- Why is it good for the hardware to do so anyways?

Inst4 Inst3 add

R R R Rl write R

Fetch el Decode |e| Execute |[e| Memory |e e
g g g g back g

Detecting Stall Condition

- Using a “scoreboard”. Each register has a bit.

- Every instruction that writes to a register sets the bit.

- Every instruction that reads a register would have to check the bit first.
- If the bit is set, then generate a bubble
- Otherwise, free to go!!

40

Data Forwarding

Naive Pipeline
- Register isn’t written until completion of write-back stage
- Source operands read from register file in decode stage
- The decode stage can’t start until the write-back stage finishes
Observation
- Value generated in execute or memory stage
Trick
- Pass value directly from generating instruction to decode stage
- Needs to be available at end of decode stage

41

Data Forwarding Example

1 2 3 4 5 6 7 8 9 10

0x000: irmovg $10, $rdx F D E M| W

0x00a: irmovg $3,%rax F D E M| W

0x014: nop F D El M| W

0x015: nop FIDIE| M| W

0x016: addg %rdx, $rax F D El M| W
0x018: halt FID|I E| M| W

irmovqg writes $rax to the register file at the end of the write-back
stage

- But the value of $rax is already available at the beginning of the write-
back stage

- Forward $rax to the decode stage of addg.

Data Forwarding Example

1 2 3 4 5 6 7 8 9 10

0x000: irmovg $10, $rdx F D E M| W

0x00a: irmovg $3,%rax F D E MW

0x014: nop F D EfM| W

0x015: nop FI DJE| M| W

0x016: addg %rdx, $rax FwD E M| W
0x018: halt F| D| E| M| W

irmovqg writes $rax to the register file at the end of the write-back
stage

- But the value of $rax is already available at the beginning of the write-
back stage

- Forward $rax to the decode stage of addg.

Data Forwarding Example #2

2 3 4
0x000: irmovg $10, %rdx F D E[M|[W
0x00a: irmovg $3,%rax F D E | M
0x014: addg %rdx, $rax F D E

0x016: halt F D

Register $rdx
Forward from the memory stage
Register $rax

Forward from the execute stage

Data Forwarding Exampl

0x000: irmovg $10,%rdx

0x00a: irmovg $3,%rax

0x014: addg %rdx, $rax
0x01l6: halt

Register $rdx
Forward from the memory stage

Register $rax

Forward from the execute stage

e #2

2

3

4

FID|EfM|wW
FIDIE|M
FID|E
F| D

43

Data Forwarding Exampl

0x000: irmovg $10,%rdx

0x00a: irmovg $3,%rax

0x014: addg %rdx, $rax
0x01l6: halt

Register $rdx
Forward from the memory stage

Register $rax

Forward from the execute stage

e #2

2

F

D

F

oimZ|S

43

Bypass Paths

Decode Stage

- Forwarding logic selects valA

- Normally from register file

- Forwarding: get valA or valB fr
Forwarding Sources

- Execute: valk

- Memory: valk, valM

- Write back: valk, valM

W_icode, W_valM W_valE, W_valM, W_dstE, W_dstM

Memory

Addr, Data

Execute

A B
Decode Register M
file -

Write back

Instruction
memory

PC
increment

Fetch

predPC

PC

44

Out-of-order Execution

* Compiler could do this, but has limitations

* Generally done in hardware

r0
r3
r4
r/

Long-latency instruction.
Forces the pipeline to stall.

rl + r2
MEM[r0]
r3 + ro
r5 + ril

'

r0 =

r3
r/

r4

rl + r2
MEM[xrO0]
r5 + rl

r3 + 16

45

Out-of-order Execution

* Compiler could do this, but has limitations

* Generally done in hardware

r0
r3
rd

r/

-

Long-latency instruction.
Forces the pipeline to stall.

rl + r2
MEM[r0]
r3 + ro
r5 + ril

'

r0 =

r3
r/

r4

rl + r2
MEM[xrO0]
r5 + rl

r3 + 16

45

Out-of-order Execution

r0O = rl + r2
r3 = MEM[rO]
rd = r3 + ré6
rée = r5 + ril

46

Out-of-order Execution

r0
r3
r4
r6

rl + r2
MEM[rO]
r3 + ré6
r5 + ril

Is this correct?

—

r(
r3
r6

r4

rl + r2
MEM[rO]
r5 + ril

= r3 + r6

46

Out-of-order Execution

r0
r3
r4
r6

0
r3

r4

rl + r2
MEM[rO]
r3 + ré6
r5 + ril

rl + r2
MEM[rO]
r3 + ro6
r5 + ril

Is this correct?

—

r(
r3
r6

r4

= rl + r2

MEM[rO]
r5 + ril

r3 + r6

46

Out-of-order Execution

r0
r3
r4
r6

0
r3

r4

rl + r2
MEM[rO]
r3 + ré6
r5 + ril

rl + r2
MEM[rO]
r3 + ro6
r5 + ril

Is this correct?

—

Is this correct?

—

r(
r3
r6

r4

r(
r3

r4

rl + r2
MEM[rO]
r5 + ril

r3 + r6
rl + r2
MEM[rO]

r5 4+ ril

r3 4+ ro

46

Out-of-order Execution

r0
r3
r4
r6

0
r3

r4

rl + r2
MEM[rO]
r3 + ré6
r5 + ril

rl + r2
MEM[rO]
r3 + ro6
r5 + ril

Is this correct?

—

Is this correct?

—

r(
r3
r6

r4

r(
r3
r4

r4

rl + r2
MEM[rO]
r5 + ril

r3 + r6
rl + r2
MEM[rO]

r5 4+ ril

r3 4+ ro

“Tomasolu Algorithm?” is the algorithm that is most

widely implemented in modern hardware to get out-of-

order execution right.

46

