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Data Dependencies: 3 Nop’s

2

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8 9

F D E M WF D E M W
0x00a: irmovq $3,%rax F D E M WF D E M W
0x014: nop F D E M WF D E M W
0x015: nop F D E M WF D E M W
0x016: nop F D E M WF D E M W
0x017: addq %rdx,%rax F D E M WF D E M W

10 11

0x019: halt F D E M WF D E M W

addq reads the correct %rdx 
and %rax
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Data Forwarding Example

Register %rdx

• Forward from the memory stage


Register %rax

• Forward from the execute stage

3

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M
W0x00a: irmovq  $3,%rax F D E M

W

F D E M W0x014: addq %rdx,%rax

F D E M W0x016: halt
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0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M
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Data Forwarding Example

Register %rdx

• Forward from the memory stage


Register %rax

• Forward from the execute stage

3

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M
W0x00a: irmovq  $3,%rax F D E M

W

F D E M W0x014: addq %rdx,%rax

F D E M W0x016: halt
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Bypass Paths
Decode Stage


• Forwarding logic selects valA and valB

• Normally from register file

• Forwarding: get valA or valB from later pipeline stage


Forwarding Sources

• Execute: valE

• Memory: valE, valM

• Write back: valE, valM

4
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Out-of-order Execution

5

r0 = r1 + r2

r3 = MEM[r0]

r4 = r3 + r6

r7 = r5 + r1


…

Long-latency instruction. 
Forces the pipeline to stall.

r0 = r1 + r2

r3 = MEM[r0]

r7 = r5 + r1


…

r4 = r3 + r6

• Compiler could do this, but has limitations

• Generally done in hardware
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Out-of-order Execution

6

r0 = r1 + r2

r3 = MEM[r0]

r4 = r3 + r6

r6 = r5 + r1


…

r0 = r1 + r2

r3 = MEM[r0]

r6 = r5 + r1


…

r4 = r3 + r6

Is this correct?

r0 = r1 + r2

r3 = MEM[r0]

r4 = r3 + r6

r4 = r5 + r1


…

r0 = r1 + r2

r3 = MEM[r0]

r4 = r5 + r1


…

r4 = r3 + r6

Is this correct?

“Tomasolu Algorithm” is the algorithm that is most 
widely implemented in modern hardware to get out-of-

order execution right.
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CPU

So far in 252…

PC
Register


File

Memory
Code

Data

Stack

Addresses

Data

InstructionsCondition 
CodesALU

• We have been discussing the CPU microarchitecture

• Single Cycle, sequential implementation

• Pipeline implementation

• Resolving data dependency and control dependency


• What about memory?
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Ideal Memory

• Low access time (latency)

• High capacity

• Low cost

• High bandwidth (to support multiple accesses in parallel)

8
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The Problem

• Ideal memory’s requirements oppose each other

9
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The Problem

• Ideal memory’s requirements oppose each other

• Bigger is slower
• Bigger  Takes longer to determine the location

• Faster is more expensive
• Memory technology: Flip-flop vs. SRAM vs. DRAM vs. Disk vs. 

Tape
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The Problem

• Ideal memory’s requirements oppose each other

• Bigger is slower
• Bigger  Takes longer to determine the location

• Faster is more expensive
• Memory technology: Flip-flop vs. SRAM vs. DRAM vs. Disk vs. 

Tape

• Higher bandwidth is more expensive
• Need more ports, higher frequency, or faster technology

9
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Memory Technology: RAM

• Random access memory

• Random access means you can supply an arbitrary address to the 

memory and get a value back

10

Address
n

CE (chip enable)

WE (write enable)

k

Content
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Latch vs. DRAM vs. SRAM

• DFF (Data Flip-Flop)

• Fastest

• Low density (27 transistors per bit)

• High cost


• SRAM (Static RAM)

• Faster access (no capacitor)

• Lower density (6 transistors per bit; there are designs w/ fewer Ts)

• Higher cost

• Lower power consumption compared to DRAM

• Manufacturing compatible with logic process (no capacitor)


• DRAM (Dynamic RAM)

• Slower access (capacitor)

• Higher density (1 transistor + 1 capacitor per bit)

• Lower cost

• Higher power consumption compared to SRAM

• Manufacturing requires putting capacitor and logic together

11
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Non-volatile Memories

12
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Non-volatile Memories

• DFF, DRAM and SRAM are volatile memories

• Lose information if powered off.
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Non-volatile Memories

• DFF, DRAM and SRAM are volatile memories

• Lose information if powered off.

• Nonvolatile memories retain value even if powered off

• Flash (~ 5 years)

• Hard Disk (~ 5 years)

• Tape (~ 15-30 years)

12
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Summary of Trade-Offs

• Faster is more expensive (dollars and chip area)

• SRAM, < 10$ per Megabyte

• DRAM, < 1$ per Megabyte

• Hard Disk < 1$ per Gigabyte

13
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Summary of Trade-Offs

• Faster is more expensive (dollars and chip area)

• SRAM, < 10$ per Megabyte

• DRAM, < 1$ per Megabyte

• Hard Disk < 1$ per Gigabyte


• Larger capacity is slower

• Flip-flops/Small SRAM, sub-nanosec

• SRAM,  KByte~MByte, ~nanosec

• DRAM, Gigabyte, ~50 nanosec

• Hard Disk, Terabyte, ~10 millisec


• Other technologies have their place as well 

• PC-RAM, MRAM, RRAM

14
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We want both fast and large Memory

• But we cannot achieve both with a single level of memory


• Idea: Memory Hierarchy

• Have multiple levels of storage (progressively bigger and slower as the 

levels are farther from the processor)

• Key: manage the data such that most of the data the processor 

needs in the near future is kept in the fast(er) level(s)

15
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Memory Hierarchy

16
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Memory Hierarchy
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Memory Hierarchy

• Fundamental tradeoff

• Fast memory: small

• Large memory: slow


• Balance latency, cost, size, 
bandwidth

17

CPU Main

Memory

(DRAM)
Registers


(DFF)

Cache

(SRAM)

Hard Disk
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Register File (DFF)

32 words, sub-nsec


L1 cache (SRAM)

~32 KB, ~nsec


L2 cache (SRAM)

512 KB ~ 1MB, many nsec


L3 cache (SRAM)

.....


Main memory (DRAM), 

GB, ~100 nsec


Hard Disk

100 GB, ~10 msec

A Modern Memory Hierarchy

18
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Memory in a Modern System

19

CORE 1

L2 C
A
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SH
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My Desktop

20



Carnegie Mellon

My Server

21
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How Things Have Progressed

1995 low-mid 
range
Hennessy & Patterson, Computer 
Arch., 1996

200B
5ns

64KB
10ns

32MB
100ns

2GB
5ms

2009 low-mid 
range
www.dell.com, $449 including 17” 
LCD flat panel

~200B
0.33ns

8MB 
0.33ns

4GB
<100ns

750GB
4ms

2015  
mid range

~200B
0.33ns

8MB 
0.33ns

16GB
<100ns

256GB
10us

22

RF
(DFF)

Cache

(SRAM)

Main
Memory
(DRAM) Disk

http://www.dell.com/
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How to Make Effective Use of the Hierarchy

• Fundamental question: how do we know what data to put in the fast 
and small memory?


• Answer: ensure most of the data the processor needs in the near 
future is kept in the fast(er) level(s)


• How do we know what data will be needed in the future?

• Do we know before the program runs?


• If so, programmers or compiler can place the right data at the 
right place


• Do we know only after the program runs?

• If so, only the hardware can effectively place the data

23
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How to Make Effective Use of the Hierarchy

• Modern computers provide both ways

• Register file: programmers explicitly move data from the main 

memory (slow but big DRAM) to registers (small, very fast)

• movq (%rdi), %rdx


• Cache, on the other hand, is automatically managed by hardware

• Sits between registers and main memory, “invisible” to programmers

• The hardware automatically figures out what data will be used in the 

near future, and place in the cache.

• How does the hardware know that??

2444

CPU Cache

$ MemoryRegisters
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Register VS Cache

long a = 10;


long b = 20;

25

movq $10, %rax 


movq $10, 4(%rbx)

• From the programmer’s perspective, data is either in register or 
memory.

• One or the other, not both


• If the data is in memory, the hardware may keep a copy of this data 
in cache to speed up access to it.
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How to Make Effective Use of the Hierarchy

• Modern computers provide both ways

• Register file: programmers explicitly move data from the main 

memory (slow but big DRAM) to registers (small, very fast)

• movq (%rdi), %rdx


• Cache, on the other hand, is automatically managed by hardware

• Sits between registers and main memory, “invisible” to programmers

• The hardware automatically figures out what data will be used in the 

near future, and place in the cache.

• How does the hardware know that??

2644

CPU Cache

$ MemoryRegisters
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Locality: An Empirical Observation

• Principle of Locality: Programs tend to use the same data over and 
over again, and tend to access data next to each other.

27
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Locality: An Empirical Observation

• Principle of Locality: Programs tend to use the same data over and 
over again, and tend to access data next to each other.

• Temporal locality:  
• Recently referenced items are likely  

to be referenced again in the near future

• Spatial locality:  
• Items with nearby addresses tend  

to be referenced close together in time

27
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Locality Example

• Data references

• Spatial Locality: Reference array elements in succession (stride-1 reference 

pattern)

• Temporal Locality: Reference variable sum each iteration.


• Instruction references

• Spatial Locality: Reference instructions in sequence.

• Temporal Locality: Cycle through loop repeatedly. 

28

sum = 0;

for (i = 0; i < n; i++)

	 sum += a[i];

return sum;
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Use Locality to Manage Memory Hierarchy

• Exploiting temporal locality:

• If a piece of data is recently accessed, very likely it will be needed 

again, so move it to cache.

• Exploiting spatial locality:


• When moving a piece of data from the memory to the cache, move its 
adjacent data to the cache as well.

29

sum = 0;

for (i = 0; i < n; i++)

	 sum += a[i];

return sum;
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The Bookshelf Analogy

• Book in your hand

• Desk

• Bookshelf

• Boxes at home

• Library


• Recently-used books tend to stay on desk, because you will likely use 
it again.


• Comp Org. books

• Books for other courses

30
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Cache Illustrations
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32

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Data in address 14 is neededRequest Data

at Address 14

14 Address 14 is in cache: Hit!

Memory

(big but slow)

Cache

(small but fast)

CPU



Carnegie Mellon

Cache Illustrations
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Cache Illustrations
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Cache Illustrations
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at Address 12
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Miss!
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Cache Hit Rate

• Cache hit is when you find the data in the cache

• Hit rate indicates the effectiveness of the cache

34

Accesses #
 Hits#  Hit Rate =
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Two Fundamental Issues in Cache Management

• Finding the data in the cache

• Given an address, how do we decide whether it’s in the cache or not?


• Kicking data out of the cache

• Cache is small than memory, so when there’s no place left in the 

cache, we need to kick something out before we can put new data 
into it, but who to kick out?

35
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A Simple Cache

• 16 memory locations
• 4 cache locations

36
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0111
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A Simple Cache

• 16 memory locations
• 4 cache locations
• Also called cache-line
• Every location has a valid bit, indicating 

whether that location contains valid data; 
0 initially.

• For now, assume cache location size 
== memory location size == 1 B

• Assume each memory location can 
only reside in one cache-line

• Cache is smaller than memory 
(obviously)
• Thus, not all memory locations can 

be cached at the same time
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Cache Placement
• Given a memory addr, say 0x0001, we 

want to put the data there into the 
cache; where does the data go?

37
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• Simplest way is to take a subset 
of address bits


•Direct-Mapped Cache

• CA = ADDR[1],ADDR[0]

Function to Address Cache

38
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•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address 

bits

Direct-Mapped Cache
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•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address 

bits

•Multiple addresses can be 
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•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address 
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•Multiple addresses can be 
mapped to the same location

• E.g., 0010 and 1010
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•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address 

bits

•Multiple addresses can be 
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate between 
different memory locations that 
are mapped to the same cache 
location?

Direct-Mapped Cache
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•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address 

bits

•Multiple addresses can be 
mapped to the same location
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•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address 

bits

•Multiple addresses can be 
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate between 
different memory locations that 
are mapped to the same cache 
location?

• Add a tag field for that purpose
• What should the tag field be?

Direct-Mapped Cache

39

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11



Carnegie Mellon

•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address 

bits

•Multiple addresses can be 
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate between 
different memory locations that 
are mapped to the same cache 
location?

• Add a tag field for that purpose
• What should the tag field be?
• ADDR[3] and ADDR[2] in this 

particular example

Direct-Mapped Cache

39

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11



Carnegie Mellon

•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address 

bits

•Multiple addresses can be 
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate between 
different memory locations that 
are mapped to the same cache 
location?

• Add a tag field for that purpose
• What should the tag field be?
• ADDR[3] and ADDR[2] in this 

particular example

Direct-Mapped Cache

39

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

addr [3:2]

addr [3:2]
addr [3:2]

addr [3:2]



Carnegie Mellon

•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address 

bits

•Multiple addresses can be 
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate between 
different memory locations that 
are mapped to the same cache 
location?

• Add a tag field for that purpose
• What should the tag field be?
• ADDR[3] and ADDR[2] in this 

particular example

Direct-Mapped Cache

39

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

addr [3:2]

addr [3:2]
addr [3:2]

addr [3:2]

Tag



Carnegie Mellon

•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address 

bits

•Multiple addresses can be 
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate between 
different memory locations that 
are mapped to the same cache 
location?

• Add a tag field for that purpose
• What should the tag field be?
• ADDR[3] and ADDR[2] in this 

particular example

Direct-Mapped Cache

39

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

addr [3:2]

addr [3:2]
addr [3:2]

addr [3:2]

= Hit?

addr[3:2]

Tag

CPU


