
CSC 252/452: Computer Organization 
 Fall 2024: Lecture 15

Instructor: Yanan Guo

Department of Computer Science

University of Rochester

Carnegie Mellon

Data Dependencies: 3 Nop’s

2

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8 9

F D E M WF D E M W
0x00a: irmovq $3,%rax F D E M WF D E M W
0x014: nop F D E M WF D E M W
0x015: nop F D E M WF D E M W
0x016: nop F D E M WF D E M W
0x017: addq %rdx,%rax F D E M WF D E M W

10 11

0x019: halt F D E M WF D E M W

addq reads the correct %rdx
and %rax

Carnegie Mellon

Data Forwarding Example

Register %rdx

• Forward from the memory stage

Register %rax

• Forward from the execute stage

3

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M
W0x00a: irmovq $3,%rax F D E M

W

F D E M W0x014: addq %rdx,%rax

F D E M W0x016: halt

Carnegie Mellon

Data Forwarding Example

Register %rdx

• Forward from the memory stage

Register %rax

• Forward from the execute stage

3

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M
W0x00a: irmovq $3,%rax F D E M

W

F D E M W0x014: addq %rdx,%rax

F D E M W0x016: halt

Carnegie Mellon

Data Forwarding Example

Register %rdx

• Forward from the memory stage

Register %rax

• Forward from the execute stage

3

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M
W0x00a: irmovq $3,%rax F D E M

W

F D E M W0x014: addq %rdx,%rax

F D E M W0x016: halt

Carnegie Mellon

Bypass Paths
Decode Stage

• Forwarding logic selects valA and valB

• Normally from register file

• Forwarding: get valA or valB from later pipeline stage

Forwarding Sources

• Execute: valE

• Memory: valE, valM

• Write back: valE, valM

4

Carnegie Mellon

Out-of-order Execution

5

r0 = r1 + r2

r3 = MEM[r0]

r4 = r3 + r6

r7 = r5 + r1

…

Long-latency instruction.
Forces the pipeline to stall.

r0 = r1 + r2

r3 = MEM[r0]

r7 = r5 + r1

…

r4 = r3 + r6

• Compiler could do this, but has limitations

• Generally done in hardware

Carnegie Mellon

Out-of-order Execution

5

r0 = r1 + r2

r3 = MEM[r0]

r4 = r3 + r6

r7 = r5 + r1

…

Long-latency instruction.
Forces the pipeline to stall.

r0 = r1 + r2

r3 = MEM[r0]

r7 = r5 + r1

…

r4 = r3 + r6

• Compiler could do this, but has limitations

• Generally done in hardware

Carnegie Mellon

Out-of-order Execution

6

r0 = r1 + r2

r3 = MEM[r0]

r4 = r3 + r6

r6 = r5 + r1

…

Carnegie Mellon

Out-of-order Execution

6

r0 = r1 + r2

r3 = MEM[r0]

r4 = r3 + r6

r6 = r5 + r1

…

r0 = r1 + r2

r3 = MEM[r0]

r6 = r5 + r1

…

r4 = r3 + r6

Is this correct?

Carnegie Mellon

Out-of-order Execution

6

r0 = r1 + r2

r3 = MEM[r0]

r4 = r3 + r6

r6 = r5 + r1

…

r0 = r1 + r2

r3 = MEM[r0]

r6 = r5 + r1

…

r4 = r3 + r6

Is this correct?

r0 = r1 + r2

r3 = MEM[r0]

r4 = r3 + r6

r4 = r5 + r1

…

Carnegie Mellon

Out-of-order Execution

6

r0 = r1 + r2

r3 = MEM[r0]

r4 = r3 + r6

r6 = r5 + r1

…

r0 = r1 + r2

r3 = MEM[r0]

r6 = r5 + r1

…

r4 = r3 + r6

Is this correct?

r0 = r1 + r2

r3 = MEM[r0]

r4 = r3 + r6

r4 = r5 + r1

…

r0 = r1 + r2

r3 = MEM[r0]

r4 = r5 + r1

…

r4 = r3 + r6

Is this correct?

Carnegie Mellon

Out-of-order Execution

6

r0 = r1 + r2

r3 = MEM[r0]

r4 = r3 + r6

r6 = r5 + r1

…

r0 = r1 + r2

r3 = MEM[r0]

r6 = r5 + r1

…

r4 = r3 + r6

Is this correct?

r0 = r1 + r2

r3 = MEM[r0]

r4 = r3 + r6

r4 = r5 + r1

…

r0 = r1 + r2

r3 = MEM[r0]

r4 = r5 + r1

…

r4 = r3 + r6

Is this correct?

“Tomasolu Algorithm” is the algorithm that is most
widely implemented in modern hardware to get out-of-

order execution right.

7

CPU

So far in 252…

PC
Register

File

Memory
Code

Data

Stack

Addresses

Data

InstructionsCondition
CodesALU

• We have been discussing the CPU microarchitecture

• Single Cycle, sequential implementation

• Pipeline implementation

• Resolving data dependency and control dependency

• What about memory?

Carnegie Mellon

Ideal Memory

• Low access time (latency)

• High capacity

• Low cost

• High bandwidth (to support multiple accesses in parallel)

8

Carnegie Mellon

The Problem

• Ideal memory’s requirements oppose each other

9

Carnegie Mellon

The Problem

• Ideal memory’s requirements oppose each other

• Bigger is slower

9

Carnegie Mellon

The Problem

• Ideal memory’s requirements oppose each other

• Bigger is slower
• Bigger  Takes longer to determine the location

9

Carnegie Mellon

The Problem

• Ideal memory’s requirements oppose each other

• Bigger is slower
• Bigger  Takes longer to determine the location

• Faster is more expensive

9

Carnegie Mellon

The Problem

• Ideal memory’s requirements oppose each other

• Bigger is slower
• Bigger  Takes longer to determine the location

• Faster is more expensive
• Memory technology: Flip-flop vs. SRAM vs. DRAM vs. Disk vs.

Tape

9

Carnegie Mellon

The Problem

• Ideal memory’s requirements oppose each other

• Bigger is slower
• Bigger  Takes longer to determine the location

• Faster is more expensive
• Memory technology: Flip-flop vs. SRAM vs. DRAM vs. Disk vs.

Tape

• Higher bandwidth is more expensive

9

Carnegie Mellon

The Problem

• Ideal memory’s requirements oppose each other

• Bigger is slower
• Bigger  Takes longer to determine the location

• Faster is more expensive
• Memory technology: Flip-flop vs. SRAM vs. DRAM vs. Disk vs.

Tape

• Higher bandwidth is more expensive
• Need more ports, higher frequency, or faster technology

9

Carnegie Mellon

Memory Technology: RAM

• Random access memory

• Random access means you can supply an arbitrary address to the

memory and get a value back

10

Address
n

CE (chip enable)

WE (write enable)

k

Content

Carnegie Mellon

Latch vs. DRAM vs. SRAM

• DFF (Data Flip-Flop)

• Fastest

• Low density (27 transistors per bit)

• High cost

• SRAM (Static RAM)

• Faster access (no capacitor)

• Lower density (6 transistors per bit; there are designs w/ fewer Ts)

• Higher cost

• Lower power consumption compared to DRAM

• Manufacturing compatible with logic process (no capacitor)

• DRAM (Dynamic RAM)

• Slower access (capacitor)

• Higher density (1 transistor + 1 capacitor per bit)

• Lower cost

• Higher power consumption compared to SRAM

• Manufacturing requires putting capacitor and logic together

11

Carnegie Mellon

Non-volatile Memories

12

Carnegie Mellon

Non-volatile Memories

• DFF, DRAM and SRAM are volatile memories

• Lose information if powered off.

12

Carnegie Mellon

Non-volatile Memories

• DFF, DRAM and SRAM are volatile memories

• Lose information if powered off.

• Nonvolatile memories retain value even if powered off

• Flash (~ 5 years)

• Hard Disk (~ 5 years)

• Tape (~ 15-30 years)

12

Carnegie Mellon

Summary of Trade-Offs

• Faster is more expensive (dollars and chip area)

• SRAM, < 10$ per Megabyte

• DRAM, < 1$ per Megabyte

• Hard Disk < 1$ per Gigabyte

13

Carnegie Mellon

Summary of Trade-Offs

• Faster is more expensive (dollars and chip area)

• SRAM, < 10$ per Megabyte

• DRAM, < 1$ per Megabyte

• Hard Disk < 1$ per Gigabyte

• Larger capacity is slower

• Flip-flops/Small SRAM, sub-nanosec

• SRAM, KByte~MByte, ~nanosec

• DRAM, Gigabyte, ~50 nanosec

• Hard Disk, Terabyte, ~10 millisec

• Other technologies have their place as well

• PC-RAM, MRAM, RRAM

14

Carnegie Mellon

We want both fast and large Memory

• But we cannot achieve both with a single level of memory

• Idea: Memory Hierarchy

• Have multiple levels of storage (progressively bigger and slower as the

levels are farther from the processor)

• Key: manage the data such that most of the data the processor

needs in the near future is kept in the fast(er) level(s)

15

Carnegie Mellon

Memory Hierarchy

16

fast

small

big but slow

backup

everything

here

fa
st

er
 p

er
 b

yt
e

ch
ea

pe
r p

er
 b

yt
e

CPU

Carnegie Mellon

Memory Hierarchy

16

fast

small

big but slow

backup

everything

here

fa
st

er
 p

er
 b

yt
e

ch
ea

pe
r p

er
 b

yt
e

CPU

Carnegie Mellon

Memory Hierarchy

16

fast

small

big but slow

move what you use here

backup

everything

here

fa
st

er
 p

er
 b

yt
e

ch
ea

pe
r p

er
 b

yt
e

CPU

Carnegie Mellon

Memory Hierarchy

• Fundamental tradeoff

• Fast memory: small

• Large memory: slow

• Balance latency, cost, size,
bandwidth

17

CPU Main

Memory

(DRAM)
Registers

(DFF)

Cache

(SRAM)

Hard Disk

Carnegie Mellon

Register File (DFF)

32 words, sub-nsec

L1 cache (SRAM)

~32 KB, ~nsec

L2 cache (SRAM)

512 KB ~ 1MB, many nsec

L3 cache (SRAM)

.....

Main memory (DRAM),

GB, ~100 nsec

Hard Disk

100 GB, ~10 msec

A Modern Memory Hierarchy

18

Carnegie Mellon

Memory in a Modern System

19

CORE 1

L2 C
A

C
H

E 0

SH
A

R
ED

 L3 C
A

C
H

E

D
R

A
M

 IN
TER

FA
C

E

CORE 0

CORE 2 CORE 3
L2 C

A
C

H
E 1

L2 C
A

C
H

E 2

L2 C
A

C
H

E 3

D
R

A
M

 M
odules

DRAM MEMORY
CONTROLLER

L1 CACHE 0 L1 CACHE 1

L1 CACHE 2 L1 CACHE 3

Carnegie Mellon

My Desktop

20

Carnegie Mellon

My Server

21

Carnegie Mellon

How Things Have Progressed

1995 low-mid
range
Hennessy & Patterson, Computer
Arch., 1996

200B
5ns

64KB
10ns

32MB
100ns

2GB
5ms

2009 low-mid
range
www.dell.com, $449 including 17”
LCD flat panel

~200B
0.33ns

8MB
0.33ns

4GB
<100ns

750GB
4ms

2015  
mid range

~200B
0.33ns

8MB
0.33ns

16GB
<100ns

256GB
10us

22

RF
(DFF)

Cache

(SRAM)

Main
Memory
(DRAM) Disk

http://www.dell.com/

Carnegie Mellon

How to Make Effective Use of the Hierarchy

• Fundamental question: how do we know what data to put in the fast
and small memory?

• Answer: ensure most of the data the processor needs in the near
future is kept in the fast(er) level(s)

• How do we know what data will be needed in the future?

• Do we know before the program runs?

• If so, programmers or compiler can place the right data at the
right place

• Do we know only after the program runs?

• If so, only the hardware can effectively place the data

23

Carnegie Mellon

How to Make Effective Use of the Hierarchy

• Modern computers provide both ways

• Register file: programmers explicitly move data from the main

memory (slow but big DRAM) to registers (small, very fast)

• movq (%rdi), %rdx

• Cache, on the other hand, is automatically managed by hardware

• Sits between registers and main memory, “invisible” to programmers

• The hardware automatically figures out what data will be used in the

near future, and place in the cache.

• How does the hardware know that??

2444

CPU Cache

$ MemoryRegisters

Carnegie Mellon

Register VS Cache

long a = 10;

long b = 20;

25

movq $10, %rax

movq $10, 4(%rbx)

• From the programmer’s perspective, data is either in register or
memory.

• One or the other, not both

• If the data is in memory, the hardware may keep a copy of this data
in cache to speed up access to it.

Carnegie Mellon

How to Make Effective Use of the Hierarchy

• Modern computers provide both ways

• Register file: programmers explicitly move data from the main

memory (slow but big DRAM) to registers (small, very fast)

• movq (%rdi), %rdx

• Cache, on the other hand, is automatically managed by hardware

• Sits between registers and main memory, “invisible” to programmers

• The hardware automatically figures out what data will be used in the

near future, and place in the cache.

• How does the hardware know that??

2644

CPU Cache

$ MemoryRegisters

Carnegie Mellon

Locality: An Empirical Observation

• Principle of Locality: Programs tend to use the same data over and
over again, and tend to access data next to each other.

27

Carnegie Mellon

Locality: An Empirical Observation

• Principle of Locality: Programs tend to use the same data over and
over again, and tend to access data next to each other.

• Temporal locality:
• Recently referenced items are likely  

to be referenced again in the near future

27

Carnegie Mellon

Locality: An Empirical Observation

• Principle of Locality: Programs tend to use the same data over and
over again, and tend to access data next to each other.

• Temporal locality:
• Recently referenced items are likely  

to be referenced again in the near future

• Spatial locality:
• Items with nearby addresses tend  

to be referenced close together in time

27

Carnegie Mellon

Locality Example

• Data references

• Spatial Locality: Reference array elements in succession (stride-1 reference

pattern)

• Temporal Locality: Reference variable sum each iteration.

• Instruction references

• Spatial Locality: Reference instructions in sequence.

• Temporal Locality: Cycle through loop repeatedly.

28

sum = 0;

for (i = 0; i < n; i++)

	 sum += a[i];

return sum;

Carnegie Mellon

Use Locality to Manage Memory Hierarchy

• Exploiting temporal locality:

• If a piece of data is recently accessed, very likely it will be needed

again, so move it to cache.

• Exploiting spatial locality:

• When moving a piece of data from the memory to the cache, move its
adjacent data to the cache as well.

29

sum = 0;

for (i = 0; i < n; i++)

	 sum += a[i];

return sum;

Carnegie Mellon

The Bookshelf Analogy

• Book in your hand

• Desk

• Bookshelf

• Boxes at home

• Library

• Recently-used books tend to stay on desk, because you will likely use
it again.

• Comp Org. books

• Books for other courses

30

Carnegie Mellon

Cache Illustrations

31

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Memory

(big but slow)

CPU

Carnegie Mellon

Cache Illustrations

32

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations

32

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Data in address 14 is neededRequest Data

at Address 14

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations

32

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Data in address 14 is neededRequest Data

at Address 14

14 Address 14 is in cache: Hit!

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations

33

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations

33

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Request data

at Address 12

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations

33

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Request data

at Address 12

Data in address 12 is needed

Address 12 is not in cache:
Miss!

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations

33

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Request data

at Address 12

Address 12 is fetched from

memory

Request: 12

Data in address 12 is needed

Address 12 is not in cache:
Miss!

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations

33

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Request data

at Address 12

Address 12 is fetched from

memory

Request: 12

12

Data in address 12 is needed

Address 12 is not in cache:
Miss!

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations

33

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Request data

at Address 12

Address 12 is fetched from

memory

Request: 12

12

12

Data in address 12 is needed

Address 12 is not in cache:
Miss!

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations

33

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Request data

at Address 12

Address 12 is fetched from

memory

Request: 12

12

12

Address 12 is stored in cache

Data in address 12 is needed

Address 12 is not in cache:
Miss!

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Hit Rate

• Cache hit is when you find the data in the cache

• Hit rate indicates the effectiveness of the cache

34

Accesses #
 Hits# Hit Rate =

Carnegie Mellon

Two Fundamental Issues in Cache Management

• Finding the data in the cache

• Given an address, how do we decide whether it’s in the cache or not?

• Kicking data out of the cache

• Cache is small than memory, so when there’s no place left in the

cache, we need to kick something out before we can put new data
into it, but who to kick out?

35

Carnegie Mellon

A Simple Cache

• 16 memory locations
• 4 cache locations

36

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

Content Valid?

Carnegie Mellon

A Simple Cache

• 16 memory locations
• 4 cache locations
• Also called cache-line

36

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

Content Valid?

Carnegie Mellon

A Simple Cache

• 16 memory locations
• 4 cache locations
• Also called cache-line
• Every location has a valid bit, indicating

whether that location contains valid data;
0 initially.

36

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

Content Valid?

Carnegie Mellon

A Simple Cache

• 16 memory locations
• 4 cache locations
• Also called cache-line
• Every location has a valid bit, indicating

whether that location contains valid data;
0 initially.

• For now, assume cache location size
== memory location size == 1 B

36

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

Content Valid?

Carnegie Mellon

A Simple Cache

• 16 memory locations
• 4 cache locations
• Also called cache-line
• Every location has a valid bit, indicating

whether that location contains valid data;
0 initially.

• For now, assume cache location size
== memory location size == 1 B

• Assume each memory location can
only reside in one cache-line

36

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

Content Valid?

Carnegie Mellon

A Simple Cache

• 16 memory locations
• 4 cache locations
• Also called cache-line
• Every location has a valid bit, indicating

whether that location contains valid data;
0 initially.

• For now, assume cache location size
== memory location size == 1 B

• Assume each memory location can
only reside in one cache-line

• Cache is smaller than memory
(obviously)

36

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

Content Valid?

Carnegie Mellon

A Simple Cache

• 16 memory locations
• 4 cache locations
• Also called cache-line
• Every location has a valid bit, indicating

whether that location contains valid data;
0 initially.

• For now, assume cache location size
== memory location size == 1 B

• Assume each memory location can
only reside in one cache-line

• Cache is smaller than memory
(obviously)
• Thus, not all memory locations can

be cached at the same time

36

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

Content Valid?

Carnegie Mellon

Cache Placement
• Given a memory addr, say 0x0001, we

want to put the data there into the
cache; where does the data go?

37

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

Carnegie Mellon

• Simplest way is to take a subset
of address bits

•Direct-Mapped Cache

• CA = ADDR[1],ADDR[0]

Function to Address Cache

38

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

CA

Carnegie Mellon

•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address

bits

Direct-Mapped Cache

39

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

Carnegie Mellon

•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address

bits

•Multiple addresses can be
mapped to the same location

Direct-Mapped Cache

39

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

Carnegie Mellon

•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address

bits

•Multiple addresses can be
mapped to the same location

• E.g., 0010 and 1010

Direct-Mapped Cache

39

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

Carnegie Mellon

•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address

bits

•Multiple addresses can be
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate between
different memory locations that
are mapped to the same cache
location?

Direct-Mapped Cache

39

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

Carnegie Mellon

•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address

bits

•Multiple addresses can be
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate between
different memory locations that
are mapped to the same cache
location?

• Add a tag field for that purpose

Direct-Mapped Cache

39

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

Carnegie Mellon

•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address

bits

•Multiple addresses can be
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate between
different memory locations that
are mapped to the same cache
location?

• Add a tag field for that purpose
• What should the tag field be?

Direct-Mapped Cache

39

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

Carnegie Mellon

•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address

bits

•Multiple addresses can be
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate between
different memory locations that
are mapped to the same cache
location?

• Add a tag field for that purpose
• What should the tag field be?
• ADDR[3] and ADDR[2] in this

particular example

Direct-Mapped Cache

39

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

Carnegie Mellon

•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address

bits

•Multiple addresses can be
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate between
different memory locations that
are mapped to the same cache
location?

• Add a tag field for that purpose
• What should the tag field be?
• ADDR[3] and ADDR[2] in this

particular example

Direct-Mapped Cache

39

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

addr [3:2]

addr [3:2]
addr [3:2]

addr [3:2]

Carnegie Mellon

•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address

bits

•Multiple addresses can be
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate between
different memory locations that
are mapped to the same cache
location?

• Add a tag field for that purpose
• What should the tag field be?
• ADDR[3] and ADDR[2] in this

particular example

Direct-Mapped Cache

39

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

addr [3:2]

addr [3:2]
addr [3:2]

addr [3:2]

Tag

Carnegie Mellon

•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address

bits

•Multiple addresses can be
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate between
different memory locations that
are mapped to the same cache
location?

• Add a tag field for that purpose
• What should the tag field be?
• ADDR[3] and ADDR[2] in this

particular example

Direct-Mapped Cache

39

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

addr [3:2]

addr [3:2]
addr [3:2]

addr [3:2]

= Hit?

addr[3:2]

Tag

CPU

