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Announcements
• Mid-term grades released. Solution on the website.

• Talk to a TA if you have doubts. Make an appointment if you 

can’t make any TA office hours.

• Come to my office hour if TAs cannot solve your problems.

2



Carnegie Mellon
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A Simple Cache

• 16 memory locations
• 4 cache locations
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A Simple Cache

• 16 memory locations
• 4 cache locations
• Also called cache-line
• Every location has a valid bit, indicating 

whether that location contains valid data; 
0 initially.

• For now, assume cache location size 
== memory location size == 1 B

• Cache is smaller than memory 
(obviously)
• Thus, not all memory locations can 

be cached at the same time
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Cache Placement
• Given a memory addr, say 0x0001, we 

want to put the data there into the 
cache; where does the data go?
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Fully-Associative Cache
• Every memory location can be mapped 

to any cache line in the cache.

• Given a request to address A from 

CPU, detecting cache hit/miss 
requires:

• Comparing address A with all four 

tags in the cache (a.k.a., 
associative search)


• Can we reduce the overhead:

• of storing tags

• of comparison
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A Few Terminologies

• A cache line: content + valid bit + tag bits

• Valid bit + tag bits are “overhead”

• Content is what you really want to store

• But we need valid and tag bits to correctly 

access the cache
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•Direct-Mapped Cache
•One address can only be 

mapped to one cache line
• CA = ADDR[1],ADDR[0]

Direct-Mapped Cache
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•Limitation: each memory 
location can be mapped to only 
one cache location.

Direct-Mapped Cache
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•Limitation: each memory 
location can be mapped to only 
one cache location.
•This leads to a lot of conflicts.
•How do we improve this?
•Can each memory location have 

the flexibility to be mapped to 
different cache locations?

Direct-Mapped Cache
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Set-Associative Cache
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Set-Associative Cache
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2-Way Set Associative Cache

• 4 cache lines are organized into two sets; each 

set has 2 cache lines (i.e., 2 ways)

• Lowest bit is used for cache index


• Even address go to first set and odd 
addresses go to the second set


• Each address can be mapped to either cache 
line in the same set

• Tag now stores the higher 3 bits instead of 

the entire address
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Set-Associative Cache
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• Then do an associative search in that set, i.e., 

compare the highest 3 bits 101 with both tags 
in set 1
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Set-Associative Cache
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• Given a request to address, say 1011, from the 
CPU, detecting cache hit/miss requires:
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the corresponding set, in this case set 1
• Then do an associative search in that set, i.e., 

compare the highest 3 bits 101 with both tags 
in set 1

• Only two comparisons required



Carnegie Mellon

Direct-Mapped (1-way Associative) Cache

• 4 cache lines are organized into four sets

• Each memory localization can only be 

mapped to one set

• Using the 2 LSBs to find the set

• Tag now stores the higher 2 bits

17
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Associative verses Direct Mapped Trade-offs
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Associative verses Direct Mapped Trade-offs
• Direct-Mapped cache


• Generally lower hit rate

• Simpler, Faster

• Set Associative cache

• Generally higher hit rate. Better utilization of cache resources

• Slower and higher power consumption. Why?
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Associative verses Direct Mapped Trade-offs
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Associative verses Direct Mapped Trade-offs

19

Miss rate versus cache size on the Integer portion of SPEC CPU2000
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Cache Organization
• Finding a name in a roster

• If the roster is completely unorganized

• Need to compare the name with all the names in the roster

• Same as a fully-associative cache


• If the roster is ordered by last name, and within the same last 
name different first names are unordered

• First find the last name group

• Then compare the first name with all the first names in the 

same group

• Same as a set-associative cache

20
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Cache Access Summary (So far…)
• Assuming b bits in a memory address

• The b bits are split into two halves:


• Lower s bits used as index to find a set. Total sets S = 2s

• The higher (b - s) bits are used for the tag


• Associativity n (i.e., the number of ways in a cache set) is 
independent of the the split between index and tag
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Locality again
• So far: temporal locality

• What about spatial?

• Idea: Each cache location (cache line) store multiple bytes
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Cache-Line Size of 2
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Cache-Line Size of 2

• Read 1000
• Read 1001 (Hit!)
• Read 1010
• Read 1011 (Hit!)
• How to access 

the cache now?
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Cache-Line Size of 2

• Read 1000
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Cache Access Summary
• Assuming b bits in a memory address

• The b bits are split into three fields:


• Lower l bits are used for byte offset within a cache line. Cache line 
size L = 2l


• Next s bits used as index to find a set. Total sets S = 2s

• The higher (b - l - s) bits are used for the tag


• Associativity n is independent of the the split between index and tag
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Handling Reads
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Carnegie Mellon

Handling Reads
• Read miss: Put into cache

• Any reason not to put into cache?
• What to replace? Depends on the replacement policy. More on 

this later.
• Read hit: Nothing special. Enjoy the hit!
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Handling Writes (Hit)
• Intricacy: data value is modified!
• Implication: value in cache will be different from that in memory!

• When do we write the modified data in a cache to the next level?
• Write through: At the time the write happens
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Handling Writes (Hit)
• Intricacy: data value is modified!
• Implication: value in cache will be different from that in memory!

• When do we write the modified data in a cache to the next level?
• Write through: At the time the write happens
• Write back: When the cache line is evicted

• Write-back
• + Can consolidate multiple writes to the same block before eviction. 

Potentially saves bandwidth between cache and memory + saves 
energy

• - Need a bit in the tag store indicating the block is “dirty/modified”

• Write-through
• + Simpler
• + Memory is up to date
• - More bandwidth intensive; no coalescing of writes
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Handling Writes (Miss)
• Do we allocate a cache line on a write miss?

• Write-allocate: Allocate on write miss
• Non-Write-Allocate: No-allocate on write miss

• Allocate on write miss
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Handling Writes (Miss)
• Do we allocate a cache line on a write miss?

• Write-allocate: Allocate on write miss
• Non-Write-Allocate: No-allocate on write miss

• Allocate on write miss
• + Can consolidate writes instead of writing each of them 

individually to memory
• + Simpler because write misses can be treated the same way 

as read misses

• Non-allocate
• + Conserves cache space if locality of writes is low (potentially 

better cache hit rate)
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• Separate or Unified?
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Instruction vs. Data Caches
• Separate or Unified?

• Unified:
• + Dynamic sharing of cache space: no overprovisioning that might 

happen with static partitioning (i.e., split Inst and Data caches)
• - Instructions and data can thrash each other (i.e., no guaranteed 

space for either)
• - Inst and Data are accessed in different places in the pipeline. 

Where do we place the unified cache for fast access?

• First level caches are almost always split 
• Mainly for the last reason above

• Second and higher levels are almost always unified
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General Rule: Bigger == Slower

• How big should the cache be?

• Too small and too much memory traffic

• Too large and cache slows down execution (high latency)
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Carnegie Mellon

General Rule: Bigger == Slower

• How big should the cache be?

• Too small and too much memory traffic

• Too large and cache slows down execution (high latency)

• Make multiple levels of cache

• Small L1 backed up by larger L2

• Today’s processors typically have 3 cache levels

3043
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A Real Intel Processor
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Eviction/Replacement Policy

• Which cache line should be replaced?
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Eviction/Replacement Policy

• Which cache line should be replaced?
• Direct mapped? Only one place!
• Associative caches? Multiple places!

• For associative cache:
• Any invalid cache line first
• If all are valid, consult the replacement policy
• Randomly pick one???
• Ideally: Replace the cache line that’s least likely going to be 

used again
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Eviction/Replacement Policy

• Which cache line should be replaced?
• Direct mapped? Only one place!
• Associative caches? Multiple places!

• For associative cache:
• Any invalid cache line first
• If all are valid, consult the replacement policy
• Randomly pick one???
• Ideally: Replace the cache line that’s least likely going to be 

used again
• Approximation: Least recently used (LRU)
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Implementing LRU
• Idea: Evict the least recently accessed block

• Challenge: Need to keep track of access ordering of blocks

• Question: 2-way set associative cache:


• What do you need to implement LRU perfectly? One bit?
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Implementing LRU
• Idea: Evict the least recently accessed block

• Challenge: Need to keep track of access ordering of blocks

• Question: 2-way set associative cache:


• What do you need to implement LRU perfectly? One bit?

33

0 1Cache Lines

LRU index (1-bit) 10

Address stream:

• Hit on 0

• Hit on 1

• Miss, evict 0
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Implementing LRU
• Question: 4-way set associative cache: 
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Implementing LRU
• Question: 4-way set associative cache: 

• What do you need to implement LRU perfectly? Will the same 
mechanism work?

• Essentially have to track the ordering of all cache lines
• What are the hardware structures needed?
• In reality, true LRU is never implemented. Too complex.
• “Pseudo-LRU” is usually used in real processors.
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Address stream:

• Hit on 0

• Hit on 2

• Hit on 3

• Miss, evict 1How to update the 

LRU index now???


