
CSC 252/452: Computer Organization 
 Fall 2024: Lecture 16 

Instructor: Yanan Guo

Department of Computer Science

University of Rochester

Carnegie Mellon

Announcements
• Mid-term grades released. Solution on the website.

• Talk to a TA if you have doubts. Make an appointment if you

can’t make any TA office hours.

• Come to my office hour if TAs cannot solve your problems.

2

Carnegie Mellon

Cache Illustrations

3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Memory

(big but slow)

CPU

Carnegie Mellon

Cache Illustrations

4

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations

4

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Data in address b is neededRequest Data

at Address 14

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations

4

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Data in address b is neededRequest Data

at Address 14

14 Address b is in cache: Hit!

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations

5

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations

5

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Request data

at Address 12

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations

5

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Request data

at Address 12

Data in address b is needed

Address b is not in cache:
Miss!

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations

5

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Request data

at Address 12

Address b is fetched from

memory

Request: 12

Data in address b is needed

Address b is not in cache:
Miss!

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations

5

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Request data

at Address 12

Address b is fetched from

memory

Request: 12

12

Data in address b is needed

Address b is not in cache:
Miss!

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations

5

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Request data

at Address 12

Address b is fetched from

memory

Request: 12

12

12

Data in address b is needed

Address b is not in cache:
Miss!

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations

5

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Request data

at Address 12

Address b is fetched from

memory

Request: 12

12

12

Address b is stored in cache

Data in address b is needed

Address b is not in cache:
Miss!

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

A Simple Cache

• 16 memory locations
• 4 cache locations

6

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

Content Valid?

Carnegie Mellon

A Simple Cache

• 16 memory locations
• 4 cache locations
• Also called cache-line

6

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

Content Valid?

Carnegie Mellon

A Simple Cache

• 16 memory locations
• 4 cache locations
• Also called cache-line
• Every location has a valid bit, indicating

whether that location contains valid data;
0 initially.

6

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

Content Valid?

Carnegie Mellon

A Simple Cache

• 16 memory locations
• 4 cache locations
• Also called cache-line
• Every location has a valid bit, indicating

whether that location contains valid data;
0 initially.

• For now, assume cache location size
== memory location size == 1 B

6

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

Content Valid?

Carnegie Mellon

A Simple Cache

• 16 memory locations
• 4 cache locations
• Also called cache-line
• Every location has a valid bit, indicating

whether that location contains valid data;
0 initially.

• For now, assume cache location size
== memory location size == 1 B

• Cache is smaller than memory
(obviously)

6

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

Content Valid?

Carnegie Mellon

A Simple Cache

• 16 memory locations
• 4 cache locations
• Also called cache-line
• Every location has a valid bit, indicating

whether that location contains valid data;
0 initially.

• For now, assume cache location size
== memory location size == 1 B

• Cache is smaller than memory
(obviously)
• Thus, not all memory locations can

be cached at the same time

6

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

Content Valid?

Carnegie Mellon

Cache Placement
• Given a memory addr, say 0x0001, we

want to put the data there into the
cache; where does the data go?

7

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

Carnegie Mellon

Fully-Associative Cache
• Every memory location can be mapped

to any cache line in the cache.

• Given a request to address A from

CPU, detecting cache hit/miss
requires:

• Comparing address A with all four

tags in the cache (a.k.a.,
associative search)

• Can we reduce the overhead:

• of storing tags

• of comparison

8

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

0xAA

0xCC
0XBB

0xDD

00
01
10
11

0xAA

0xBB

0xCC
0xDD

Content Valid?

Carnegie Mellon

Fully-Associative Cache
• Every memory location can be mapped

to any cache line in the cache.

• Given a request to address A from

CPU, detecting cache hit/miss
requires:

• Comparing address A with all four

tags in the cache (a.k.a.,
associative search)

• Can we reduce the overhead:

• of storing tags

• of comparison

9

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

0xBB

0xCC
0XAA

0xDD

00
01
10
11

0xAA

0xBB

0xCC
0xDD

Content Valid?

Carnegie Mellon

Fully-Associative Cache
• Every memory location can be mapped

to any cache line in the cache.

• Given a request to address A from

CPU, detecting cache hit/miss
requires:

• Comparing address A with all four

tags in the cache (a.k.a.,
associative search)

• Can we reduce the overhead:

• of storing tags

• of comparison

10

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

0xBB

0xCC
0XAA

0xDD

00
01
10
11

0xAA

0xBB

0xCC
0xDD

Content Valid? Tag

Carnegie Mellon

Fully-Associative Cache
• Every memory location can be mapped

to any cache line in the cache.

• Given a request to address A from

CPU, detecting cache hit/miss
requires:

• Comparing address A with all four

tags in the cache (a.k.a.,
associative search)

• Can we reduce the overhead:

• of storing tags

• of comparison

10

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

0xBB

0xCC
0XAA

0xDD

00
01
10
11

0xAA

0xBB

0xCC
0xDD

addr [3:0]

addr [3:0]
addr [3:0]

addr [3:0]

Content Valid? Tag

Carnegie Mellon

A Few Terminologies

• A cache line: content + valid bit + tag bits

• Valid bit + tag bits are “overhead”

• Content is what you really want to store

• But we need valid and tag bits to correctly

access the cache

11

a

0xEF
0xAC
0x06

0x70

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Carnegie Mellon

•Direct-Mapped Cache
•One address can only be

mapped to one cache line
• CA = ADDR[1],ADDR[0]

Direct-Mapped Cache

12

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

Carnegie Mellon

•Direct-Mapped Cache
•One address can only be

mapped to one cache line
• CA = ADDR[1],ADDR[0]
• Always use the lower order address

bits

Direct-Mapped Cache

12

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

Carnegie Mellon

•Direct-Mapped Cache
•One address can only be

mapped to one cache line
• CA = ADDR[1],ADDR[0]
• Always use the lower order address

bits

Direct-Mapped Cache

12

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

Carnegie Mellon

•Direct-Mapped Cache
•One address can only be

mapped to one cache line
• CA = ADDR[1],ADDR[0]
• Always use the lower order address

bits

•Multiple addresses can be
mapped to the same location

Direct-Mapped Cache

12

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

Carnegie Mellon

•Direct-Mapped Cache
•One address can only be

mapped to one cache line
• CA = ADDR[1],ADDR[0]
• Always use the lower order address

bits

•Multiple addresses can be
mapped to the same location

• E.g., 0010 and 1010

Direct-Mapped Cache

12

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

Carnegie Mellon

•Direct-Mapped Cache
•One address can only be

mapped to one cache line
• CA = ADDR[1],ADDR[0]
• Always use the lower order address

bits

•Multiple addresses can be
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate between
different memory locations that
are mapped to the same cache
location?

Direct-Mapped Cache

12

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

Carnegie Mellon

•Direct-Mapped Cache
•One address can only be

mapped to one cache line
• CA = ADDR[1],ADDR[0]
• Always use the lower order address

bits

•Multiple addresses can be
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate between
different memory locations that
are mapped to the same cache
location?

• Add a tag field for that purpose

Direct-Mapped Cache

12

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

Carnegie Mellon

•Direct-Mapped Cache
•One address can only be

mapped to one cache line
• CA = ADDR[1],ADDR[0]
• Always use the lower order address

bits

•Multiple addresses can be
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate between
different memory locations that
are mapped to the same cache
location?

• Add a tag field for that purpose
• What should the tag field be?

Direct-Mapped Cache

12

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

Carnegie Mellon

•Direct-Mapped Cache
•One address can only be

mapped to one cache line
• CA = ADDR[1],ADDR[0]
• Always use the lower order address

bits

•Multiple addresses can be
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate between
different memory locations that
are mapped to the same cache
location?

• Add a tag field for that purpose
• What should the tag field be?
• ADDR[3] and ADDR[2] in this particular

example

Direct-Mapped Cache

12

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

Carnegie Mellon

•Direct-Mapped Cache
•One address can only be

mapped to one cache line
• CA = ADDR[1],ADDR[0]
• Always use the lower order address

bits

•Multiple addresses can be
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate between
different memory locations that
are mapped to the same cache
location?

• Add a tag field for that purpose
• What should the tag field be?
• ADDR[3] and ADDR[2] in this particular

example

Direct-Mapped Cache

12

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

addr [3:2]

addr [3:2]
addr [3:2]

addr [3:2]

Carnegie Mellon

•Direct-Mapped Cache
•One address can only be

mapped to one cache line
• CA = ADDR[1],ADDR[0]
• Always use the lower order address

bits

•Multiple addresses can be
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate between
different memory locations that
are mapped to the same cache
location?

• Add a tag field for that purpose
• What should the tag field be?
• ADDR[3] and ADDR[2] in this particular

example

Direct-Mapped Cache

12

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

addr [3:2]

addr [3:2]
addr [3:2]

addr [3:2]

Tag

Carnegie Mellon

•Direct-Mapped Cache
•One address can only be

mapped to one cache line
• CA = ADDR[1],ADDR[0]
• Always use the lower order address

bits

•Multiple addresses can be
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate between
different memory locations that
are mapped to the same cache
location?

• Add a tag field for that purpose
• What should the tag field be?
• ADDR[3] and ADDR[2] in this particular

example

Direct-Mapped Cache

12

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

addr [3:2]

addr [3:2]
addr [3:2]

addr [3:2]

= Hit?

addr[3:2]

Tag

CPU

Carnegie Mellon

•Limitation: each memory
location can be mapped to only
one cache location.

Direct-Mapped Cache

13

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

addr [3:2]

addr [3:2]
addr [3:2]

addr [3:2]

= Hit?

addr[3:2]

Tag

CPU

Carnegie Mellon

•Limitation: each memory
location can be mapped to only
one cache location.
•This leads to a lot of conflicts.

Direct-Mapped Cache

13

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

addr [3:2]

addr [3:2]
addr [3:2]

addr [3:2]

= Hit?

addr[3:2]

Tag

CPU

Carnegie Mellon

•Limitation: each memory
location can be mapped to only
one cache location.
•This leads to a lot of conflicts.
•How do we improve this?

Direct-Mapped Cache

13

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

addr [3:2]

addr [3:2]
addr [3:2]

addr [3:2]

= Hit?

addr[3:2]

Tag

CPU

Carnegie Mellon

•Limitation: each memory
location can be mapped to only
one cache location.
•This leads to a lot of conflicts.
•How do we improve this?
•Can each memory location have

the flexibility to be mapped to
different cache locations?

Direct-Mapped Cache

13

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

addr [3:2]

addr [3:2]
addr [3:2]

addr [3:2]

= Hit?

addr[3:2]

Tag

CPU

Carnegie Mellon

Set-Associative Cache

14

00
01
10
11

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Content Valid? Tag

Carnegie Mellon

Set-Associative Cache

15

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Set 0

Set 1

Content Valid? Tag

Way 0 Way 1

Carnegie Mellon

Set-Associative Cache

15

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Set 0

Set 1

Content Valid? Tag

Way 0 Way 1

2-Way Set Associative Cache

• 4 cache lines are organized into two sets; each

set has 2 cache lines (i.e., 2 ways)

• Lowest bit is used for cache index

• Even address go to first set and odd
addresses go to the second set

• Each address can be mapped to either cache
line in the same set

• Tag now stores the higher 3 bits instead of

the entire address

Carnegie Mellon

Set-Associative Cache

16

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Set 0

Set 1

Content Valid? Tag

Way 0 Way 1

• Given a request to address, say 1011, from the
CPU, detecting cache hit/miss requires:

Carnegie Mellon

Set-Associative Cache

16

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Set 0

Set 1

Content Valid? Tag

Way 0 Way 1

• Given a request to address, say 1011, from the
CPU, detecting cache hit/miss requires:
• Using the LSB to index into the cache and find

the corresponding set, in this case set 1

Carnegie Mellon

Set-Associative Cache

16

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Set 0

Set 1

Content Valid? Tag

Way 0 Way 1

• Given a request to address, say 1011, from the
CPU, detecting cache hit/miss requires:
• Using the LSB to index into the cache and find

the corresponding set, in this case set 1
• Then do an associative search in that set, i.e.,

compare the highest 3 bits 101 with both tags
in set 1

Carnegie Mellon

Set-Associative Cache

16

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Set 0

Set 1

Content Valid? Tag

Way 0 Way 1

• Given a request to address, say 1011, from the
CPU, detecting cache hit/miss requires:
• Using the LSB to index into the cache and find

the corresponding set, in this case set 1
• Then do an associative search in that set, i.e.,

compare the highest 3 bits 101 with both tags
in set 1

• Only two comparisons required

Carnegie Mellon

Direct-Mapped (1-way Associative) Cache

• 4 cache lines are organized into four sets

• Each memory localization can only be

mapped to one set

• Using the 2 LSBs to find the set

• Tag now stores the higher 2 bits

17

a

0xEF
0xAC
0x06

0x70

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

10

10
10

0xEF

0x06
0xAC

00
01
10
11

MemoryCache

Content Valid? Tag

Carnegie Mellon

Associative verses Direct Mapped Trade-offs

18

Carnegie Mellon

Associative verses Direct Mapped Trade-offs
• Direct-Mapped cache

• Generally lower hit rate

• Simpler, Faster

18

Carnegie Mellon

Associative verses Direct Mapped Trade-offs
• Direct-Mapped cache

• Generally lower hit rate

• Simpler, Faster

18

00
01
10
11

10

10
10

10

a
b
c
d

1
1
1
1

addr

addr[1:0] = Hit?

addr[3:2]

Carnegie Mellon

Associative verses Direct Mapped Trade-offs
• Direct-Mapped cache

• Generally lower hit rate

• Simpler, Faster

• Set Associative cache

• Generally higher hit rate. Better utilization of cache resources

• Slower and higher power consumption. Why?

18

00
01
10
11

10

10
10

10

a
b
c
d

1
1
1
1

addr

addr[1:0] = Hit?

addr[3:2]

0
1

101 100
101 100

a
b

c
d

1
1

1
1

Carnegie Mellon

Associative verses Direct Mapped Trade-offs
• Direct-Mapped cache

• Generally lower hit rate

• Simpler, Faster

• Set Associative cache

• Generally higher hit rate. Better utilization of cache resources

• Slower and higher power consumption. Why?

18

00
01
10
11

10

10
10

10

a
b
c
d

1
1
1
1

addr

addr[1:0] = Hit?

addr[3:2]

0
1

101 100
101 100

a
b

c
d

1
1

1
1

addr

addr[0]

Carnegie Mellon

Associative verses Direct Mapped Trade-offs
• Direct-Mapped cache

• Generally lower hit rate

• Simpler, Faster

• Set Associative cache

• Generally higher hit rate. Better utilization of cache resources

• Slower and higher power consumption. Why?

18

00
01
10
11

10

10
10

10

a
b
c
d

1
1
1
1

addr

addr[1:0] = Hit?

addr[3:2]

0
1

101 100
101 100

a
b

c
d

1
1

1
1

addr

addr[0]

=

addr[3:1]

=

Carnegie Mellon

Associative verses Direct Mapped Trade-offs
• Direct-Mapped cache

• Generally lower hit rate

• Simpler, Faster

• Set Associative cache

• Generally higher hit rate. Better utilization of cache resources

• Slower and higher power consumption. Why?

18

00
01
10
11

10

10
10

10

a
b
c
d

1
1
1
1

addr

addr[1:0] = Hit?

addr[3:2]

0
1

101 100
101 100

a
b

c
d

1
1

1
1

addr

addr[0]

=

addr[3:1]

=

Hit?

Or

Carnegie Mellon

Associative verses Direct Mapped Trade-offs

19

Miss rate versus cache size on the Integer portion of SPEC CPU2000

Carnegie Mellon

Cache Organization
• Finding a name in a roster

• If the roster is completely unorganized

• Need to compare the name with all the names in the roster

• Same as a fully-associative cache

• If the roster is ordered by last name, and within the same last
name different first names are unordered

• First find the last name group

• Then compare the first name with all the first names in the

same group

• Same as a set-associative cache

20

Carnegie Mellon

Cache Access Summary (So far…)
• Assuming b bits in a memory address

• The b bits are split into two halves:

• Lower s bits used as index to find a set. Total sets S = 2s

• The higher (b - s) bits are used for the tag

• Associativity n (i.e., the number of ways in a cache set) is
independent of the the split between index and tag

21

tag index
0sb

Memory

Address

Carnegie Mellon

Locality again
• So far: temporal locality

• What about spatial?

• Idea: Each cache location (cache line) store multiple bytes

22

Carnegie Mellon

Cache-Line Size of 2

23

a

a
b
c
d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

addr

= Hit?

Carnegie Mellon

Cache-Line Size of 2

23

a

a
b
c
d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

addr

= Hit?

Carnegie Mellon

Cache-Line Size of 2

• Read 1000

23

a

a
b
c
d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

a

addr

= Hit?

b

Carnegie Mellon

Cache-Line Size of 2

• Read 1000
• Read 1001 (Hit!)

23

a

a
b
c
d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

a

addr

= Hit?

b

Carnegie Mellon

Cache-Line Size of 2

• Read 1000
• Read 1001 (Hit!)
• Read 1010

23

a

a
b
c
d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

a
c

addr

= Hit?

d
b

Carnegie Mellon

Cache-Line Size of 2

• Read 1000
• Read 1001 (Hit!)
• Read 1010
• Read 1011 (Hit!)

23

a

a
b
c
d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

a
c

addr

= Hit?

d
b

Carnegie Mellon

Cache-Line Size of 2

• Read 1000
• Read 1001 (Hit!)
• Read 1010
• Read 1011 (Hit!)
• How to access

the cache now?

23

a

a
b
c
d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

a
c

addr

??? = Hit?

???

d
b

Carnegie Mellon

Cache-Line Size of 2

• Read 1000

• Read 1001 (Hit!)

• Read 1010

• Read 1011 (Hit!)

24

a

a
b
c
d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

a
c

addr

addr[2:1]

d
b

= Hit?

addr[3]

Carnegie Mellon

Cache-Line Size of 2

• Read 1000

• Read 1001 (Hit!)

• Read 1010

• Read 1011 (Hit!)

24

a

a
b
c
d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

a
c

addr

addr[2:1]

d
b

MUX

= Hit?

addr[3]

To

CPU

Carnegie Mellon

Cache-Line Size of 2

• Read 1000

• Read 1001 (Hit!)

• Read 1010

• Read 1011 (Hit!)

24

a

a
b
c
d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

a
c

addr

addr[2:1]

d
b

MUX

= Hit?

addr[3]

To

CPU

addr[0]

Carnegie Mellon

Cache Access Summary
• Assuming b bits in a memory address

• The b bits are split into three fields:

• Lower l bits are used for byte offset within a cache line. Cache line
size L = 2l

• Next s bits used as index to find a set. Total sets S = 2s

• The higher (b - l - s) bits are used for the tag

• Associativity n is independent of the the split between index and tag

25

tag index
0l+sb

Memory

Address offset

l

Carnegie Mellon

Handling Reads

2633

Carnegie Mellon

Handling Reads
• Read miss: Put into cache

2633

Carnegie Mellon

Handling Reads
• Read miss: Put into cache

• Any reason not to put into cache?

2633

Carnegie Mellon

Handling Reads
• Read miss: Put into cache

• Any reason not to put into cache?
• What to replace? Depends on the replacement policy. More on

this later.

2633

Carnegie Mellon

Handling Reads
• Read miss: Put into cache

• Any reason not to put into cache?
• What to replace? Depends on the replacement policy. More on

this later.
• Read hit: Nothing special. Enjoy the hit!

2633

Carnegie Mellon

Handling Writes (Hit)
• Intricacy: data value is modified!
• Implication: value in cache will be different from that in memory!

• When do we write the modified data in a cache to the next level?
• Write through: At the time the write happens

27

Carnegie Mellon

Handling Writes (Hit)
• Intricacy: data value is modified!
• Implication: value in cache will be different from that in memory!

• When do we write the modified data in a cache to the next level?
• Write through: At the time the write happens
• Write back: When the cache line is evicted

27

Carnegie Mellon

Handling Writes (Hit)
• Intricacy: data value is modified!
• Implication: value in cache will be different from that in memory!

• When do we write the modified data in a cache to the next level?
• Write through: At the time the write happens
• Write back: When the cache line is evicted

• Write-back
• + Can consolidate multiple writes to the same block before eviction.

Potentially saves bandwidth between cache and memory + saves
energy

• - Need a bit in the tag store indicating the block is “dirty/modified”

27

Carnegie Mellon

Handling Writes (Hit)
• Intricacy: data value is modified!
• Implication: value in cache will be different from that in memory!

• When do we write the modified data in a cache to the next level?
• Write through: At the time the write happens
• Write back: When the cache line is evicted

• Write-back
• + Can consolidate multiple writes to the same block before eviction.

Potentially saves bandwidth between cache and memory + saves
energy

• - Need a bit in the tag store indicating the block is “dirty/modified”

27

Carnegie Mellon

Handling Writes (Hit)
• Intricacy: data value is modified!
• Implication: value in cache will be different from that in memory!

• When do we write the modified data in a cache to the next level?
• Write through: At the time the write happens
• Write back: When the cache line is evicted

• Write-back
• + Can consolidate multiple writes to the same block before eviction.

Potentially saves bandwidth between cache and memory + saves
energy

• - Need a bit in the tag store indicating the block is “dirty/modified”

• Write-through

27

Carnegie Mellon

Handling Writes (Hit)
• Intricacy: data value is modified!
• Implication: value in cache will be different from that in memory!

• When do we write the modified data in a cache to the next level?
• Write through: At the time the write happens
• Write back: When the cache line is evicted

• Write-back
• + Can consolidate multiple writes to the same block before eviction.

Potentially saves bandwidth between cache and memory + saves
energy

• - Need a bit in the tag store indicating the block is “dirty/modified”

• Write-through
• + Simpler

27

Carnegie Mellon

Handling Writes (Hit)
• Intricacy: data value is modified!
• Implication: value in cache will be different from that in memory!

• When do we write the modified data in a cache to the next level?
• Write through: At the time the write happens
• Write back: When the cache line is evicted

• Write-back
• + Can consolidate multiple writes to the same block before eviction.

Potentially saves bandwidth between cache and memory + saves
energy

• - Need a bit in the tag store indicating the block is “dirty/modified”

• Write-through
• + Simpler
• + Memory is up to date

27

Carnegie Mellon

Handling Writes (Hit)
• Intricacy: data value is modified!
• Implication: value in cache will be different from that in memory!

• When do we write the modified data in a cache to the next level?
• Write through: At the time the write happens
• Write back: When the cache line is evicted

• Write-back
• + Can consolidate multiple writes to the same block before eviction.

Potentially saves bandwidth between cache and memory + saves
energy

• - Need a bit in the tag store indicating the block is “dirty/modified”

• Write-through
• + Simpler
• + Memory is up to date
• - More bandwidth intensive; no coalescing of writes

27

Carnegie Mellon

Handling Writes (Miss)
• Do we allocate a cache line on a write miss?

• Write-allocate: Allocate on write miss
• Non-Write-Allocate: No-allocate on write miss

• Allocate on write miss

28

Carnegie Mellon

Handling Writes (Miss)
• Do we allocate a cache line on a write miss?

• Write-allocate: Allocate on write miss
• Non-Write-Allocate: No-allocate on write miss

• Allocate on write miss
• + Can consolidate writes instead of writing each of them

individually to memory

28

Carnegie Mellon

Handling Writes (Miss)
• Do we allocate a cache line on a write miss?

• Write-allocate: Allocate on write miss
• Non-Write-Allocate: No-allocate on write miss

• Allocate on write miss
• + Can consolidate writes instead of writing each of them

individually to memory
• + Simpler because write misses can be treated the same way

as read misses

28

Carnegie Mellon

Handling Writes (Miss)
• Do we allocate a cache line on a write miss?

• Write-allocate: Allocate on write miss
• Non-Write-Allocate: No-allocate on write miss

• Allocate on write miss
• + Can consolidate writes instead of writing each of them

individually to memory
• + Simpler because write misses can be treated the same way

as read misses

• Non-allocate
• + Conserves cache space if locality of writes is low (potentially

better cache hit rate)

28

Carnegie Mellon

Instruction vs. Data Caches
• Separate or Unified?

29

Carnegie Mellon

Instruction vs. Data Caches
• Separate or Unified?

• Unified:

29

Carnegie Mellon

Instruction vs. Data Caches
• Separate or Unified?

• Unified:
• + Dynamic sharing of cache space: no overprovisioning that might

happen with static partitioning (i.e., split Inst and Data caches)

29

Carnegie Mellon

Instruction vs. Data Caches
• Separate or Unified?

• Unified:
• + Dynamic sharing of cache space: no overprovisioning that might

happen with static partitioning (i.e., split Inst and Data caches)
• - Instructions and data can thrash each other (i.e., no guaranteed

space for either)

29

Carnegie Mellon

Instruction vs. Data Caches
• Separate or Unified?

• Unified:
• + Dynamic sharing of cache space: no overprovisioning that might

happen with static partitioning (i.e., split Inst and Data caches)
• - Instructions and data can thrash each other (i.e., no guaranteed

space for either)
• - Inst and Data are accessed in different places in the pipeline.

Where do we place the unified cache for fast access?

29

Carnegie Mellon

Instruction vs. Data Caches
• Separate or Unified?

• Unified:
• + Dynamic sharing of cache space: no overprovisioning that might

happen with static partitioning (i.e., split Inst and Data caches)
• - Instructions and data can thrash each other (i.e., no guaranteed

space for either)
• - Inst and Data are accessed in different places in the pipeline.

Where do we place the unified cache for fast access?

• First level caches are almost always split
• Mainly for the last reason above

• Second and higher levels are almost always unified

29

Carnegie Mellon

General Rule: Bigger == Slower

• How big should the cache be?

• Too small and too much memory traffic

• Too large and cache slows down execution (high latency)

3043

CPU Cache

$ Memory

Carnegie Mellon

General Rule: Bigger == Slower

• How big should the cache be?

• Too small and too much memory traffic

• Too large and cache slows down execution (high latency)

• Make multiple levels of cache

• Small L1 backed up by larger L2

• Today’s processors typically have 3 cache levels

3043

CPU Cache

$ Memory

Carnegie Mellon

A Real Intel Processor

31

Carnegie Mellon

Eviction/Replacement Policy

• Which cache line should be replaced?

32

Carnegie Mellon

Eviction/Replacement Policy

• Which cache line should be replaced?
• Direct mapped? Only one place!

32

Carnegie Mellon

Eviction/Replacement Policy

• Which cache line should be replaced?
• Direct mapped? Only one place!
• Associative caches? Multiple places!

32

Carnegie Mellon

Eviction/Replacement Policy

• Which cache line should be replaced?
• Direct mapped? Only one place!
• Associative caches? Multiple places!

• For associative cache:

32

Carnegie Mellon

Eviction/Replacement Policy

• Which cache line should be replaced?
• Direct mapped? Only one place!
• Associative caches? Multiple places!

• For associative cache:
• Any invalid cache line first

32

Carnegie Mellon

Eviction/Replacement Policy

• Which cache line should be replaced?
• Direct mapped? Only one place!
• Associative caches? Multiple places!

• For associative cache:
• Any invalid cache line first
• If all are valid, consult the replacement policy

32

Carnegie Mellon

Eviction/Replacement Policy

• Which cache line should be replaced?
• Direct mapped? Only one place!
• Associative caches? Multiple places!

• For associative cache:
• Any invalid cache line first
• If all are valid, consult the replacement policy
• Randomly pick one???

32

Carnegie Mellon

Eviction/Replacement Policy

• Which cache line should be replaced?
• Direct mapped? Only one place!
• Associative caches? Multiple places!

• For associative cache:
• Any invalid cache line first
• If all are valid, consult the replacement policy
• Randomly pick one???
• Ideally: Replace the cache line that’s least likely going to be

used again

32

Carnegie Mellon

Eviction/Replacement Policy

• Which cache line should be replaced?
• Direct mapped? Only one place!
• Associative caches? Multiple places!

• For associative cache:
• Any invalid cache line first
• If all are valid, consult the replacement policy
• Randomly pick one???
• Ideally: Replace the cache line that’s least likely going to be

used again
• Approximation: Least recently used (LRU)

32

Carnegie Mellon

Implementing LRU
• Idea: Evict the least recently accessed block

• Challenge: Need to keep track of access ordering of blocks

• Question: 2-way set associative cache:

• What do you need to implement LRU perfectly? One bit?

33

0 1Cache Lines

LRU index (1-bit)

Carnegie Mellon

Implementing LRU
• Idea: Evict the least recently accessed block

• Challenge: Need to keep track of access ordering of blocks

• Question: 2-way set associative cache:

• What do you need to implement LRU perfectly? One bit?

33

0 1Cache Lines

LRU index (1-bit)

Address stream:

• Hit on 0

• Hit on 1

• Miss, evict 0

Carnegie Mellon

Implementing LRU
• Idea: Evict the least recently accessed block

• Challenge: Need to keep track of access ordering of blocks

• Question: 2-way set associative cache:

• What do you need to implement LRU perfectly? One bit?

33

0 1Cache Lines

LRU index (1-bit) 1

Address stream:

• Hit on 0

• Hit on 1

• Miss, evict 0

Carnegie Mellon

Implementing LRU
• Idea: Evict the least recently accessed block

• Challenge: Need to keep track of access ordering of blocks

• Question: 2-way set associative cache:

• What do you need to implement LRU perfectly? One bit?

33

0 1Cache Lines

LRU index (1-bit) 10

Address stream:

• Hit on 0

• Hit on 1

• Miss, evict 0

Carnegie Mellon

Implementing LRU
• Idea: Evict the least recently accessed block

• Challenge: Need to keep track of access ordering of blocks

• Question: 2-way set associative cache:

• What do you need to implement LRU perfectly? One bit?

33

0 1Cache Lines

LRU index (1-bit) 10

Address stream:

• Hit on 0

• Hit on 1

• Miss, evict 0

Carnegie Mellon

Implementing LRU
• Idea: Evict the least recently accessed block

• Challenge: Need to keep track of access ordering of blocks

• Question: 2-way set associative cache:

• What do you need to implement LRU perfectly? One bit?

33

0 1Cache Lines

LRU index (1-bit) 10

Address stream:

• Hit on 0

• Hit on 1

• Miss, evict 0

1

Carnegie Mellon

Implementing LRU
• Question: 4-way set associative cache:

34

0 1 2 3Cache Lines
LRU index (2 bits) 1

Address stream:

• Hit on 0

• Hit on 2

• Hit on 3

• Miss, evict 1

Carnegie Mellon

Implementing LRU
• Question: 4-way set associative cache:

• What do you need to implement LRU perfectly? Will the same
mechanism work?

34

0 1 2 3Cache Lines
LRU index (2 bits) 1

Address stream:

• Hit on 0

• Hit on 2

• Hit on 3

• Miss, evict 1

Carnegie Mellon

Implementing LRU
• Question: 4-way set associative cache:

• What do you need to implement LRU perfectly? Will the same
mechanism work?

34

0 1 2 3Cache Lines
LRU index (2 bits) 1

Address stream:

• Hit on 0

• Hit on 2

• Hit on 3

• Miss, evict 1

Carnegie Mellon

Implementing LRU
• Question: 4-way set associative cache:

• What do you need to implement LRU perfectly? Will the same
mechanism work?

34

0 1 2 3Cache Lines
LRU index (2 bits) 1

Address stream:

• Hit on 0

• Hit on 2

• Hit on 3

• Miss, evict 1

Carnegie Mellon

Implementing LRU
• Question: 4-way set associative cache:

• What do you need to implement LRU perfectly? Will the same
mechanism work?

34

0 1 2 3Cache Lines
LRU index (2 bits) 1

Address stream:

• Hit on 0

• Hit on 2

• Hit on 3

• Miss, evict 1

Carnegie Mellon

Implementing LRU
• Question: 4-way set associative cache:

• What do you need to implement LRU perfectly? Will the same
mechanism work?

34

0 1 2 3Cache Lines
LRU index (2 bits) 1

Address stream:

• Hit on 0

• Hit on 2

• Hit on 3

• Miss, evict 1

Carnegie Mellon

Implementing LRU
• Question: 4-way set associative cache:

• What do you need to implement LRU perfectly? Will the same
mechanism work?

34

0 1 2 3Cache Lines
LRU index (2 bits) 1

Address stream:

• Hit on 0

• Hit on 2

• Hit on 3

• Miss, evict 1How to update the

LRU index now???

Carnegie Mellon

Implementing LRU
• Question: 4-way set associative cache:

• What do you need to implement LRU perfectly? Will the same
mechanism work?

• Essentially have to track the ordering of all cache lines

34

0 1 2 3Cache Lines
LRU index (2 bits) 1

Address stream:

• Hit on 0

• Hit on 2

• Hit on 3

• Miss, evict 1How to update the

LRU index now???

Carnegie Mellon

Implementing LRU
• Question: 4-way set associative cache:

• What do you need to implement LRU perfectly? Will the same
mechanism work?

• Essentially have to track the ordering of all cache lines
• What are the hardware structures needed?

34

0 1 2 3Cache Lines
LRU index (2 bits) 1

Address stream:

• Hit on 0

• Hit on 2

• Hit on 3

• Miss, evict 1How to update the

LRU index now???

Carnegie Mellon

Implementing LRU
• Question: 4-way set associative cache:

• What do you need to implement LRU perfectly? Will the same
mechanism work?

• Essentially have to track the ordering of all cache lines
• What are the hardware structures needed?
• In reality, true LRU is never implemented. Too complex.

34

0 1 2 3Cache Lines
LRU index (2 bits) 1

Address stream:

• Hit on 0

• Hit on 2

• Hit on 3

• Miss, evict 1How to update the

LRU index now???

Carnegie Mellon

Implementing LRU
• Question: 4-way set associative cache:

• What do you need to implement LRU perfectly? Will the same
mechanism work?

• Essentially have to track the ordering of all cache lines
• What are the hardware structures needed?
• In reality, true LRU is never implemented. Too complex.
• “Pseudo-LRU” is usually used in real processors.

34

0 1 2 3Cache Lines
LRU index (2 bits) 1

Address stream:

• Hit on 0

• Hit on 2

• Hit on 3

• Miss, evict 1How to update the

LRU index now???

