
CSC 252/452: Computer Organization 
 Fall 2024: Lecture 17 

Instructor: Yanan Guo

Department of Computer Science

University of Rochester

Carnegie Mellon

Announcements

2

• Programming Assignment 4 released
• Due on Nov. 15th
• Cache Simulator + Matrix Transpose

• For midterm
• Come to my office hours tomorrow if TAs cannot solve your problems of

midterm grades
• For Programming Assignment 3

• Contact Mengqi if you did not generate your cookie using NetID
• For final

• December 14th at 8:30am

Carnegie Mellon

General Cache Organization (S, E, B)

3

E = 2e lines per set

S =
2s sets

set

line

Carnegie Mellon

General Cache Organization (S, E, B)

3

E = 2e lines per set

S =
2s sets

set

line

0 1 2 B-1tagv

B = 2b bytes per cache line (the data)

Carnegie Mellon

General Cache Organization (S, E, B)

3

E = 2e lines per set

S =
2s sets

set

line

0 1 2 B-1tagv

B = 2b bytes per cache line (the data)valid bit

Carnegie Mellon

General Cache Organization (S, E, B)

3

E = 2e lines per set

S =
2s sets

set

line

0 1 2 B-1tagv

B = 2b bytes per cache line (the data)valid bit

d

dirty bit
(if write-back)

Carnegie Mellon

General Cache Organization (S, E, B)

3

E = 2e lines per set

S =
2s sets

set

line

0 1 2 B-1tagv

B = 2b bytes per cache line (the data)

Cache size:
C = S x E x B data bytes
Overhead:
Tag, valid bit, dirty bit.
Plus bits for implementing
replacement policy
(not shown).

valid bit

d

dirty bit
(if write-back)

Carnegie Mellon

Cache Access

4

E = 2e lines per set

S = 2s sets

t bits s bits b bits
Address of word:

tag set
index

Line
offset

Carnegie Mellon

Cache Access

4

E = 2e lines per set

S = 2s sets

t bits s bits b bits
Address of word:

tag set
index

Line
offset

• Locate set

Carnegie Mellon

Cache Access

4

E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit B = 2b bytes per cache line (the data)

t bits s bits b bits
Address of word:

tag set
index

Line
offset

• Locate set
• Check if any line in set

has matching tag
• Yes + line valid: hit

Carnegie Mellon

Cache Access

4

E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit B = 2b bytes per cache line (the data)

t bits s bits b bits
Address of word:

tag set
index

Line
offset

data begins at this offset

• Locate set
• Check if any line in set

has matching tag
• Yes + line valid: hit
• Locate data starting

at offset

Carnegie Mellon

Example: Direct Mapped Cache

5

S = 2s sets

Direct mapped: One line per set
Assume: cache line size 8 bytes

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

Carnegie Mellon

Example: Direct Mapped Cache

5

S = 2s sets

Direct mapped: One line per set
Assume: cache line size 8 bytes

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Carnegie Mellon

Example: Direct Mapped Cache

6

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

Direct mapped: One line per set
Assume: cache line size 8 bytes

Carnegie Mellon

Example: Direct Mapped Cache

6

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

tag

Direct mapped: One line per set
Assume: cache line size 8 bytes

Carnegie Mellon

Example: Direct Mapped Cache

6

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

block offset

tag

Direct mapped: One line per set
Assume: cache line size 8 bytes

Carnegie Mellon

Example: Direct Mapped Cache

7

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

Byte 4 is here

block offset

Direct mapped: One line per set
Assume: cache line size 8 bytes

Carnegie Mellon

Example: Direct Mapped Cache

7

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

Byte 4 is here

block offset

If tag doesn’t match: old line is evicted and replaced

Direct mapped: One line per set
Assume: cache line size 8 bytes

Carnegie Mellon

Direct-Mapped Cache Simulation

8

4-bit address space, i.e., Memory = 16 bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
 0 [00002],
 1 [00012],
 7 [01112],
 8 [10002],
 0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

Set 0
Set 1
Set 2
Set 3

Carnegie Mellon

Direct-Mapped Cache Simulation

8

4-bit address space, i.e., Memory = 16 bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
 0 [00002],
 1 [00012],
 7 [01112],
 8 [10002],
 0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

Set 0
Set 1
Set 2
Set 3

Carnegie Mellon

Direct-Mapped Cache Simulation

8

4-bit address space, i.e., Memory = 16 bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
 0 [00002],
 1 [00012],
 7 [01112],
 8 [10002],
 0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]Set 0
Set 1
Set 2
Set 3

Carnegie Mellon

Direct-Mapped Cache Simulation

8

4-bit address space, i.e., Memory = 16 bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
 0 [00002],
 1 [00012],
 7 [01112],
 8 [10002],
 0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]Set 0
Set 1
Set 2
Set 3

The two bytes at memory address 0 and 1

Carnegie Mellon

Direct-Mapped Cache Simulation

8

4-bit address space, i.e., Memory = 16 bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
 0 [00002],
 1 [00012],
 7 [01112],
 8 [10002],
 0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]

hit

Set 0
Set 1
Set 2
Set 3

The two bytes at memory address 0 and 1

Carnegie Mellon

Direct-Mapped Cache Simulation

8

4-bit address space, i.e., Memory = 16 bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
 0 [00002],
 1 [00012],
 7 [01112],
 8 [10002],
 0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]

hit
miss

Set 0
Set 1
Set 2
Set 3

The two bytes at memory address 0 and 1

Carnegie Mellon

Direct-Mapped Cache Simulation

8

4-bit address space, i.e., Memory = 16 bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
 0 [00002],
 1 [00012],
 7 [01112],
 8 [10002],
 0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

Set 0
Set 1
Set 2
Set 3

The two bytes at memory address 0 and 1

Carnegie Mellon

Direct-Mapped Cache Simulation

8

4-bit address space, i.e., Memory = 16 bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
 0 [00002],
 1 [00012],
 7 [01112],
 8 [10002],
 0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

Set 0
Set 1
Set 2
Set 3

The two bytes at memory address 0 and 1

The two bytes at memory address 6 and 7

Carnegie Mellon

Direct-Mapped Cache Simulation

8

4-bit address space, i.e., Memory = 16 bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
 0 [00002],
 1 [00012],
 7 [01112],
 8 [10002],
 0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

Set 0
Set 1
Set 2
Set 3

The two bytes at memory address 0 and 1

The two bytes at memory address 6 and 7

Carnegie Mellon

Direct-Mapped Cache Simulation

8

4-bit address space, i.e., Memory = 16 bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
 0 [00002],
 1 [00012],
 7 [01112],
 8 [10002],
 0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]Set 0
Set 1
Set 2
Set 3 The two bytes at memory address 6 and 7

The two bytes at memory address 8 and 9

Carnegie Mellon

Direct-Mapped Cache Simulation

8

4-bit address space, i.e., Memory = 16 bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
 0 [00002],
 1 [00012],
 7 [01112],
 8 [10002],
 0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]

miss

Set 0
Set 1
Set 2
Set 3 The two bytes at memory address 6 and 7

The two bytes at memory address 8 and 9

Carnegie Mellon

Direct-Mapped Cache Simulation

8

4-bit address space, i.e., Memory = 16 bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
 0 [00002],
 1 [00012],
 7 [01112],
 8 [10002],
 0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]

miss

1 0 M[0-1]Set 0
Set 1
Set 2
Set 3 The two bytes at memory address 6 and 7

The two bytes at memory address 0 and 1

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

9

E = 2: Two lines per set
Assume: cache line size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

9

E = 2: Two lines per set
Assume: cache line size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

find set

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

10

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

E = 2: Two lines per set
Assume: cache line size 8 bytes

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

10

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

E = 2: Two lines per set
Assume: cache line size 8 bytes

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

10

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

tag

E = 2: Two lines per set
Assume: cache line size 8 bytes

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

10

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

Offset within a line

tag

E = 2: Two lines per set
Assume: cache line size 8 bytes

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

11

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

Offset within a line

short int (2 Bytes) is here

E = 2: Two lines per set
Assume: cache line size 8 bytes

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

11

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

Offset within a line

short int (2 Bytes) is here

No match:
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …

E = 2: Two lines per set
Assume: cache line size 8 bytes

Carnegie Mellon

2-Way Set Associative Cache Simulation

12

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
 0 [00002],
 1 [00012],
 7 [01112],
 8 [10002],
 0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

Set 0

Set 1

Carnegie Mellon

2-Way Set Associative Cache Simulation

12

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
 0 [00002],
 1 [00012],
 7 [01112],
 8 [10002],
 0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

miss

Set 0

Set 1

Carnegie Mellon

2-Way Set Associative Cache Simulation

12

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
 0 [00002],
 1 [00012],
 7 [01112],
 8 [10002],
 0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

miss

1 00 M[0-1]Set 0

Set 1

Carnegie Mellon

2-Way Set Associative Cache Simulation

12

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
 0 [00002],
 1 [00012],
 7 [01112],
 8 [10002],
 0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

miss

1 00 M[0-1]

hit

Set 0

Set 1

Carnegie Mellon

2-Way Set Associative Cache Simulation

12

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
 0 [00002],
 1 [00012],
 7 [01112],
 8 [10002],
 0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

miss

1 00 M[0-1]

hit
miss

Set 0

Set 1

Carnegie Mellon

2-Way Set Associative Cache Simulation

12

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
 0 [00002],
 1 [00012],
 7 [01112],
 8 [10002],
 0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

Set 0

Set 1

Carnegie Mellon

2-Way Set Associative Cache Simulation

12

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
 0 [00002],
 1 [00012],
 7 [01112],
 8 [10002],
 0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

Set 0

Set 1

Carnegie Mellon

2-Way Set Associative Cache Simulation

12

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
 0 [00002],
 1 [00012],
 7 [01112],
 8 [10002],
 0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]Set 0

Set 1

Carnegie Mellon

2-Way Set Associative Cache Simulation

12

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
 0 [00002],
 1 [00012],
 7 [01112],
 8 [10002],
 0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]

hit

Set 0

Set 1

Carnegie Mellon

Today
• Processes and Signals: running multiple programs concurrently

• Processes
• Process Control
• Signals

13

Carnegie Mellon

Processes
• Definition: A process is an instance of a program

running in a computer..

• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

14

Carnegie Mellon

Processes
• Definition: A process is an instance of a program

running in a computer..

• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

14

• Process provides each program with two key
abstractions:

• “Owns” the CPU

• Each program seems to have exclusive use of the
CPU

• Done by the OS kernel through “context switching”
• Private address space

• Each program seems to have exclusive use of main
memory.

• Provided by OS through “virtual memory”

Carnegie Mellon

Processes
• Definition: A process is an instance of a program

running in a computer..

• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

14

CPU
Registers

• Process provides each program with two key
abstractions:

• “Owns” the CPU

• Each program seems to have exclusive use of the
CPU

• Done by the OS kernel through “context switching”
• Private address space

• Each program seems to have exclusive use of main
memory.

• Provided by OS through “virtual memory”

Carnegie Mellon

Processes
• Definition: A process is an instance of a program

running in a computer..

• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

14

CPU
Registers

Memory
Stack
Heap

Code
Data• Process provides each program with two key

abstractions:

• “Owns” the CPU

• Each program seems to have exclusive use of the
CPU

• Done by the OS kernel through “context switching”
• Private address space

• Each program seems to have exclusive use of main
memory.

• Provided by OS through “virtual memory”

Carnegie Mellon

Multiprocessing: The Illusion

• Computer runs many processes simultaneously

• Applications for one or more users

• Web browsers, email clients, editors, …
• Background tasks

• Monitoring network & I/O devices

15

CPU
Registers

Memory
Stack
Heap

Code
Data

CPU
Registers

Memory
Stack
Heap

Code
Data …

CPU
Registers

Memory
Stack
Heap

Code
Data

Carnegie Mellon

Multiprocessing Example

• Running program “top” on Unit/Linux

• System has 123 processes, 5 of which are active
• Identified by Process ID (PID)

16

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

17

CPU
Registers

Stack
Heap

Code
Data

Process 2
Stack
Heap

Code
Data

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

17

CPU
Registers

Stack
Heap

Code
Data

Process 2
Stack
Heap

Code
Data

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

17

CPU
Registers

Stack
Heap

Code
Data

Saved
registers

Process 2
Stack
Heap

Code
Data

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

17

CPU
Registers

Stack
Heap

Code
Data

Saved
registers

Process 2
Stack
Heap

Code
Data

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

17

CPU
Registers

Stack
Heap

Code
Data

Saved
registers

Process 2
Stack
Heap

Code
Data

Saved
registers

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

17

CPU
Registers

Stack
Heap

Code
Data

Saved
registers

Process 2
Stack
Heap

Code
Data

Saved
registers

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

17

CPU
Registers

Stack
Heap

Code
Data

Saved
registers

Process 2
Stack
Heap

Code
Data

Saved
registers

Saved
registers

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

17

CPU
Registers

Stack
Heap

Code
Data

Saved
registers

Process 2
Stack
Heap

Code
Data

Saved
registers

Saved
registers

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

17

CPU
Registers

Stack
Heap

Code
Data

Saved
registers

Process 2
Stack
Heap

Code
Data

Saved
registers

Saved
registers

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

17

CPU
Registers

Stack
Heap

Code
Data

Saved
registers

Process 2
Stack
Heap

Code
Data

Saved
registers

Saved
registers

Process N
Stack
Heap

Code
Data

Context switch
managed by the OS.
Not controllable by
programmers.

Carnegie Mellon

Multiprocessing: The Multi-Core Case

• Multicore processors

• Multiple CPUs on single chip
• Share main memory (and some of

the caches)
• Each can execute a separate process

• Scheduling of processes onto
cores done by kernel

18

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

CPU
Registers

Carnegie Mellon

Concurrent Processes
• Each process is a logical control flow.
• Two processes run concurrently (are concurrent) if their flows

overlap in time
• Otherwise, they are sequential

19

Carnegie Mellon

Concurrent Processes
• Each process is a logical control flow.
• Two processes run concurrently (are concurrent) if their flows

overlap in time
• Otherwise, they are sequential

• Examples (running on single core):

19

Process A Process B Process C

Time

Carnegie Mellon

Concurrent Processes
• Each process is a logical control flow.
• Two processes run concurrently (are concurrent) if their flows

overlap in time
• Otherwise, they are sequential

• Examples (running on single core):
• Concurrent: A & B, A & C

19

Process A Process B Process C

Time

Carnegie Mellon

Concurrent Processes
• Each process is a logical control flow.
• Two processes run concurrently (are concurrent) if their flows

overlap in time
• Otherwise, they are sequential

• Examples (running on single core):
• Concurrent: A & B, A & C
• Sequential: B & C

19

Process A Process B Process C

Time

Carnegie Mellon

User View of Concurrent Processes
• Control flows for concurrent processes are physically disjoint in

time

• However, we can think of concurrent processes as running in
parallel with each other

20

Time

Process A Process B Process C

Carnegie Mellon

Context Switching
• Processes are managed by a shared chunk of memory-resident

OS code called the kernel
• Important: the kernel is not a separate process, but rather runs as part of

some existing process.

• Control flow passes from one process to another via a context
switch

21

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

Carnegie Mellon

Today
• Processes and Signals: running multiple programs concurrently

• Processes
• Process Control
• Signals

22

Carnegie Mellon

Obtaining Process IDs
•pid_t getpid(void)

• Returns PID of current process

•pid_t getppid(void)
• Returns PID of parent process

23

Carnegie Mellon

Creating and Terminating Processes
From a programmer’s perspective, we can think of a process as
being in one of three states

• Running	

• Process is either executing, or waiting to be executed and will

eventually be scheduled (i.e., chosen to execute) by the kernel

• Stopped

• Process execution is suspended and will not be scheduled until

further notice (through something call signals)

• Terminated

• Process is stopped permanently

24

Carnegie Mellon

Terminating Processes
• Process becomes terminated for one of three reasons:

• Receiving a signal whose default action is to terminate
• Returning from the main routine

• Calling the exit function

•void exit(int status)
• Terminates with an exit status of status
• Convention: normal return status is 0, nonzero on error
• Another way to explicitly set the exit status is to return an integer value

from the main routine

•exit is called once but never returns.

25

Carnegie Mellon

Creating Processes
• Parent process creates a new running child process by calling
fork

•int fork(void)
• Returns 0 to the child process, child’s PID to parent process

• Child is almost identical to parent:

• Child get an identical (but separate) copy of the parent’s (virtual)

address space (i.e., same stack copies, code, etc.)

• Child gets identical copies of the parent’s open file descriptors

• Child has a different PID than the parent

• fork is interesting (and often confusing) because  
it is called once but returns twice

26

Carnegie Mellon

fork Example

27

int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) { /* Child */
 printf("child : x=%d\n", ++x);
 exit(0);
 }

 /* Parent */
 printf("parent: x=%d\n", --x);
 exit(0);
}

linux> ./fork
parent: x=0
child : x=2

fork.c

Carnegie Mellon

fork Example

27

int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) { /* Child */
 printf("child : x=%d\n", ++x);
 exit(0);
 }

 /* Parent */
 printf("parent: x=%d\n", --x);
 exit(0);
}

linux> ./fork
parent: x=0
child : x=2

fork.c

• Call once, return twice

Carnegie Mellon

fork Example

27

int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) { /* Child */
 printf("child : x=%d\n", ++x);
 exit(0);
 }

 /* Parent */
 printf("parent: x=%d\n", --x);
 exit(0);
}

linux> ./fork
parent: x=0
child : x=2

fork.c

• Call once, return twice
• Concurrent execution

• Can’t predict execution
order of parent and child

Carnegie Mellon

fork Example

27

int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) { /* Child */
 printf("child : x=%d\n", ++x);
 exit(0);
 }

 /* Parent */
 printf("parent: x=%d\n", --x);
 exit(0);
}

linux> ./fork
parent: x=0
child : x=2

fork.c

• Call once, return twice
• Concurrent execution

• Can’t predict execution
order of parent and child

• Duplicate but separate
address space

• x has a value of 1 when fork
returns in parent and child

• Subsequent changes to x
are independent

Carnegie Mellon

fork Example

27

int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) { /* Child */
 printf("child : x=%d\n", ++x);
 exit(0);
 }

 /* Parent */
 printf("parent: x=%d\n", --x);
 exit(0);
}

linux> ./fork
parent: x=0
child : x=2

fork.c

• Call once, return twice
• Concurrent execution

• Can’t predict execution
order of parent and child

• Duplicate but separate
address space

• x has a value of 1 when fork
returns in parent and child

• Subsequent changes to x
are independent

• Shared open files
• stdout is the same in both

parent and child

Carnegie Mellon

Process Address Space

28

Kernel space

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write data segment
(.data, .bss)

Read-only code segment
(.init, .text, .rodata)

Loaded from the
executable file Program

Counter

Carnegie Mellon

Process Address Space

28

Kernel space

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write data segment
(.data, .bss)

Read-only code segment
(.init, .text, .rodata)

Loaded from the
executable file Program

Counter

