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Announcements

2

• Programming Assignment 4 released 
• Due on Nov. 15th 
• Cache Simulator + Matrix Transpose 

• For midterm 
• Come to my office hours tomorrow if TAs cannot solve your problems of 

midterm grades 
• For Programming Assignment 3  

• Contact Mengqi if you did not generate your cookie using NetID 
• For final 

• December 14th at 8:30am
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General Cache Organization (S, E, B)

3

E = 2e lines per set

S = 
2s sets

set

line

0 1 2 B-1tagv

B = 2b bytes per cache line (the data)

Cache size: 
C = S x E x B data bytes 
Overhead: 
Tag, valid bit, dirty bit. 
Plus bits for implementing 
replacement policy 
(not shown).

valid bit

d

dirty bit 
(if write-back)
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E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv
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t bits s bits b bits
Address of word:
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Line 
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• Check if any line in set 
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Cache Access

4

E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit B = 2b bytes per cache line (the data)

t bits s bits b bits
Address of word:

tag set 
index

Line 
offset

data begins at this offset

• Locate set
• Check if any line in set 

has matching tag
• Yes + line valid: hit
• Locate data starting 

at offset
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S = 2s sets

Direct mapped: One line per set 
Assume: cache line size 8 bytes

t bits 0…01 100
Address of char:
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Example: Direct Mapped Cache

5

S = 2s sets

Direct mapped: One line per set 
Assume: cache line size 8 bytes

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set
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Example: Direct Mapped Cache

6

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

match: assume yes = hitvalid?   +

block offset

tag

Direct mapped: One line per set 
Assume: cache line size 8 bytes
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Example: Direct Mapped Cache

7

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

match: assume yes = hitvalid?   +

Byte 4 is here

block offset

Direct mapped: One line per set 
Assume: cache line size 8 bytes
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Example: Direct Mapped Cache

7

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

match: assume yes = hitvalid?   +

Byte 4 is here

block offset

If tag doesn’t match: old line is evicted and replaced

Direct mapped: One line per set 
Assume: cache line size 8 bytes
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Direct-Mapped Cache Simulation

8

4-bit address space, i.e., Memory = 16 bytes 
B=2 bytes/line, S=4 sets, E=1 line/set 

Address trace (reads, one byte per read): 
 0 [00002],  
 1 [00012],   
 7 [01112],   
 8 [10002],   
 0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]

miss

1 0 M[0-1]Set 0
Set 1
Set 2
Set 3 The two bytes at memory address 6 and 7

The two bytes at memory address 0 and 1
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E-way Set Associative Cache (Here: E = 2)
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E = 2: Two lines per set 
Assume: cache line size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654
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E-way Set Associative Cache (Here: E = 2)

9

E = 2: Two lines per set 
Assume: cache line size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

find set
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E-way Set Associative Cache (Here: E = 2)

10

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

E = 2: Two lines per set 
Assume: cache line size 8 bytes
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E-way Set Associative Cache (Here: E = 2)
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t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

E = 2: Two lines per set 
Assume: cache line size 8 bytes
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E-way Set Associative Cache (Here: E = 2)

10

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes = hit

tag

E = 2: Two lines per set 
Assume: cache line size 8 bytes
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E-way Set Associative Cache (Here: E = 2)

10

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes = hit

Offset within a line

tag

E = 2: Two lines per set 
Assume: cache line size 8 bytes
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E-way Set Associative Cache (Here: E = 2)

11

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes = hit

Offset within a line

short int (2 Bytes) is here

E = 2: Two lines per set 
Assume: cache line size 8 bytes
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E-way Set Associative Cache (Here: E = 2)

11

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes = hit

Offset within a line

short int (2 Bytes) is here

No match:  
• One line in set is selected for eviction and replacement 
• Replacement policies: random, least recently used (LRU), …

E = 2: Two lines per set 
Assume: cache line size 8 bytes
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2-Way Set Associative Cache Simulation
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4-bit address space, i.e., Memory = 16 bytes 
S=2 sets, E=2 cache lines/set 

Address trace (reads, one byte per read): 
 0 [00002],  
 1 [00012],   
 7 [01112],   
 8 [10002],   
 0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

Set 0

Set 1
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4-bit address space, i.e., Memory = 16 bytes 
S=2 sets, E=2 cache lines/set 
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 7 [01112],   
 8 [10002],   
 0 [00002]
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4-bit address space, i.e., Memory = 16 bytes 
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4-bit address space, i.e., Memory = 16 bytes 
S=2 sets, E=2 cache lines/set 

Address trace (reads, one byte per read): 
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2-Way Set Associative Cache Simulation
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4-bit address space, i.e., Memory = 16 bytes 
S=2 sets, E=2 cache lines/set 

Address trace (reads, one byte per read): 
 0 [00002],  
 1 [00012],   
 7 [01112],   
 8 [10002],   
 0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
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0

0 0

miss

1 00 M[0-1]

hit
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Set 0

Set 1
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2-Way Set Associative Cache Simulation

12

4-bit address space, i.e., Memory = 16 bytes 
S=2 sets, E=2 cache lines/set 

Address trace (reads, one byte per read): 
 0 [00002],  
 1 [00012],   
 7 [01112],   
 8 [10002],   
 0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

Set 0

Set 1
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2-Way Set Associative Cache Simulation
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4-bit address space, i.e., Memory = 16 bytes 
S=2 sets, E=2 cache lines/set 

Address trace (reads, one byte per read): 
 0 [00002],  
 1 [00012],   
 7 [01112],   
 8 [10002],   
 0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

Set 0

Set 1
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2-Way Set Associative Cache Simulation
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4-bit address space, i.e., Memory = 16 bytes 
S=2 sets, E=2 cache lines/set 

Address trace (reads, one byte per read): 
 0 [00002],  
 1 [00012],   
 7 [01112],   
 8 [10002],   
 0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]Set 0

Set 1
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2-Way Set Associative Cache Simulation

12

4-bit address space, i.e., Memory = 16 bytes 
S=2 sets, E=2 cache lines/set 

Address trace (reads, one byte per read): 
 0 [00002],  
 1 [00012],   
 7 [01112],   
 8 [10002],   
 0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]

hit

Set 0

Set 1
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Today
• Processes and Signals: running multiple programs concurrently


• Processes 
• Process Control 
• Signals

13
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• Process provides each program with two key 
abstractions:

• “Owns” the CPU 

• Each program seems to have exclusive use of the 
CPU 

• Done by the OS kernel through “context switching” 
• Private address space 

• Each program seems to have exclusive use of main 
memory.  

• Provided by OS through “virtual memory”
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CPU
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Processes
• Definition: A process is an instance of a program 

running in a computer..

• One of the most profound ideas in computer science 
• Not the same as “program” or “processor”
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CPU
Registers

Memory
Stack
Heap

Code
Data• Process provides each program with two key 

abstractions:

• “Owns” the CPU 

• Each program seems to have exclusive use of the 
CPU 

• Done by the OS kernel through “context switching” 
• Private address space 

• Each program seems to have exclusive use of main 
memory.  

• Provided by OS through “virtual memory”
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Multiprocessing: The Illusion

• Computer runs many processes simultaneously

• Applications for one or more users 

• Web browsers, email clients, editors, … 
• Background tasks 

• Monitoring network & I/O devices

15

CPU
Registers

Memory
Stack
Heap

Code
Data

CPU
Registers

Memory
Stack
Heap

Code
Data …

CPU
Registers

Memory
Stack
Heap

Code
Data
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Multiprocessing Example

• Running program “top” on Unit/Linux

• System has 123 processes, 5 of which are active 
• Identified by Process ID (PID)

16
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Memory
Process 1

Multiprocessing Illustration
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CPU
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Stack
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Process N
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Memory
Process 1

Multiprocessing Illustration
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CPU
Registers

Stack
Heap

Code
Data

Saved 
registers

Process 2
Stack
Heap

Code
Data

Saved 
registers

Saved 
registers

Process N
Stack
Heap

Code
Data

Context switch 
managed by the OS. 
Not controllable by 
programmers.
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Multiprocessing: The Multi-Core Case

• Multicore processors

• Multiple CPUs on single chip 
• Share main memory (and some of 

the caches) 
• Each can execute a separate process 

• Scheduling of processes onto 
cores done by kernel

18

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved 
registers

Stack
Heap

Code
Data

Saved 
registers
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Heap

Code
Data

Saved 
registers

…

CPU
Registers
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Concurrent Processes
• Each process is a logical control flow. 
• Two processes run concurrently (are concurrent) if their flows 

overlap in time
• Otherwise, they are sequential

19
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Concurrent Processes
• Each process is a logical control flow. 
• Two processes run concurrently (are concurrent) if their flows 

overlap in time
• Otherwise, they are sequential

• Examples (running on single core):
• Concurrent: A & B, A & C
• Sequential: B & C

19

Process A Process B Process C

Time
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User View of Concurrent Processes
• Control flows for concurrent processes are physically disjoint in 

time


• However, we can think of concurrent processes as running in 
parallel with each other

20

Time

Process A Process B Process C
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Context Switching
• Processes are managed by a shared chunk of memory-resident 

OS code called the kernel 
• Important: the kernel is not a separate process, but rather runs as part of 

some existing process. 

• Control flow passes from one process to another via a context 
switch

21
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Today
• Processes and Signals: running multiple programs concurrently


• Processes 
• Process Control 
• Signals
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Obtaining Process IDs
•pid_t getpid(void) 

• Returns PID of current process 

•pid_t getppid(void) 
• Returns PID of parent process

23
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Creating and Terminating Processes
From a programmer’s perspective, we can think of a process as 
being in one of three states


• Running	 

• Process is either executing, or waiting to be executed and will 

eventually be scheduled (i.e., chosen to execute) by the kernel 

• Stopped

• Process execution is suspended and will not be scheduled until 

further notice (through something call signals) 

• Terminated

• Process is stopped permanently 

24



Carnegie Mellon

Terminating Processes 
• Process becomes terminated for one of three reasons:


• Receiving a signal whose default action is to terminate 
• Returning from the main routine 

• Calling the exit function 

•void exit(int status) 
• Terminates with an exit status of status 
• Convention: normal return status is 0, nonzero on error 
• Another way to explicitly set the exit status is to return an integer value 

from the main routine 

•exit is called once but never returns.
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Creating Processes
• Parent process creates a new running child process by calling 
fork


•int fork(void) 
• Returns 0 to the child process, child’s PID to parent process

• Child is almost identical to parent:

• Child get an identical (but separate) copy of the parent’s (virtual) 

address space (i.e., same stack copies, code, etc.)

• Child gets identical copies of the parent’s open file descriptors

• Child has a different PID than the parent


• fork is interesting (and often confusing) because  
it is called once but returns twice

26
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fork Example

27

int main() 
{ 
    pid_t pid; 
    int x = 1; 

    pid = Fork();  
    if (pid == 0) {  /* Child */ 
        printf("child : x=%d\n", ++x);  
 exit(0); 
    } 

    /* Parent */ 
    printf("parent: x=%d\n", --x);  
    exit(0); 
}

linux> ./fork 
parent: x=0 
child : x=2

fork.c
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• Subsequent changes to x 
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fork Example

27

int main() 
{ 
    pid_t pid; 
    int x = 1; 

    pid = Fork();  
    if (pid == 0) {  /* Child */ 
        printf("child : x=%d\n", ++x);  
 exit(0); 
    } 

    /* Parent */ 
    printf("parent: x=%d\n", --x);  
    exit(0); 
}

linux> ./fork 
parent: x=0 
child : x=2

fork.c

• Call once, return twice
• Concurrent execution

• Can’t predict execution 
order of parent and child

• Duplicate but separate 
address space

• x has a value of 1 when fork 
returns in parent and child

• Subsequent changes to x 
are independent

• Shared open files
• stdout is the same in both 

parent and child



Carnegie Mellon

Process Address Space
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Kernel space

Memory-mapped region for 
shared libraries

Run-time heap 
(created by malloc)

User stack 
(created at runtime)

Unused
0

%rsp  
(stack  
pointer)

Memory 
invisible to 
user code

brk

0x400000

Read/write data segment 
(.data, .bss)

Read-only code segment 
(.init, .text, .rodata)

Loaded  from  the  
executable file Program 

Counter
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