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Signals

• A signal is a small message that notifies a process that an 
event of some type has occurred in the system

• Sent from the OS kernel

• Could be requested by another process, by user, or automatically by 

the kernel

• Signal type is identified by small integer ID’s (1-30)
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ID Name Default Action Corresponding Event
2 SIGINT Terminate User typed ctrl-c 
9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate Segmentation violation
14 SIGALRM Terminate Timer signal
17 SIGCHLD Ignore Child stopped or terminated



Carnegie Mellon

Default Actions to Signals

• Each signal type has a predefined default action, which is 
one of:

• The process terminates

• The process stops until restarted by a SIGCONT signal

• The process ignores the signal

3



Carnegie Mellon

Installing Signal Handlers

• The signal function modifies the default action associated 
with the receipt of signal signum:

• handler_t *signal(int signum, handler_t *handler)


• Different values for handler:

• SIG_IGN: ignore signals of type signum

• SIG_DFL: revert to the default action on receipt of signals of type signum

• Otherwise, handler is the address of a user-level function (signal handler)


• Called when process receives signal of type signum

• Referred to as “installing” the handler

• Executing handler is called “catching” or “handling” the signal

• When the handler executes its return statement, control passes 

back to instruction in the control flow of the process that was 
interrupted by receipt of the signal
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Signal Handling Example
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void sigint_handler(int sig) /* SIGINT handler */

{

    printf("So you think you can stop the bomb with ctrl-c, do you?\n");

    sleep(2);

    printf("Well...");

    fflush(stdout);

    sleep(1);

    printf("OK. :-)\n");

    exit(0);

}


int main()

{

    /* Install the SIGINT handler */

    if (signal(SIGINT, sigint_handler) == SIG_ERR)

        unix_error("signal error");


    /* Wait for the receipt of a signal */

    pause();


    return 0;

} sigint.c
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Signals Handlers as Concurrent Flows

• A signal handler is a separate logical flow (not process) 
that runs concurrently with the main program
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Process A 


while (1)

    ;

Process A


handler(){

    …

}

Process B

Time
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Nested Signal Handlers	
• Handlers can be interrupted by other handlers
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(2) Control passes 
to handler S

 Main program

(5) Handler T
returns to 
handler S

Icurr

Inext

(1) Program 
catches signal s

 Handler S  Handler T

(3) Program 
catches signal t

(4)  Control passes 
to handler T

(6) Handler S
returns to 
main program

(7) Main program 
resumes 



Carnegie Mellon

Receiving/Responding to Signals
• Kernel handles signals delivered to a process p when it 

switches to p from kernel mode to user mode (e.g., 
after a context switch)
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Pending and Blocked Signals

• A signal is pending if sent but not yet received
• There can be at most one pending signal of any particular type for a 

process
• That is: Signals are not queued

• If a process has a pending signal of type k, then subsequent 
signals of type k that are sent to that process are discarded

• A pending signal is received at most once
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• A signal is pending if sent but not yet received
• There can be at most one pending signal of any particular type for a 

process
• That is: Signals are not queued

• If a process has a pending signal of type k, then subsequent 
signals of type k that are sent to that process are discarded

• A pending signal is received at most once

• A process can block/mask the receipt of certain signals
• Blocked signals can be delivered, i.e., in the pending state, but will not 

be received/responded to until the signal is unblocked
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Pending/Blocked Bits	

• Kernel maintains pending and masked bit vectors in the 
context of each process

• pending: represents the set of pending signals


• Kernel sets bit k in pending when a signal of type k is delivered

• Kernel clears bit k in pending when a signal of type k is received 


• masked: represents the set of blocked signals

• Can be set and cleared by using the sigprocmask function

• Also referred to as the signal mask.
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Receiving Signals

• Right before kernel is ready to pass control to process p
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• Right before kernel is ready to pass control to process p
• Kernel computes the set of pending & nonmasked signals 

for process p (PNM set)
• If  (PNM is empty), i.e., no signal is pending & nonmasked

• No signals to respond to; simply pass control to next instruction in the 
logical flow for p

• Else
• Choose least nonzero bit k in pnm and force process p to receive 

signal k, i.e., by executing the corresponding signal handler
• Repeat for all nonzero k in pnm
• Pass control to next instruction in logical flow for p
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Blocking Signals
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    sigset_t mask, prev_mask;


    sigemptyset(&mask);

    sigaddset(&mask, SIGINT);


    /* Block SIGINT and save previous blocked set */

    sigprocmask(SIG_BLOCK, &mask, &prev_mask);


    /* Code region that will not be interrupted by SIGINT */


    /* Restore previous blocked set, unblocking SIGINT */

    sigprocmask(SIG_SETMASK, &prev_mask, NULL);

• Explicit blocking and unblocking signal

• sigprocmask function

• sigemptyset – Create empty set

• sigfillset – Add every signal number to set

• sigaddset – Add signal number to set

• sigdelset – Delete signal number from set
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Safe Signal Handling

• Handlers are tricky because they are concurrent with main 
program and may share the same global data structures.
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static int x = 5;

void handler(int sig)

{

    x = 10;

}


int main(int argc, char **argv)

{

    int pid, y = 0;

    Signal(SIGCHLD, handler);


    if ((pid = Fork()) == 0) { /* Child */

        Execve("/bin/date", argv, NULL);

    }


    if (x == 5)

        y = x * 2; // You’d expect y == 10

    exit(0);

}
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static int x = 5;

void handler(int sig)

{

    x = 10;

}


int main(int argc, char **argv)

{

    int pid, y = 0;

    Signal(SIGCHLD, handler);


    if ((pid = Fork()) == 0) { /* Child */

        Execve("/bin/date", argv, NULL);

    }


    if (x == 5)

        y = x * 2; // You’d expect y == 10

    exit(0);

}

What if the following happens:
• Parent process executes and 

finishes if (x == 5)
• Context switch to child, 

which then terminates, sends 
a SIGCHLD signal

• Another context switch back 
to parent, and now the kernel 
needs to execute the 
SIGCHLD handler

• When return to parent 
process, y == 20!
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Safe Signal Handling

• Handlers are tricky because they are concurrent with main 
program and may share the same global data structures.

• Programmers have no control over the execution ordering between the 

main program and the signal handler, that is:

• when a signal happens/delivers (depends on user or other process)

• when the signal handler will be executed (depends on kernel)


• If not careful, shared data structures can be corrupted

15
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Fixing the Signal Handling Bug
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static int x = 5;

void handler(int sig)

{

    x = 10;

}


int main(int argc, char **argv)

{

    int pid;

    sigset_t mask_all, prev_all;

    sigfillset(&mask_all);

    signal(SIGCHLD, handler);


    if ((pid = Fork()) == 0) { /* Child */

        Execve("/bin/date", argv, NULL);

    }


    Sigprocmask(SIG_BLOCK, &mask_all, &prev_all);

    if (x == 5)

        y = x * 2; // You’d expect y == 10

    Sigprocmask(SIG_SETMASK, &prev_all, NULL);


    exit(0);

}

• Block all signals before 
accessing a shared, 
global data structure.
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Another Unsafe Signal Handler Example

17



Carnegie Mellon

Another Unsafe Signal Handler Example
• Assume a program wants to do the following:


• The parent creates multiple child processes

• When each child process is created, add the child PID to a 

queue

• When a child process terminates, the parent process 

removes the child PID from the queue
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Another Unsafe Signal Handler Example
• Assume a program wants to do the following:


• The parent creates multiple child processes

• When each child process is created, add the child PID to a 

queue

• When a child process terminates, the parent process 

removes the child PID from the queue
• One possible implementation:


• An array for keeping the child PIDs

• Use a loop to fork child, and add PID to the array after fork

• Install a handler for SIGCHLD in parent process

• The SIGCHLD handler removes the child PID
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First Attempt
void handler(int sig)

{

    pid_t pid;


    while ((pid = wait(NULL)) > 0) { /* Reap child */

        /* Delete the child from the job list */

        deletejob(pid);

    }

}


int main(int argc, char **argv)

{

    int pid;


    Signal(SIGCHLD, handler);

    initjobs(); /* Initialize the job list */


    while (1) {

        if ((pid = Fork()) == 0) { /* Child */

            Execve("/bin/date", argv, NULL);

        }

        /* Add the child to the job list */

        addjob(pid);

    }

    exit(0);

}
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The following can happen:
• The first child runs, and 

terminates
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terminates
• Kernel sends SIGCHLD
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The following can happen:
• The first child runs, and 

terminates
• Kernel sends SIGCHLD
• Context switch to parent, 

which executes the SIGCHLD 
handler before 
addjob(pid) is executed

• The handler deletes the job, 
which isn’t in the queue yet!

• The parent process resumes 
and adds a terminated child 
to job list
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First Attempt
void handler(int sig)

{

    pid_t pid;


    while ((pid = wait(NULL)) > 0) { /* Reap child */

        /* Delete the child from the job list */

        deletejob(pid);

    }
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        addjob(pid);

    }

    exit(0);

}
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Key in this example: creating a 
child and adding its PID to the 
job list must be an atomic unit: 
either both happen or neither 
happen; there can’t be 
anything else that separates 
the two.
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Second Attempt
void handler(int sig)

{

    sigset_t mask_all, prev_all;

    pid_t pid;


    sigfillset(&mask_all);

    while ((pid = wait(NULL)) > 0) {

        sigprocmask(SIG_BLOCK, &mask_all, &prev_all);

        deletejob(pid);

        sigprocmask(SIG_SETMASK, &prev_all, NULL);

    }

}

int main(int argc, char **argv)

{

    int pid;

    sigset_t mask_all, prev_all;


    sigfillset(&mask_all);

    signal(SIGCHLD, handler);

    initjobs(); /* Initialize the job list */


    while (1) {

        if ((pid = Fork()) == 0) {

            Execve("/bin/date", argv, NULL);

        }

        sigprocmask(SIG_BLOCK, &mask_all, &prev_all);

        addjob(pid);

        sigprocmask(SIG_SETMASK, &prev_all, NULL);

    }

    exit(0);

}
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Third Attempt (The Correct One)

21

int main(int argc, char **argv)

{

    int pid;

    sigset_t mask_all, mask_one, prev_one;


    Sigfillset(&mask_all);

    Sigemptyset(&mask_one);

    Sigaddset(&mask_one, SIGCHLD);

    Signal(SIGCHLD, handler);

    initjobs(); /* Initialize the job list */


    while (1) {

        Sigprocmask(SIG_BLOCK, &mask_one, &prev_one); /* Block SIGCHLD */

        if ((pid = Fork()) == 0) { /* Child process */

            Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */

            Execve("/bin/date", argv, NULL);

        }

	 addjob(pid);  /* Add the child to the job list */

        Sigprocmask(SIG_SETMASK, &prev_one, NULL);  /* Unblock SIGCHLD */

    }

    exit(0);

}
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Third Attempt (The Correct One)

21

int main(int argc, char **argv)

{

    int pid;

    sigset_t mask_all, mask_one, prev_one;


    Sigfillset(&mask_all);

    Sigemptyset(&mask_one);

    Sigaddset(&mask_one, SIGCHLD);

    Signal(SIGCHLD, handler);

    initjobs(); /* Initialize the job list */


    while (1) {

        Sigprocmask(SIG_BLOCK, &mask_one, &prev_one); /* Block SIGCHLD */

        if ((pid = Fork()) == 0) { /* Child process */

            Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */

            Execve("/bin/date", argv, NULL);

        }

	 addjob(pid);  /* Add the child to the job list */

        Sigprocmask(SIG_SETMASK, &prev_one, NULL);  /* Unblock SIGCHLD */

    }

    exit(0);

}

Why this?
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Today
• Signals: The Way to Communicate with Processes

• Interrupts and exceptions: how signals are triggered

22
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Interrupts in a Processor

23
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Interrupts, a.k.a., Asynchronous Exceptions

• Caused by events external to the processor
• Events that can happen at any time. Computers have little control.
• Indicated by setting the processor’s interrupt pin
• Handler returns to “next” instruction

24
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Interrupts, a.k.a., Asynchronous Exceptions

• Caused by events external to the processor
• Events that can happen at any time. Computers have little control.
• Indicated by setting the processor’s interrupt pin
• Handler returns to “next” instruction

• Examples:
• Timer interrupt

• Every few ms, an external timer chip triggers an interrupt
• Used by the kernel to take back control from user programs

•  I/O interrupt from external device
• Hitting Ctrl-C at the keyboard
• Arrival of a packet from a network
• Arrival of data from a disk

24
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Each Interrupt Has a Handler
• Each type of event has a  

unique interrupt number k


• k = index into interrupt 
table


• Interrupt table lives in 
memory. Its start address is 
stored in a special register


• Handler k is called each 
time interrupt k occurs

25
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Sending Signals from the Keyboard
• Can you guess how Ctrl + C might be implemented?
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Sending Signals from the Keyboard
• Can you guess how Ctrl + C might be implemented?

• Ctrl + C sends a keyboard interrupt to the CPU, which triggers an 
interrupt handler

• The interrupt handler, executed by the kernel, triggers certain piece of 
the kernel, which generates the signal, which is then delivered to the 
target process

26
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When to Execute the Handler?
• Interrupts: when convenient. Typically wait until the current 

instructions in the pipeline are finished

• Maskable verses Unmaskable


• Interrupts can be individually masked (i.e., ignored by CPU)

• Synchronous exceptions are usually unmaskable


• Some interrupts are intentionally unmaskable

• Called non-maskable interrupts (NMI)

• Indicating a critical error has occurred, and that the system is 

probably about to crash

27
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Synchronous Exceptions
• Caused by events that occur as a result of executing an instruction:

28
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• Examples: system calls, breakpoint traps, special instructions

• Faults
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Synchronous Exceptions
• Caused by events that occur as a result of executing an instruction:

• Traps
• Intentional
• Examples: system calls, breakpoint traps, special instructions

• Faults
• Unintentional but possibly recoverable 
• Examples: page faults (recoverable), protection faults (the 

infamous Segmentation Fault!) (unrecoverable in Linux), floating 
point exceptions (unrecoverable in Linux)

• These exceptions will generate signals to processes
• Aborts

• Unintentional and unrecoverable
• Examples: illegal instruction, parity error
• Aborts current program through a SIGABRT signal
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Where Do You Restart?
• Interrupts/Traps


• Handler returns to the following instruction
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• Handler returns to the following instruction
• Faults
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exception, i.e., re-execute it!
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Where Do You Restart?
• Interrupts/Traps


• Handler returns to the following instruction
• Faults


• Exception handler returns to the instruction that caused the 
exception, i.e., re-execute it!

• Aborts

• Never returns to the program

29



Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration
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Memory
Process 1

Problem 1: Space
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Memory
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Problem 1: Space
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• Space:

• Each process’s address space is huge (64-bit): can memory hold it 

(16GB is just 34-bit)?

• 2^48 bytes is 256 TB

• There are multiple processes, increasing the storage requirement 

further
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Recall: Memory Hierarchy
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CPU
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(DFF)

Cache

(SRAM)

Hard Disk/
SSD


Several 
TBs

• Solution: store all the data in disk (several TBs typically), and 
use memory only for most recently used data

• Of course if a process uses all its address space that won’t be enough, but usually a 

process won’t use all 64 bits. So it’s OK.

• Challange: who is moving data back and forth between the DRAM/main 
memory/physical memory and the disk?


• Ideally should be managed by the OS, not the programmer.

Main/Physical

Memory

(DRAM)


Several GBs

~1 ns 1-10 ns
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~ 10 us
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• Different programs/processes will share the same physical memory

• Or even different uses. A CSUG machine is accessed by all students, but 

there is one single physical memory!

• What if a malicious program steals/modifies data from your program?


• If the malicious program get the address of the memory that stores your 
password, should it be able to access it? If not, how to prevent it? 


• We need isolation.

Problem 2: Security
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• Different processes will have exclusive access to just one part of the 
physical memory.


• This is called Segments.

• Need a base register and a bound register for each process. Not 

widely used today. x86 still supports it (backward compatibility!)

• Fast but not inflexible. Makes benign sharing hard.

One Way to Isolate: Segments
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• Each process gets a continuous chunk of memory. Inflexible.

• What if a process requests more space than any continuous chunk in 

memory but smaller than the total free memory?

• This is called “fragmentation”; will talk about this more later.


• Need to allow assigning discontinuous chunks of memory to 
processes.

Problem 3: Fragmentation (with Segments)
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