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• Space:

• Each process’s address space is huge (64-bit): can memory hold it 

(16GB is just 34-bit)?

• 2^48 bytes is 256 TB

• There are multiple processes, increasing the storage requirement 

further
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Recall: Memory Hierarchy
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• Solution: store all the data in disk (several TBs typically), and 
use memory only for most recently used data

• Of course if a process uses all its address space that won’t be enough, but usually a 

process won’t use all 64 bits. So it’s OK.

• Challange: who is moving data back and forth between the DRAM/main 
memory/physical memory and the disk?


• Ideally should be managed by the OS, not the programmer.
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• Different programs/processes will share the same physical memory

• Or even different uses. A CSUG machine is accessed by all students, but 

there is one single physical memory!

• What if a malicious program steals/modifies data from your program?


• If the malicious program get the address of the memory that stores your 
password, should it be able to access it? If not, how to prevent it? 


• We need isolation.

Problem 2: Security
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• Different processes will have exclusive access to just one part of the 
physical memory.


• This is called Segments.

• Need a base register and a bound register for each process. Not 

widely used today. x86 still supports it (backward compatibility!)

• Fast but not inflexible. Makes benign sharing hard.

One Way to Isolate: Segments
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• Each process gets a continuous chunk of memory. Inflexible.

• What if a process requests more space than any continuous chunk in 

memory but smaller than the total free memory?

• This is called “fragmentation”; will talk about this more later.


• Need to allow assigning discontinuous chunks of memory to 
processes.

Problem 3: Fragmentation (with Segments)
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• Different programs/processes will share same data: files, libraries, etc.

• No need to have separate copies in the physical memory.

• Would be good to let other processes access part of the current’s 

process’ memory based on the “permission”.

Problem 4: Benign Sharing (with Segments)

8

CPU

Registers

(DFF)

Cache

(SRAM)

Main/Physical

Memory Hard Disk/

SSD

Program 1
stdlib.so

Program 2
stdlib.so

stdlib.so



Carnegie Mellon

The Big Idea: Virtual Memory
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“Cache” Data in Physical Memory
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Allow Using Discontinuous Allocation
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Page Table
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Demand Paging
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Data 2
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Enable Benign Sharing
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Analogy for Virtual Memory: A Secure Hotel
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Analogy for Virtual Memory: A Secure Hotel

• Call a hotel looking for a guest; what happens?

• Front desk routes call to room, does not give out room number

• Guest’s name is a virtual address

• Room number is physical address

• Front desk is doing address translation!

16
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Analogy for Virtual Memory: A Secure Hotel

• Call a hotel looking for a guest; what happens?

• Front desk routes call to room, does not give out room number

• Guest’s name is a virtual address

• Room number is physical address

• Front desk is doing address translation!

• Benefits

• Ease of management: Guest could change rooms (physical 

address). You can still find her without knowing it

• Protection: Guest could have block on calls, block on calls from 

specific callers (permissions)

• Sharing: Multiple guests (virtual addresses) can share the same 

room (physical address)

16
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A System Using Physical Memory Only

• Used in “simple” systems like embedded microcontrollers in 
devices like cars, elevators, and digital picture frames
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A System Using Virtual Memory

• Used in all modern servers, laptops, and smart phones

• One of the great ideas in computer science (back in the 60s)

• MMU: Memory Management Unit; part of the OS
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The Big Idea: Virtual Memory
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The Big Idea: Virtual Memory
• What Does a Programmer Want?


• Infinitely large, infinitely fast memory

• Strong isolation between processes to prevent unwanted sharing

• Enable wanted sharing
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The Big Idea: Virtual Memory
• What Does a Programmer Want?


• Infinitely large, infinitely fast memory

• Strong isolation between processes to prevent unwanted sharing

• Enable wanted sharing

• Virtual memory to the rescue

• Present a large, uniform memory to programmers

• Data in virtual memory by default stays in disk

• Data moves to physical memory (DRAM) “on demand”

• Disks (~TBs) are much larger than DRAM (~GBs), but 10,000x slower.

• Effectively, virtual memory system transparently share the physical 

memory across different processes

• Manage the sharing automatically: hardware-software collaborative 

strategy (too complex for hardware alone)

19
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Today	 	
• VM basic concepts and operation

• Other critical benefits of VM

• Address translation

20
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VM Concepts
• Virtual memory is an array of N contiguous pages (each page has a certain amount 

of continuous bytes).

• Physical memory is also divided into pages. Each physical page (sometimes called 

frames) has the same size as a virtual page. Physical memory has way fewer pages.

• A page can either be on the (“uncached”) disk or in the physical memory (“cached”).
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VM Concepts
• Virtual memory is an array of N contiguous pages (each page has a certain amount 

of continuous bytes).

• Physical memory is also divided into pages. Each physical page (sometimes called 
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Enabling Data Structure: Page Table
• How do we track which virtual pages are mapped to physical 

pages, and where they are mapped?
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Enabling Data Structure: Page Table
• How do we track which virtual pages are mapped to physical 

pages, and where they are mapped?
• Use a table to track this. The table is called page table, in which 

each virtual page has an entry
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Enabling Data Structure: Page Table
• How do we track which virtual pages are mapped to physical 

pages, and where they are mapped?
• Use a table to track this. The table is called page table, in which 

each virtual page has an entry
• Each entry records whether the corresponding virtual page is 

mapped to the physical memory
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Enabling Data Structure: Page Table
• How do we track which virtual pages are mapped to physical 

pages, and where they are mapped?
• Use a table to track this. The table is called page table, in which 

each virtual page has an entry
• Each entry records whether the corresponding virtual page is 

mapped to the physical memory
• If mapped, where in the physical memory it is mapped to?
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Enabling Data Structure: Page Table
• How do we track which virtual pages are mapped to physical 

pages, and where they are mapped?
• Use a table to track this. The table is called page table, in which 

each virtual page has an entry
• Each entry records whether the corresponding virtual page is 

mapped to the physical memory
• If mapped, where in the physical memory it is mapped to?
• If not mapped, where on the disk is the virtual page?
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Enabling Data Structure: Page Table
• How do we track which virtual pages are mapped to physical 

pages, and where they are mapped?
• Use a table to track this. The table is called page table, in which 

each virtual page has an entry
• Each entry records whether the corresponding virtual page is 

mapped to the physical memory
• If mapped, where in the physical memory it is mapped to?
• If not mapped, where on the disk is the virtual page?

• Do you need a page table for each process?

22
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Enabling Data Structure: Page Table
• How do we track which virtual pages are mapped to physical 

pages, and where they are mapped?
• Use a table to track this. The table is called page table, in which 

each virtual page has an entry
• Each entry records whether the corresponding virtual page is 

mapped to the physical memory
• If mapped, where in the physical memory it is mapped to?
• If not mapped, where on the disk is the virtual page?

• Do you need a page table for each process?
• Per-process data structure; managed by the OS kernel

22
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Enabling Data Structure: Page Table
• A page table is an array of page table entries (PTEs) that maps every virtual 

page to its physical page, i.e., virtual to physical address translation.

• One PTE for each virtual page.

23
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Enabling Data Structure: Page Table
• A page table is an array of page table entries (PTEs) that maps every virtual 

page to its physical page, i.e., virtual to physical address translation.

• One PTE for each virtual page.
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Enabling Data Structure: Page Table
• A page table is an array of page table entries (PTEs) that maps every virtual 

page to its physical page, i.e., virtual to physical address translation.

• One PTE for each virtual page.
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Enabling Data Structure: Page Table
• A page table is an array of page table entries (PTEs) that maps every virtual 

page to its physical page, i.e., virtual to physical address translation.

• One PTE for each virtual page.
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Enabling Data Structure: Page Table
• A page table is an array of page table entries (PTEs) that maps every virtual 

page to its physical page, i.e., virtual to physical address translation.

• One PTE for each virtual page.
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Enabling Data Structure: Page Table
• A page table is an array of page table entries (PTEs) that maps every virtual 

page to its physical page, i.e., virtual to physical address translation.

• One PTE for each virtual page.
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Page Hit
•Page hit: reference to VM word that is in physical memory
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Page Hit
•Page hit: reference to VM word that is in physical memory
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Page Fault
•Page fault: reference to VM word that is not in physical memory

25

null

null

Memory resident

page table


(DRAM)

Physical memory

(DRAM)

VP 7
VP 4

Valid
0
1

0
1
0

1
0

1

Physical page

number or 


disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Disk



Carnegie Mellon

Page Fault
•Page fault: reference to VM word that is not in physical memory
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Handling Page Fault
• Page miss causes page fault (an exception)
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Handling Page Fault
• Page miss causes page fault (an exception)

• Page fault handler selects a victim to be evicted (here VP 4)
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Handling Page Fault
• Page miss causes page fault (an exception)

• Page fault handler selects a victim to be evicted (here VP 4)
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Handling Page Fault
• Page miss causes page fault (an exception)

• Page fault handler selects a victim to be evicted (here VP 4)

• Offending instruction is restarted: page hit!
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Allocating Pages
• Allocating a new page (VP 5) of virtual memory.
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Virtual Memory Exploits Locality (Again!)
• Virtual memory seems terribly inefficient, but it works because 

of locality. 


• At any point in time, programs tend to access a set of active 
virtual pages called the working set

• Programs with better temporal locality will have smaller working sets


• If ( working set size < main memory size ) 

• Good performance for one process after initial misses


• If ( SUM(working set sizes) > main memory size ) 

• Thrashing: Performance meltdown where pages are swapped (copied) in 

and out continuously
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VM Concepts Summary
• Conceptually, virtual memory is an array of N pages 

• Each virtual page is either in physical memory, or on disk, or 
unallocated

32



Carnegie Mellon

VM Concepts Summary
• Conceptually, virtual memory is an array of N pages 

• Each virtual page is either in physical memory, or on disk, or 
unallocated

• The physical memory (PM) is an array of M pages stored in DRAM.

32



Carnegie Mellon

VM Concepts Summary
• Conceptually, virtual memory is an array of N pages 

• Each virtual page is either in physical memory, or on disk, or 
unallocated

• The physical memory (PM) is an array of M pages stored in DRAM.
• Page size is the same for VM and PM

32



Carnegie Mellon

VM Concepts Summary
• Conceptually, virtual memory is an array of N pages 

• Each virtual page is either in physical memory, or on disk, or 
unallocated

• The physical memory (PM) is an array of M pages stored in DRAM.
• Page size is the same for VM and PM
• M << N

32



Carnegie Mellon

VM Concepts Summary
• Conceptually, virtual memory is an array of N pages 

• Each virtual page is either in physical memory, or on disk, or 
unallocated

• The physical memory (PM) is an array of M pages stored in DRAM.
• Page size is the same for VM and PM
• M << N
• On a 64-bit machine, virtual memory size = 264

32



Carnegie Mellon

VM Concepts Summary
• Conceptually, virtual memory is an array of N pages 

• Each virtual page is either in physical memory, or on disk, or 
unallocated

• The physical memory (PM) is an array of M pages stored in DRAM.
• Page size is the same for VM and PM
• M << N
• On a 64-bit machine, virtual memory size = 264

• Physical memory size is much much smaller:

• iPhone 8: 2 GB (231)

• 15-inch Macbook Pro 2017: 16 GB (234)

32



Carnegie Mellon

VM Concepts Summary
• Conceptually, virtual memory is an array of N pages 

• Each virtual page is either in physical memory, or on disk, or 
unallocated

• The physical memory (PM) is an array of M pages stored in DRAM.
• Page size is the same for VM and PM
• M << N
• On a 64-bit machine, virtual memory size = 264

• Physical memory size is much much smaller:

• iPhone 8: 2 GB (231)

• 15-inch Macbook Pro 2017: 16 GB (234)

• Store only the most frequently used pages in the physical memory

32



Carnegie Mellon

VM Concepts Summary
• Conceptually, virtual memory is an array of N pages 

• Each virtual page is either in physical memory, or on disk, or 
unallocated

• The physical memory (PM) is an array of M pages stored in DRAM.
• Page size is the same for VM and PM
• M << N
• On a 64-bit machine, virtual memory size = 264

• Physical memory size is much much smaller:

• iPhone 8: 2 GB (231)

• 15-inch Macbook Pro 2017: 16 GB (234)

• Store only the most frequently used pages in the physical memory
• If a page is not on the physical memory, have to first swap it from 

the disk to the DRAM.
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Calculate the Page Table Size
• Assume 4KB page, 4GB virtual memory, each PTE is 8 Bytes
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Calculate the Page Table Size
• Assume 4KB page, 4GB virtual memory, each PTE is 8 Bytes

• 4GB/4KB = 1M virtual pages
• 1M PTEs in a page table
• 8MB total size per page table

• Do you need a page table for each process?
• Yes
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Where Does Page Table Live?
• It needs to be at a specific location where we can find it


• Some special SRAM?

• In main memory?

• On disk?
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Where Does Page Table Live?
• It needs to be at a specific location where we can find it


• Some special SRAM?

• In main memory?

• On disk?

• ~MBs of a page table per process

• Too big for on-chip SRAM (c.f., a L1 cache is ~32 KB)

• Too slow to access in disk

• Put the page table in DRAM, with its start address stored in a 

special register (Page Table Base Register). More on this later.
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Today	 	
• VM basic concepts and operation

• Other critical benefits of VM

• Address translation
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VM as a Tool for Memory Management
• Each process has its own virtual address space


• It can view memory as a simple linear array

• Mapping scatters addresses through physical memory


• Well-chosen mappings can improve locality
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Virtual Memory Enables Sharing
• Simplifying memory allocation


• Each virtual page can be mapped to any physical page

• A virtual page can be stored in different physical pages at different times


• Sharing code and data among processes

• Map virtual pages to the same physical page (here: PP 6)
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VM Provides Further Protection Opportunities

• Extend PTEs with permission bits

• MMU checks these bits on each access (read/write/executable/

accessible only in supervisor mode?)

• Remember buffer overflow attack?
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