
CSC 252/452: Computer Organization 
 Fall 2024: Lecture 20 

Instructor: Yanan Guo

Department of Computer Science

University of Rochester

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

2

CPU
Registers

Stack
Heap

Code
Data

Process 2
Stack
Heap

Code
Data

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Problem 1: Space

3

Stack
Heap

Code
Data

Process 2
Stack
Heap

Code
Data

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Problem 1: Space

3

Stack
Heap

Code
Data

Process 2
Stack
Heap

Code
Data

Process N
Stack
Heap

Code
Data

• Space:

• Each process’s address space is huge (64-bit): can memory hold it

(16GB is just 34-bit)?

• 2^48 bytes is 256 TB

• There are multiple processes, increasing the storage requirement

further

Carnegie Mellon

Recall: Memory Hierarchy

4

CPU

Registers

(DFF)

Cache

(SRAM)

Hard Disk/
SSD

Several
TBs

• Solution: store all the data in disk (several TBs typically), and
use memory only for most recently used data

• Of course if a process uses all its address space that won’t be enough, but usually a

process won’t use all 64 bits. So it’s OK.

Main/Physical

Memory

(DRAM)

Several GBs

~1 ns 1-10 ns
100 ns

~ 10 us

Carnegie Mellon

Recall: Memory Hierarchy

4

CPU

Registers

(DFF)

Cache

(SRAM)

Hard Disk/
SSD

Several
TBs

• Solution: store all the data in disk (several TBs typically), and
use memory only for most recently used data

• Of course if a process uses all its address space that won’t be enough, but usually a

process won’t use all 64 bits. So it’s OK.

• Challange: who is moving data back and forth between the DRAM/main
memory/physical memory and the disk?

• Ideally should be managed by the OS, not the programmer.

Main/Physical

Memory

(DRAM)

Several GBs

~1 ns 1-10 ns
100 ns

~ 10 us

Carnegie Mellon

• Different programs/processes will share the same physical memory

• Or even different uses. A CSUG machine is accessed by all students, but

there is one single physical memory!

• What if a malicious program steals/modifies data from your program?

• If the malicious program get the address of the memory that stores your
password, should it be able to access it? If not, how to prevent it?

• We need isolation.

Problem 2: Security

5

CPU Main/Physical

Memory

(DRAM)

Several GBs

Registers

(DFF)

Cache

(SRAM)

Hard Disk/
SSD

Several
TBs

Carnegie Mellon

• Different processes will have exclusive access to just one part of the
physical memory.

• This is called Segments.

• Need a base register and a bound register for each process. Not

widely used today. x86 still supports it (backward compatibility!)

• Fast but not inflexible. Makes benign sharing hard.

One Way to Isolate: Segments

6

Main/Physical

Memory Hard Disk/

SSD

Program 1

Program 2

Program 1

Program 2

base 1

bound 1

base 2

bound 2

Carnegie Mellon

• Each process gets a continuous chunk of memory. Inflexible.

• What if a process requests more space than any continuous chunk in

memory but smaller than the total free memory?

• This is called “fragmentation”; will talk about this more later.

• Need to allow assigning discontinuous chunks of memory to
processes.

Problem 3: Fragmentation (with Segments)

7

Main/Physical

Memory Hard Disk/

SSD

Program 1

Program 2

Program 1

Program 2

128 MB

12 MB

12 MB

Carnegie Mellon

• Different programs/processes will share same data: files, libraries, etc.

• No need to have separate copies in the physical memory.

• Would be good to let other processes access part of the current’s

process’ memory based on the “permission”.

Problem 4: Benign Sharing (with Segments)

8

CPU

Registers

(DFF)

Cache

(SRAM)

Main/Physical

Memory Hard Disk/

SSD

Program 1
stdlib.so

Program 2
stdlib.so

stdlib.so

Carnegie Mellon

The Big Idea: Virtual Memory

9

Physical/Main

Memory

Process 1

Virtual Memory

of Process 1

Process 2

Virtual Memory
of Process 2

Hard Drive

…

…

1

2

3

4

99

100

…

101

102

103

104

105

99

100

101

102

103

104

105

…

Carnegie Mellon

“Cache” Data in Physical Memory

10

Physical/Main

Memory

Process 2

Hard Drive

…

Unallocated

Data 1

…

Data 2

…

…

…

Process 1

… 1

2

3

4

99

100

101

102

103

104

105

Virtual Memory
of Process 2

…

…

Virtual Memory

of Process 1

Data 1

Data 2

…

…

…

…

A

B

C

D

99

100

101

102

103

104

105

Carnegie Mellon

Allow Using Discontinuous Allocation

11

Physical/Main

Memory

Virtual Memory

of Process 1

Process 2

Hard Drive

…

Unallocated

Data 1

…

Data 2

…

…

…

Process 1

1

2

3

4

Data 1

Data 2

99

100

101

102

103

104

105

…
Virtual Memory

of Process 2…

…

…

…

…

…

A

B

C

D

99

100

101

102

103

104

105

Carnegie Mellon

Allow Using Discontinuous Allocation

11

Physical/Main

Memory

Virtual Memory

of Process 1

Process 2

Hard Drive

…

Unallocated

Data 1

…

Data 2

…

…

…

Process 1

1

2

3

4

Data 1

Data 2

99

100

101

102

103

104

105

…
Virtual Memory

of Process 2…

…

…

…

…

…

A

B

C

D

99

100

101

102

103

104

105

Carnegie Mellon

Page Table

12

Physical/Main

Memory

Unallocated

Data 1

…

Data 2

…

…

…

Process 1

Virtual Memory

of Process 1

Process 2

Hard Drive

…

…

…

…

…

Data 1

Data 2

Invalid

1

A

4

B

C

D

Page Table

1

2

3

4

A

B

C

D

99

100

101

102

103

104

105

…
Virtual Memory

of Process 2…

…

…

…

99

100

101

102

103

104

105

Carnegie Mellon

Demand Paging

13

Physical/Main

Memory

Unallocated

Data 1

Data X

Data 2

…

…

…

Process 1

Virtual Memory

of Process 1

Process 2

Hard Drive

…

Data X

…

…

…

Data 1

Data 2

Invalid

1

A

4

B

C

D

Page Table

1

2

3

4

A

B

C

D

99

100

101

102

103

104

105

…
Virtual Memory

of Process 2…

…

…

…

99

100

101

102

103

104

105

Carnegie Mellon

Demand Paging

13

Physical/Main

Memory

Unallocated

Data 1

Data X

Data 2

…

…

…

Process 1

Virtual Memory

of Process 1

Process 2

Hard Drive

…

Data X

…

…

…

Data 1

Data 2

Invalid

1

A

4

B

C

D

Page Table

1

2

3

4

A

B

C

D

99

100

101

102

103

104

105

…
Virtual Memory

of Process 2…

…

…

…

99

100

101

102

103

104

105

Carnegie Mellon

Demand Paging

13

Physical/Main

Memory

Unallocated

Data 1

Data X

Data 2

…

…

…

Process 1

Virtual Memory

of Process 1

Process 2

Hard Drive

…

Data X

…

…

…

Data 1

Data 2

Invalid

1

A

4

B

C

D

Page Table

1

2

3

4

A

B

C

D

99

100

101

102

103

104

105

…
Virtual Memory

of Process 2…

…

…

…

Data X

99

100

101

102

103

104

105

Carnegie Mellon

Demand Paging

13

Physical/Main

Memory

Unallocated

Data 1

Data X

Data 2

…

…

…

Process 1

Virtual Memory

of Process 1

Process 2

Hard Drive

…

Data X

…

…

…

Data 1

Data 2

Invalid

1

A

4

B

C

D

Page Table

1

2

3

4

A

B

C

D

99

100

101

102

103

104

105

…
Virtual Memory

of Process 2…

…

…

…

Data X

2

99

100

101

102

103

104

105

Carnegie Mellon

Data 2

99

Prevent Unwanted Sharing

14

Physical/Main

Memory

Unallocated

Data 1

…

Data 2

…

…

…

Process 1

Virtual Memory

of Process 1

Process 2

Hard Drive

…

…

…

…

Data 3

Data 1

Data 2

Invalid

A

4

B

C

D

Page Table

of Process 1

1

2

3

4

A

B

C

D

99

100

101

102

103

104

105

…
Virtual Memory

of Process 2…

…

…

…

…

Data 3

…

Unallocated

…

…

…

Page Table

of Process 2

…

…
O

3

P

Unallocated

Q

R

4

…

…

…

…

O

P

Q

R

1

100

101

102

103

104

105

Carnegie Mellon

Data 2

99

Prevent Unwanted Sharing

14

Physical/Main

Memory

Unallocated

Data 1

…

Data 2

…

…

…

Process 1

Virtual Memory

of Process 1

Process 2

Hard Drive

…

…

…

…

Data 3

Data 1

Data 2

Invalid

A

4

B

C

D

Page Table

of Process 1

1

2

3

4

A

B

C

D

99

100

101

102

103

104

105

…
Virtual Memory

of Process 2…

…

…

…

…

Data 3

…

Unallocated

…

…

…

Page Table

of Process 2

…

…
O

3

P

Unallocated

Q

R

4

…

…

…

…

O

P

Q

R

1

100

101

102

103

104

105

Carnegie Mellon

Enable Benign Sharing

15

Physical/Main

Memory

Unallocated

Data 1

…

Data 2

…

…

…

Process 1

Virtual Memory

of Process 1

Hard Drive

…

…

…

…

Data 3

Data 1

Data 2

Invalid

1

A

4

B

C

D

Page Table

of Process 1

1

2

3

4

A

B

C

D

99

100

101

102

103

104

105

…

…

…

…

…

…

…

…

O

P

Q

R

Data 2

99

Process 2

Virtual Memory
of Process 2…

…

Data 3

…

Unallocated

…

…

…

Page Table

of Process 2

…

…
O

3

P

Unallocated

Q

R

4

100

101

102

103

104

105

Carnegie Mellon

Analogy for Virtual Memory: A Secure Hotel

16

Carnegie Mellon

Analogy for Virtual Memory: A Secure Hotel

• Call a hotel looking for a guest; what happens?

• Front desk routes call to room, does not give out room number

• Guest’s name is a virtual address

• Room number is physical address

• Front desk is doing address translation!

16

Carnegie Mellon

Analogy for Virtual Memory: A Secure Hotel

• Call a hotel looking for a guest; what happens?

• Front desk routes call to room, does not give out room number

• Guest’s name is a virtual address

• Room number is physical address

• Front desk is doing address translation!

• Benefits

• Ease of management: Guest could change rooms (physical

address). You can still find her without knowing it

• Protection: Guest could have block on calls, block on calls from

specific callers (permissions)

• Sharing: Multiple guests (virtual addresses) can share the same

room (physical address)

16

Carnegie Mellon

A System Using Physical Memory Only

• Used in “simple” systems like embedded microcontrollers in
devices like cars, elevators, and digital picture frames

17

0:
1:

M-1:

Main memory

CPU

2:
3:
4:
5:
6:
7:

Physical address

(PA)

Data word

8:
...

4

Carnegie Mellon

A System Using Virtual Memory

• Used in all modern servers, laptops, and smart phones

• One of the great ideas in computer science (back in the 60s)

• MMU: Memory Management Unit; part of the OS

18

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address

(PA)

Data word

8:
...

CPU

Virtual address

(VA)

CPU Chip

44100

Carnegie Mellon

The Big Idea: Virtual Memory

19

Carnegie Mellon

The Big Idea: Virtual Memory
• What Does a Programmer Want?

• Infinitely large, infinitely fast memory

• Strong isolation between processes to prevent unwanted sharing

• Enable wanted sharing

19

Carnegie Mellon

The Big Idea: Virtual Memory
• What Does a Programmer Want?

• Infinitely large, infinitely fast memory

• Strong isolation between processes to prevent unwanted sharing

• Enable wanted sharing

• Virtual memory to the rescue

• Present a large, uniform memory to programmers

• Data in virtual memory by default stays in disk

• Data moves to physical memory (DRAM) “on demand”

• Disks (~TBs) are much larger than DRAM (~GBs), but 10,000x slower.

• Effectively, virtual memory system transparently share the physical

memory across different processes

• Manage the sharing automatically: hardware-software collaborative

strategy (too complex for hardware alone)

19

Carnegie Mellon

Today	 	
• VM basic concepts and operation

• Other critical benefits of VM

• Address translation

20

Carnegie Mellon

VM Concepts
• Virtual memory is an array of N contiguous pages (each page has a certain amount

of continuous bytes).

• Physical memory is also divided into pages. Each physical page (sometimes called

frames) has the same size as a virtual page. Physical memory has way fewer pages.

• A page can either be on the (“uncached”) disk or in the physical memory (“cached”).

21

Physical memory

Unoccupied

On-disk

VP 0
VP 1

VP7

Virtual memory

Unallocated
In-memory

On-disk
Unallocated
In-memory

On-disk

PP 0
PP 1

In-memory

0

31

15

0

Virtual pages (VPs) Physical pages (PPs)

cached in DRAM

PP 2
PP 3

Carnegie Mellon

VM Concepts
• Virtual memory is an array of N contiguous pages (each page has a certain amount

of continuous bytes).

• Physical memory is also divided into pages. Each physical page (sometimes called

frames) has the same size as a virtual page. Physical memory has way fewer pages.

• A page can either be on the (“uncached”) disk or in the physical memory (“cached”).

21

Physical memory

Unoccupied

On-disk

VP 0
VP 1

VP7

Virtual memory

Unallocated
In-memory

On-disk
Unallocated
In-memory

On-disk

PP 0
PP 1

In-memory

0

31

15

0

Virtual pages (VPs) Physical pages (PPs)

cached in DRAM

What programmers see

PP 2
PP 3

Carnegie Mellon

VM Concepts
• Virtual memory is an array of N contiguous pages (each page has a certain amount

of continuous bytes).

• Physical memory is also divided into pages. Each physical page (sometimes called

frames) has the same size as a virtual page. Physical memory has way fewer pages.

• A page can either be on the (“uncached”) disk or in the physical memory (“cached”).

21

Physical memory

Unoccupied

On-disk

VP 0
VP 1

VP7

Virtual memory

Unallocated
In-memory

On-disk
Unallocated
In-memory

On-disk

PP 0
PP 1

In-memory

0

31

15

0

Virtual pages (VPs) Physical pages (PPs)

cached in DRAM

What programmers see Assuming page size is 4B

Virtual memory size is 32B

Physical memory size is 16B

PP 2
PP 3

Carnegie Mellon

VM Concepts
• Virtual memory is an array of N contiguous pages (each page has a certain amount

of continuous bytes).

• Physical memory is also divided into pages. Each physical page (sometimes called

frames) has the same size as a virtual page. Physical memory has way fewer pages.

• A page can either be on the (“uncached”) disk or in the physical memory (“cached”).

21

Physical memory

Unoccupied

On-disk

VP 0
VP 1

VP7

Virtual memory

Unallocated
In-memory

On-disk
Unallocated
In-memory

On-disk

PP 0
PP 1

In-memory

0

31

15

0

Virtual pages (VPs) Physical pages (PPs)

cached in DRAM

What programmers see Assuming page size is 4B

Virtual memory size is 32B

Physical memory size is 16B

offsetVirtual page number

2-bit3-bit

PP 2
PP 3

Carnegie Mellon

VM Concepts
• Virtual memory is an array of N contiguous pages (each page has a certain amount

of continuous bytes).

• Physical memory is also divided into pages. Each physical page (sometimes called

frames) has the same size as a virtual page. Physical memory has way fewer pages.

• A page can either be on the (“uncached”) disk or in the physical memory (“cached”).

21

Physical memory

Unoccupied

On-disk

VP 0
VP 1

VP7

Virtual memory

Unallocated
In-memory

On-disk
Unallocated
In-memory

On-disk

PP 0
PP 1

In-memory

0

31

15

0

Virtual pages (VPs) Physical pages (PPs)

cached in DRAM

What programmers see Assuming page size is 4B

Virtual memory size is 32B

Physical memory size is 16B

offsetVirtual page number

2-bit3-bit

offsetPhysical page number

2-bit2-bit

PP 2
PP 3

Carnegie Mellon

Enabling Data Structure: Page Table
• How do we track which virtual pages are mapped to physical

pages, and where they are mapped?

22

Carnegie Mellon

Enabling Data Structure: Page Table
• How do we track which virtual pages are mapped to physical

pages, and where they are mapped?
• Use a table to track this. The table is called page table, in which

each virtual page has an entry

22

Carnegie Mellon

Enabling Data Structure: Page Table
• How do we track which virtual pages are mapped to physical

pages, and where they are mapped?
• Use a table to track this. The table is called page table, in which

each virtual page has an entry
• Each entry records whether the corresponding virtual page is

mapped to the physical memory

22

Carnegie Mellon

Enabling Data Structure: Page Table
• How do we track which virtual pages are mapped to physical

pages, and where they are mapped?
• Use a table to track this. The table is called page table, in which

each virtual page has an entry
• Each entry records whether the corresponding virtual page is

mapped to the physical memory
• If mapped, where in the physical memory it is mapped to?

22

Carnegie Mellon

Enabling Data Structure: Page Table
• How do we track which virtual pages are mapped to physical

pages, and where they are mapped?
• Use a table to track this. The table is called page table, in which

each virtual page has an entry
• Each entry records whether the corresponding virtual page is

mapped to the physical memory
• If mapped, where in the physical memory it is mapped to?
• If not mapped, where on the disk is the virtual page?

22

Carnegie Mellon

Enabling Data Structure: Page Table
• How do we track which virtual pages are mapped to physical

pages, and where they are mapped?
• Use a table to track this. The table is called page table, in which

each virtual page has an entry
• Each entry records whether the corresponding virtual page is

mapped to the physical memory
• If mapped, where in the physical memory it is mapped to?
• If not mapped, where on the disk is the virtual page?

• Do you need a page table for each process?

22

Carnegie Mellon

Enabling Data Structure: Page Table
• How do we track which virtual pages are mapped to physical

pages, and where they are mapped?
• Use a table to track this. The table is called page table, in which

each virtual page has an entry
• Each entry records whether the corresponding virtual page is

mapped to the physical memory
• If mapped, where in the physical memory it is mapped to?
• If not mapped, where on the disk is the virtual page?

• Do you need a page table for each process?
• Per-process data structure; managed by the OS kernel

22

Carnegie Mellon

Enabling Data Structure: Page Table
• A page table is an array of page table entries (PTEs) that maps every virtual

page to its physical page, i.e., virtual to physical address translation.

• One PTE for each virtual page.

23

Carnegie Mellon

Enabling Data Structure: Page Table
• A page table is an array of page table entries (PTEs) that maps every virtual

page to its physical page, i.e., virtual to physical address translation.

• One PTE for each virtual page.

23

Disk

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Carnegie Mellon

null

null

Memory resident

page table

(DRAM)

Valid

0
1

0
1
0

1
0

1

PTE 0

PTE 7

Enabling Data Structure: Page Table
• A page table is an array of page table entries (PTEs) that maps every virtual

page to its physical page, i.e., virtual to physical address translation.

• One PTE for each virtual page.

23

Disk

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Carnegie Mellon

null

null

Memory resident

page table

(DRAM)

Valid

0
1

0
1
0

1
0

1

PTE 0

PTE 7

Enabling Data Structure: Page Table
• A page table is an array of page table entries (PTEs) that maps every virtual

page to its physical page, i.e., virtual to physical address translation.

• One PTE for each virtual page.

23

Disk

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Physical page

number (PPN) or

disk address

Carnegie Mellon

null

null

Memory resident

page table

(DRAM)

Valid

0
1

0
1
0

1
0

1

PTE 0

PTE 7

Enabling Data Structure: Page Table
• A page table is an array of page table entries (PTEs) that maps every virtual

page to its physical page, i.e., virtual to physical address translation.

• One PTE for each virtual page.

23

Physical memory

(DRAM)

VP 7
VP 4

Disk

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Physical page

number (PPN) or

disk address

Carnegie Mellon

null

null

Memory resident

page table

(DRAM)

Valid

0
1

0
1
0

1
0

1

PTE 0

PTE 7

Enabling Data Structure: Page Table
• A page table is an array of page table entries (PTEs) that maps every virtual

page to its physical page, i.e., virtual to physical address translation.

• One PTE for each virtual page.

23

Physical memory

(DRAM)

VP 7
VP 4

Disk

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Physical page

number (PPN) or

disk address

Carnegie Mellon

Page Hit
•Page hit: reference to VM word that is in physical memory

24

null

null

Memory resident

page table

(DRAM)

Physical memory

(DRAM)

VP 7
VP 4

Valid
0
1

0
1
0

1
0

1

Physical page

number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Disk

Carnegie Mellon

Page Hit
•Page hit: reference to VM word that is in physical memory

24

null

null

Memory resident

page table

(DRAM)

Physical memory

(DRAM)

VP 7
VP 4

Valid
0
1

0
1
0

1
0

1

Physical page

number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Disk

Carnegie Mellon

Page Fault
•Page fault: reference to VM word that is not in physical memory

25

null

null

Memory resident

page table

(DRAM)

Physical memory

(DRAM)

VP 7
VP 4

Valid
0
1

0
1
0

1
0

1

Physical page

number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Disk

Carnegie Mellon

Page Fault
•Page fault: reference to VM word that is not in physical memory

25

null

null

Memory resident

page table

(DRAM)

Physical memory

(DRAM)

VP 7
VP 4

Valid
0
1

0
1
0

1
0

1

Physical page

number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Disk

Carnegie Mellon

Handling Page Fault
• Page miss causes page fault (an exception)

26

null

null

Memory resident

page table

(DRAM)

Physical memory

(DRAM)

VP 7
VP 4

Valid
0
1

0
1
0

1
0

1

Physical page

number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Disk

Carnegie Mellon

Handling Page Fault
• Page miss causes page fault (an exception)

• Page fault handler selects a victim to be evicted (here VP 4)

27

null

null

Memory resident

page table

(DRAM)

Physical memory

(DRAM)

VP 7
VP 4

Valid
0
1

0
1
0

1
0

1

Physical page

number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Disk

Carnegie Mellon

Handling Page Fault
• Page miss causes page fault (an exception)

• Page fault handler selects a victim to be evicted (here VP 4)

28

null

null

Memory resident

page table

(DRAM)

Physical memory

(DRAM)

VP 7
VP 3

Valid
0
1

1
0
0

1
0

1

Physical page

number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Disk

Carnegie Mellon

Handling Page Fault
• Page miss causes page fault (an exception)

• Page fault handler selects a victim to be evicted (here VP 4)

• Offending instruction is restarted: page hit!

29

null

null

Memory resident

page table

(DRAM)

Physical memory

(DRAM)

VP 7
VP 3

Valid
0
1

1
0
0

1
0

1

Physical page

number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Key point: Waiting until the miss to copy the page to
DRAM is known as demand paging

Disk

Carnegie Mellon

Allocating Pages
• Allocating a new page (VP 5) of virtual memory.

30

null

Memory resident

page table

(DRAM)

Physical memory

(DRAM)

VP 7
VP 3

Valid
0
1

1
0
0

1
0

1

Physical page

number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

VP 5

null
Disk

Carnegie Mellon

Allocating Pages
• Allocating a new page (VP 5) of virtual memory.

30

null

Memory resident

page table

(DRAM)

Physical memory

(DRAM)

VP 7
VP 3

Valid
0
1

1
0
0

1
0

1

Physical page

number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

VP 5

Disk

Carnegie Mellon

Allocating Pages
• Allocating a new page (VP 5) of virtual memory.

30

null

Memory resident

page table

(DRAM)

Physical memory

(DRAM)

VP 7
VP 3

Valid
0
1

1
0
0

1
0

1

Physical page

number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

VP 5

Disk

Carnegie Mellon

Virtual Memory Exploits Locality (Again!)
• Virtual memory seems terribly inefficient, but it works because

of locality.

• At any point in time, programs tend to access a set of active
virtual pages called the working set

• Programs with better temporal locality will have smaller working sets

• If (working set size < main memory size)

• Good performance for one process after initial misses

• If (SUM(working set sizes) > main memory size)

• Thrashing: Performance meltdown where pages are swapped (copied) in

and out continuously

31

Carnegie Mellon

VM Concepts Summary
• Conceptually, virtual memory is an array of N pages

• Each virtual page is either in physical memory, or on disk, or
unallocated

32

Carnegie Mellon

VM Concepts Summary
• Conceptually, virtual memory is an array of N pages

• Each virtual page is either in physical memory, or on disk, or
unallocated

• The physical memory (PM) is an array of M pages stored in DRAM.

32

Carnegie Mellon

VM Concepts Summary
• Conceptually, virtual memory is an array of N pages

• Each virtual page is either in physical memory, or on disk, or
unallocated

• The physical memory (PM) is an array of M pages stored in DRAM.
• Page size is the same for VM and PM

32

Carnegie Mellon

VM Concepts Summary
• Conceptually, virtual memory is an array of N pages

• Each virtual page is either in physical memory, or on disk, or
unallocated

• The physical memory (PM) is an array of M pages stored in DRAM.
• Page size is the same for VM and PM
• M << N

32

Carnegie Mellon

VM Concepts Summary
• Conceptually, virtual memory is an array of N pages

• Each virtual page is either in physical memory, or on disk, or
unallocated

• The physical memory (PM) is an array of M pages stored in DRAM.
• Page size is the same for VM and PM
• M << N
• On a 64-bit machine, virtual memory size = 264

32

Carnegie Mellon

VM Concepts Summary
• Conceptually, virtual memory is an array of N pages

• Each virtual page is either in physical memory, or on disk, or
unallocated

• The physical memory (PM) is an array of M pages stored in DRAM.
• Page size is the same for VM and PM
• M << N
• On a 64-bit machine, virtual memory size = 264

• Physical memory size is much much smaller:

• iPhone 8: 2 GB (231)

• 15-inch Macbook Pro 2017: 16 GB (234)

32

Carnegie Mellon

VM Concepts Summary
• Conceptually, virtual memory is an array of N pages

• Each virtual page is either in physical memory, or on disk, or
unallocated

• The physical memory (PM) is an array of M pages stored in DRAM.
• Page size is the same for VM and PM
• M << N
• On a 64-bit machine, virtual memory size = 264

• Physical memory size is much much smaller:

• iPhone 8: 2 GB (231)

• 15-inch Macbook Pro 2017: 16 GB (234)

• Store only the most frequently used pages in the physical memory

32

Carnegie Mellon

VM Concepts Summary
• Conceptually, virtual memory is an array of N pages

• Each virtual page is either in physical memory, or on disk, or
unallocated

• The physical memory (PM) is an array of M pages stored in DRAM.
• Page size is the same for VM and PM
• M << N
• On a 64-bit machine, virtual memory size = 264

• Physical memory size is much much smaller:

• iPhone 8: 2 GB (231)

• 15-inch Macbook Pro 2017: 16 GB (234)

• Store only the most frequently used pages in the physical memory
• If a page is not on the physical memory, have to first swap it from

the disk to the DRAM.

32

Carnegie Mellon

Calculate the Page Table Size
• Assume 4KB page, 4GB virtual memory, each PTE is 8 Bytes

33

Carnegie Mellon

Calculate the Page Table Size
• Assume 4KB page, 4GB virtual memory, each PTE is 8 Bytes

• 4GB/4KB = 1M virtual pages

33

Carnegie Mellon

Calculate the Page Table Size
• Assume 4KB page, 4GB virtual memory, each PTE is 8 Bytes

• 4GB/4KB = 1M virtual pages
• 1M PTEs in a page table

33

Carnegie Mellon

Calculate the Page Table Size
• Assume 4KB page, 4GB virtual memory, each PTE is 8 Bytes

• 4GB/4KB = 1M virtual pages
• 1M PTEs in a page table
• 8MB total size per page table

33

Carnegie Mellon

Calculate the Page Table Size
• Assume 4KB page, 4GB virtual memory, each PTE is 8 Bytes

• 4GB/4KB = 1M virtual pages
• 1M PTEs in a page table
• 8MB total size per page table

• Do you need a page table for each process?

33

Carnegie Mellon

Calculate the Page Table Size
• Assume 4KB page, 4GB virtual memory, each PTE is 8 Bytes

• 4GB/4KB = 1M virtual pages
• 1M PTEs in a page table
• 8MB total size per page table

• Do you need a page table for each process?
• Yes

33

Carnegie Mellon

Where Does Page Table Live?
• It needs to be at a specific location where we can find it

• Some special SRAM?

• In main memory?

• On disk?

34

Carnegie Mellon

Where Does Page Table Live?
• It needs to be at a specific location where we can find it

• Some special SRAM?

• In main memory?

• On disk?

• ~MBs of a page table per process

• Too big for on-chip SRAM (c.f., a L1 cache is ~32 KB)

• Too slow to access in disk

• Put the page table in DRAM, with its start address stored in a

special register (Page Table Base Register). More on this later.

34

Carnegie Mellon

Today	 	
• VM basic concepts and operation

• Other critical benefits of VM

• Address translation

35

Carnegie Mellon

VM as a Tool for Memory Management
• Each process has its own virtual address space

• It can view memory as a simple linear array

• Mapping scatters addresses through physical memory

• Well-chosen mappings can improve locality

36

Virtual
Address
Space for
Process 1:

Physical

Address

Space
(DRAM)

0

N-1
(e.g., read-only

library code)

Virtual
Address
Space for
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address

translation

Carnegie Mellon

Virtual Memory Enables Sharing
• Simplifying memory allocation

• Each virtual page can be mapped to any physical page

• A virtual page can be stored in different physical pages at different times

• Sharing code and data among processes

• Map virtual pages to the same physical page (here: PP 6)

37

Virtual
Address
Space for
Process 1:

Physical

Address

Space
(DRAM)

0

N-1
(e.g., read-only

library code)

Virtual
Address
Space for
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address

translation

Carnegie Mellon

VM Provides Further Protection Opportunities

• Extend PTEs with permission bits

• MMU checks these bits on each access (read/write/executable/

accessible only in supervisor mode?)

• Remember buffer overflow attack?

38

Process i: AddressREAD WRITE
PP 6Yes No
PP 4Yes Yes
PP 2Yes

VP 0:
VP 1:
VP 2:

•

•

•

Process j:

Yes

SUP
No
No
Yes

AddressREAD WRITE
PP 9Yes No
PP 6Yes Yes

PP 11Yes Yes

SUP
No
Yes
No

VP 0:
VP 1:
VP 2:

Physical

Address Space

PP 2

PP 4

PP 6

PP 8
PP 9

PP 11

EXEC

Yes

EXEC

Yes
Yes

Yes

Yes

No

