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Announcements
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• Final exam: Dec. 14th, 8:30 AM -- 11:30 AM

• Open book test: any sort of paper-based product, e.g., book, 

notes, magazine, old tests.

• No electronic devices


• Problem sets and previous exams are helpful.
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Today
• From process to threads


• Basic thread execution model

• Multi-threading programming

• Hardware support of threads


• Single core

• Multi-core

• Hyper-threading

• Cache coherence
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Programmers View of A Process

• Process = process context + code, data, and stack
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Shared libraries

Run-time heap

0

Read/write data

Program context:

    Data registers

    Condition codes

    Stack pointer (SP)

    Program counter (PC)

Code, data, and stack

Read-only code/data

StackSP

PC

brk

Process context
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    VM structures

    Descriptor table

    brk pointer
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A Process With Multiple Threads
• Multiple threads can be associated with a process


• Each thread has its own logical control flow 

• Each thread shares the same code, data, and kernel context

• Each thread has its own stack for local variables 


• but not protected from other threads

• Each thread has its own thread id (TID)
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Thread 1 context:

    Data registers

    Condition codes

    SP1

    PC1

stack 1

Thread 1 (main thread)

shared libraries

run-time heap

0

read/write data

 Shared code and data

read-only code/data

Kernel context:

   VM structures

   Descriptor table

   brk pointer

Thread 2 context:

    Data registers

    Condition codes

    SP2

    PC2

stack 2

Thread 2 (peer thread)
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Logical View of Threads

• Threads associated with process form a pool of peers

• Unlike processes which form a tree hierarchy

6

P0

P1

sh sh sh

foo

bar

T1

Process hierarchyThreads associated with process foo

T2
T4

T5 T3

shared code, data

and kernel context
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Concurrent Threads

• Two threads are concurrent if their flows overlap in 
time


• Otherwise, they are sequential


• Examples:

• Concurrent: A & B, A&C


• Sequential: B & C
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Time

Thread A Thread B Thread C
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Concurrent Thread Execution
• Single Core Processor


• Simulate parallelism by 
time slicing
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Time

Thread A Thread B Thread C Thread A Thread B Thread C

Run 3 threads on 2 cores

• Multi Core Processor

• Threads can have true 

parallelisms
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Threads vs. Processes

• How threads and processes are similar

• Each has its own logical control flow


• Each can run concurrently with others (possibly on different cores)

• Each is context switched, controlled by kernel

9
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Threads vs. Processes

• How threads and processes are similar

• Each has its own logical control flow


• Each can run concurrently with others (possibly on different cores)

• Each is context switched, controlled by kernel

• How threads and processes are different

• Threads share all code and data (except local stacks)


• Processes (typically) do not


• Threads are less expensive than processes

• Space: threads share the same virtual address space except stacks, but 

processes have their own virtual address space

• Process control (creating and reaping) twice as expensive

• Typical Linux numbers:


• ~20K cycles to create and reap a process

• ~10K cycles (or less) to create and reap a thread
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Posix Threads (Pthreads) Interface
•Pthreads: Standard interface for ~60 functions that manipulate threads from 

C programs

• Creating and reaping threads


• pthread_create()

• pthread_join()


• Determining your thread ID

• pthread_self()


• Terminating threads

• pthread_cancel()

• pthread_exit()

• exit() [terminates all threads] , return()[terminates current thread]


• Synchronizing access to shared variables

• pthread_mutex_init

• pthread_mutex_[un]lock
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The Pthreads "hello, world" Program
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void *thread(void *vargp) /* thread routine */

{

    printf("Hello, world!\n");

    return NULL;                 

} 

/*                                                                                                               

 * hello.c - Pthreads "hello, world" program                                                                     

 */

#include "csapp.h"

void *thread(void *vargp);                    


int main()

{

    pthread_t tid;                            

    Pthread_create(&tid, NULL, thread, NULL); 

    Pthread_join(tid, NULL);                  

    exit(0);                                  

}

hello.c

hello.c



Carnegie Mellon
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11

void *thread(void *vargp) /* thread routine */

{

    printf("Hello, world!\n");

    return NULL;                 

} 

/*                                                                                                               

 * hello.c - Pthreads "hello, world" program                                                                     

 */

#include "csapp.h"

void *thread(void *vargp);                    


int main()

{

    pthread_t tid;                            

    Pthread_create(&tid, NULL, thread, NULL); 

    Pthread_join(tid, NULL);                  

    exit(0);                                  

}

hello.c

Thread ID

hello.c



Carnegie Mellon
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The Pthreads "hello, world" Program
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void *thread(void *vargp) /* thread routine */

{

    printf("Hello, world!\n");

    return NULL;                 

} 

/*                                                                                                               

 * hello.c - Pthreads "hello, world" program                                                                     

 */

#include "csapp.h"
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Execution of Threaded “hello, world”

12

Main thread
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Execution of Threaded “hello, world”

12

Main thread

call Pthread_create()
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Execution of Threaded “hello, world”
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Main thread
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Execution of Threaded “hello, world”

12

Main thread

Peer thread
call Pthread_create()
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Execution of Threaded “hello, world”

12

Main thread

Peer thread
call Pthread_create()

Pthread_create() returns



Carnegie Mellon

Execution of Threaded “hello, world”
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Main thread

Peer thread
call Pthread_create()

call Pthread_join()

Pthread_create() returns
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Execution of Threaded “hello, world”
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Main thread

Peer thread

Main thread waits for 

peer  thread to terminate

call Pthread_create()

call Pthread_join()

Pthread_create() returns
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Execution of Threaded “hello, world”

12

Main thread

Peer thread

return NULL;Main thread waits for 

peer  thread to terminate

call Pthread_create()

call Pthread_join()
printf()

Peer thread

terminates

Pthread_create() returns



Carnegie Mellon

Execution of Threaded “hello, world”
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Main thread

Peer thread

return NULL;Main thread waits for 

peer  thread to terminate

call Pthread_create()

call Pthread_join()

Pthread_join() returns

printf()

Peer thread

terminates

Pthread_create() returns
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Execution of Threaded “hello, world”
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Main thread

Peer thread

return NULL;Main thread waits for 

peer  thread to terminate

exit() 

Terminates 


main thread and 

any peer threads

call Pthread_create()

call Pthread_join()

Pthread_join() returns

printf()

Peer thread

terminates

Pthread_create() returns
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Today
• From process to threads


• Basic thread execution model

• Multi-threading programming

• Hardware support of threads


• Single core

• Multi-core

• Cache coherence
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Shared Variables in Threaded C Programs
• One great thing about threads is that they can share same 

program variables.

• Question: Which variables in a threaded C program are shared?

• Intuitively, the answer is as simple as “global variables are 

shared” and “stack variables are private”. Not so simple in reality.
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Thread 1 context:

    Data registers

    Condition codes

    SP1

    PC1

stack 1

Thread 1 (main thread) shared libraries

run-time heap

0

read/write data

 Shared code and data

read-only code/data

Kernel context:

   VM structures

   Descriptor table

   brk pointer

Thread 2 context:

    Data registers

    Condition codes

    SP2

    PC2

stack 2

Thread 2 (peer thread)
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Example Program to Illustrate Sharing

15

char **ptr;  /* global var */


void *thread(void *vargp)

{

    long myid = (long)vargp;

    static int cnt = 0;

    printf("[%ld]:  %s (cnt=%d)\n", 

         myid, ptr[myid], ++cnt);

    return NULL;

}


int main()

{

    long i;

    pthread_t tid;

    char *msgs[2] = {

        "Hello from foo",

        "Hello from bar"

    };

    ptr = msgs;

    for (i = 0; i < 2; i++)

        pthread_create(&tid, 

            NULL, 

            thread, 

            (void *)i);

    pthread_exit(NULL);

} sharing.c

Memory mapped region 

for shared libraries

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

Main thread stack

Peer thread 0 stack

Peer thread 1 stack
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Synchronizing Threads		
• Shared variables are handy...


• …but introduce the possibility of nasty synchronization errors.
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Improper Synchronization

17

/* Global shared variable */

volatile long cnt = 0; /* Counter */


int main(int argc, char **argv)

{

   pthread_t tid1, tid2;

   long niters = 10000;


   Pthread_create(&tid1, NULL,

        thread, &niters);

    Pthread_create(&tid2, NULL,

        thread, &niters);

    Pthread_join(tid1, NULL);

    Pthread_join(tid2, NULL);


    /* Check result */

    if (cnt != (2 * 10000))

        printf("BOOM! cnt=%ld\n", cnt);

    else

        printf("OK cnt=%ld\n", cnt);

    exit(0);

}

/* Thread routine */                                                                                             

void *thread(void *vargp)                                                                                        

{                                                                                                                

    long i, niters = 

               *((long *)vargp);                                                                           

                                                                                                                 

    for (i = 0; i < niters; i++)

        cnt++;                   

                                                                                                                 

    return NULL;                                                                                                 

} 

badcnt.c

https://www.geeksforgeeks.org/understanding-volatile-qualifier-in-c/
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Improper Synchronization

17

/* Global shared variable */

volatile long cnt = 0; /* Counter */


int main(int argc, char **argv)

{

   pthread_t tid1, tid2;

   long niters = 10000;


   Pthread_create(&tid1, NULL,

        thread, &niters);

    Pthread_create(&tid2, NULL,

        thread, &niters);

    Pthread_join(tid1, NULL);

    Pthread_join(tid2, NULL);


    /* Check result */

    if (cnt != (2 * 10000))

        printf("BOOM! cnt=%ld\n", cnt);

    else

        printf("OK cnt=%ld\n", cnt);

    exit(0);

}

/* Thread routine */                                                                                             

void *thread(void *vargp)                                                                                        

{                                                                                                                

    long i, niters = 

               *((long *)vargp);                                                                           

                                                                                                                 

    for (i = 0; i < niters; i++)

        cnt++;                   

                                                                                                                 

    return NULL;                                                                                                 

} 

linux> ./badcnt

OK cnt=20000


linux> ./badcnt

BOOM! cnt=13051

cnt should be 20,000.


What went wrong?
badcnt.c

https://www.geeksforgeeks.org/understanding-volatile-qualifier-in-c/
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Assembly Code for Counter Loop

18

for (i = 0; i < niters; i++)

    cnt++; 

C code for counter loop in thread i

    movq  (%rdi), %rcx

    testq %rcx,%rcx

    jle   .L2

    movl  $0, %eax

.L3:

    movq  cnt(%rip),%rdx

    addq  $1, %rdx

    movq  %rdx, cnt(%rip)

    addq  $1, %rax

    cmpq  %rcx, %rax

    jne   .L3

.L2:

Hi : Head

Ti : Tail

Li  : Load cnt

Ui : Update cnt

Si : Store cnt

Asm code for thread i



Carnegie Mellon

Concurrent Execution
• Key observation: In general, any sequentially consistent 

interleaving is possible, but some give an unexpected result!

19

L1
U1
S1
L2
U2
S2

1
1
1
2
2
2

0
1
1
-
-
-

0
0
1
1
1
2

i (thread) instri
cnt


(shared)
%rdx1

-
-
-
1
2
2

%rdx2

Thread 1 critical 
section

Thread 2 critical 
section

  movq  cnt(%rip),%rdx

  addq  $1, %rdx

  movq  %rdx, cnt(%rip)

Li
Ui
Si
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Concurrent Execution (cont)
• A legal (feasible) but undesired ordering: two threads increment 

the counter, but the result is 1 instead of 2

20

L1
U1
L2
S1
U2
S2

1
1
2
1
2
2

0
1
-
1
-
-

0
0
0
1
1
1

i (thread) instri %rdx1

-
-
0
-
1
1

%rdx2
cnt


(shared)

  movq  cnt(%rip),%rdx

  addq  $1, %rdx

  movq  %rdx, cnt(%rip)

Li
Ui
Si
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Assembly Code for Counter Loop

21

for (i = 0; i < niters; i++)

    cnt++; 

    movq  (%rdi), %rcx

    testq %rcx,%rcx

    jle   .L2

    movl  $0, %eax

.L3:

    movq  cnt(%rip),%rdx

    addq  $1, %rdx

    movq  %rdx, cnt(%rip)

    addq  $1, %rax

    cmpq  %rcx, %rax

    jne   .L3

.L2:

Hi : Head

Ti : Tail

Li  : Load cnt

Ui : Update cnt

Si : Store cnt

Asm code for thread i

critical 
section 
wrt cnt

C code for counter loop in thread i
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Critical Section

22

• Code section (a sequence of instructions) where no more than one 
thread should be executing concurrently.


• Critical section refers to code, but its intention is to protect data!

    movq  (%rdi), %rcx

    testq %rcx,%rcx

    jle   .L2

    movl  $0, %eax

.L3:

    movq  cnt(%rip),%rdx

    addq  $1, %rdx

    movq  %rdx, cnt(%rip)

    addq  $1, %rax

    cmpq  %rcx, %rax

    jne   .L3

.L2:

Hi : Head

Ti : Tail

Li  : Load cnt

Ui : Update cnt

Si : Store cnt

critical 
section 
wrt cnt
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Critical Section

22

• Code section (a sequence of instructions) where no more than one 
thread should be executing concurrently.


• Critical section refers to code, but its intention is to protect data!
• Threads need to have mutually exclusive access to critical section. That 

is, the execution of the critical section must be atomic: instructions in a 
CS either are executed entirely without interruption or not executed at all.

    movq  (%rdi), %rcx

    testq %rcx,%rcx

    jle   .L2

    movl  $0, %eax

.L3:

    movq  cnt(%rip),%rdx

    addq  $1, %rdx

    movq  %rdx, cnt(%rip)

    addq  $1, %rax

    cmpq  %rcx, %rax

    jne   .L3

.L2:

Hi : Head

Ti : Tail

Li  : Load cnt

Ui : Update cnt

Si : Store cnt

critical 
section 
wrt cnt
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Enforcing Mutual Exclusion
• We must coordinate/synchronize the execution of the threads


• i.e., need to guarantee mutually exclusive access for each critical section.


• Classic solution: 

• Semaphores/mutex (Edsger Dijkstra)


• Other approaches

• Condition variables

• Monitors (Java)

• 254/258 discusses these

23
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Using Semaphores for Mutual Exclusion
• Basic idea:
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• Basic idea:

• Associate each shared variable (or related set of shared variables) with 
a unique variable, called semaphore, initially 1.

• Every time a thread tries to enter the critical section, it first checks the 
semaphore value. If it’s still 1, the thread decrements the mutex value to 
0 (through a P operation) and enters the critical section. If it’s 0, wait.
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• Every time a thread exits the critical section, it increments the 
semaphore value to 1 (through a V operation) so that other threads are 
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• No more than one thread can be in the critical section at a time.

• Terminology
• Binary semaphore is also called mutex (i.e., the semaphore value 
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Using Semaphores for Mutual Exclusion
• Basic idea:

• Associate each shared variable (or related set of shared variables) with 
a unique variable, called semaphore, initially 1.

• Every time a thread tries to enter the critical section, it first checks the 
semaphore value. If it’s still 1, the thread decrements the mutex value to 
0 (through a P operation) and enters the critical section. If it’s 0, wait.

• Every time a thread exits the critical section, it increments the 
semaphore value to 1 (through a V operation) so that other threads are 
now allowed to enter the critical section.

• No more than one thread can be in the critical section at a time.

• Terminology
• Binary semaphore is also called mutex (i.e., the semaphore value 

could only be 0 or 1)
• Think of P operation as “locking”, and V as “unlocking”.

24
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Proper Synchronization
• Define and initialize a mutex for the shared variable cnt:

25

  volatile long cnt = 0;  /* Counter */

  sem_t mutex;            /* Semaphore that protects cnt */

 

  Sem_init(&mutex, 0, 1); /* mutex = 1 */

• Surround critical section with P and V:

 for (i = 0; i < niters; i++) {

     P(&mutex);

     cnt++;

     V(&mutex);

  }

linux> ./goodcnt 10000

OK cnt=20000

linux> ./goodcnt 10000

OK cnt=20000

linux>

Warning: It’s orders of magnitude slower 
than badcnt.c. 

goodcnt.c
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Problem? 
• Wouldn’t there be a problem when multiple threads access the 

mutex? How do we ensure exclusive accesses to mutex itself?

26

 for (i = 0; i < niters; i++) {

     P(&mutex);

     cnt++;

     V(&mutex);

  } goodcnt.c



Carnegie Mellon

Problem? 
• Wouldn’t there be a problem when multiple threads access the 

mutex? How do we ensure exclusive accesses to mutex itself?
• Hardware MUST provide mechanisms for atomic accesses to the 

mutex variable.
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Problem? 
• Wouldn’t there be a problem when multiple threads access the 

mutex? How do we ensure exclusive accesses to mutex itself?
• Hardware MUST provide mechanisms for atomic accesses to the 

mutex variable.
• Checking mutex value and setting its value must be an atomic 

unit: they either are performed entirely or not performed at all.

26

 for (i = 0; i < niters; i++) {

     P(&mutex);

     cnt++;

     V(&mutex);

  } goodcnt.c



Carnegie Mellon

Problem? 
• Wouldn’t there be a problem when multiple threads access the 

mutex? How do we ensure exclusive accesses to mutex itself?
• Hardware MUST provide mechanisms for atomic accesses to the 

mutex variable.
• Checking mutex value and setting its value must be an atomic 

unit: they either are performed entirely or not performed at all.
• on x86: the atomic test-and-set instruction.

26

 for (i = 0; i < niters; i++) {

     P(&mutex);

     cnt++;

     V(&mutex);

  } goodcnt.c
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Deadlock
• Def: A process/thread is deadlocked if and only if it is waiting for 

a condition that will never be true

• General to concurrent/parallel programming (threads, 

processes)

• Typical Scenario


• Processes 1 and 2 needs two resources (A and B) to proceed

• Process 1 acquires A, waits for B

• Process 2 acquires B, waits for A

• Both will wait forever!

27
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Deadlocking With Semaphores

28

void *count(void *vargp)

{

    int i;

    int id = (int) vargp;

    for (i = 0; i < NITERS; i++) {

	 P(&mutex[id]); P(&mutex[1-id]);

	 cnt++;

	 V(&mutex[id]); V(&mutex[1-id]);

    }

    return NULL;

}


int main()

{

    pthread_t tid[2];

    Sem_init(&mutex[0], 0, 1);  /* mutex[0] = 1 */

    Sem_init(&mutex[1], 0, 1);  /* mutex[1] = 1 */

    Pthread_create(&tid[0], NULL, count, (void*) 0);

    Pthread_create(&tid[1], NULL, count, (void*) 1);

    Pthread_join(tid[0], NULL);

    Pthread_join(tid[1], NULL);

    printf("cnt=%d\n", cnt);

    exit(0);

}

Tid[0]:

P(s0);

P(s1);

cnt++;

V(s0);

V(s1);


Tid[1]:

P(s1);

P(s0);

cnt++;

V(s1);

V(s0);
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Avoiding Deadlock

29

Tid[0]:

P(s0);

P(s1);

cnt++;

V(s0);

V(s1);

Tid[1]:

P(s0);

P(s1);

cnt++;

V(s1);

V(s0);

Acquire shared resources in same order

Tid[0]:

P(s0);

P(s1);

cnt++;

V(s0);

V(s1);

Tid[1]:

P(s1);

P(s0);

cnt++;

V(s1);

V(s0);
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Summary of Multi-threading Programming
• Concurrent/parallel threads access shared variables

• Need to protect concurrent accesses to guarantee correctness

• Semaphores (e.g., mutex) provide a simple solution

• Can lead to deadlock if not careful

• Take CSC 254/258 to know more about avoiding deadlocks 

(and parallel programming in general)

30
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Thread-level Parallelism (TLP)
• Thread-Level Parallelism


• Splitting a task into independent sub-tasks

• Each thread is responsible for a sub-task

31



Carnegie Mellon

Thread-level Parallelism (TLP)
• Thread-Level Parallelism


• Splitting a task into independent sub-tasks

• Each thread is responsible for a sub-task
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• Each of t threads processes one range (sub-task)

• Sum all sub-sums in the end
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Thread-level Parallelism (TLP)
• Thread-Level Parallelism


• Splitting a task into independent sub-tasks

• Each thread is responsible for a sub-task

• Example: Parallel summation of N number

• Partition values 0, …, n-1 into t ranges,⎣n/t⎦ values each range

• Each of t threads processes one range (sub-task)

• Sum all sub-sums in the end

• Question: if you parallel you work N ways, do you always an N 
times speedup?

31
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Why the Sequential Bottleneck?
• Maximum speedup limited by the 

sequential portion
• Main cause: Non-parallelizable 

operations on data
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• e.g., Synchronization overhead
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Each thread:

    loop {

        Compute

        P(A)
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     }

N
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Amdahl’s Law

•Gene Amdahl (1922 – 2015). Giant in computer architecture
•Captures the difficulty of using parallelism to speed things up
•Amdahl’s Law


• f: Parallelizable fraction of a program

• N: Number of processors (i.e., maximal achievable speedup)

33

Speedup =
1

+1 - f f
N

Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.

•Completely parallelizable (f = 1): Speedup = N
•Completely sequential (f = 0): Speedup = 1
•Mostly parallelizable (f = 0.9, N = 1000): Speedup = 9.9
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Today
• From process to threads


• Basic thread execution model

• Multi-threading programming

• Hardware support of threads


• Single core

• Multi-core

• Cache coherence

34
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Can A Single Core Support Multi-threading?

• Need to multiplex between different threads (time slicing)

35

Thread A Thread B Thread C

Sequential Multi-threaded
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Any benefits?
• Can single-core multi-threading provide any performance gains?
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Any benefits?
• Can single-core multi-threading provide any performance gains?
• If Thread A has a cache miss and the pipeline gets stalled, 

switch to Thread C. Improves the overall performance.

36

Thread A Thread B Thread C

Cache

Miss!
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• Quantum based (every thousands of cycles)



Carnegie Mellon

When to Switch?

37

• Coarse grained

• Event based, e.g., switch on L3 cache miss

• Quantum based (every thousands of cycles)

• Fine grained

• Cycle by cycle

• Thornton, “CDC 6600: Design of a Computer,” 1970.

• Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP 

1978. The HEP machine. A seminal paper that shows that using multi-
threading can avoid branch prediction.



Carnegie Mellon

When to Switch?

37

• Coarse grained

• Event based, e.g., switch on L3 cache miss

• Quantum based (every thousands of cycles)

• Fine grained

• Cycle by cycle

• Thornton, “CDC 6600: Design of a Computer,” 1970.

• Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP 

1978. The HEP machine. A seminal paper that shows that using multi-
threading can avoid branch prediction.

•Either way, need to save/restore thread context upon 
switching.
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Fine-Grained Switching

38

•One big bonus of fine-grained switching: no need for 
branch predictor!!

1

F

2

D
F

3

E
D

4

M
E

5

M
W

FF

    xorg %rax, %rax 
    jne L1            # Not taken

irmovq $3, %rax   # Target + 1

irmovq $1, %rax   # Fall Through
L1  irmovq $4, %rcx   # Target

Stall

6

W

DD

7

EE

8

MM

9

WW
FF DD EE MM WW

FF DD EE MM

Stall
Stall

Stall

The stalling approach
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Fine-Grained Switching
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•One big bonus of fine-grained switching: no need for 
branch predictor!!

The branch prediction approach
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Fine-Grained Switching

40

•One big bonus of fine-grained switching: no need for branch 
predictor!!

1

F

2

D
F

3

E
D

4

M
E

5

M
W

FF

    xorg %rax, %rax 

    jne L1            # Not taken

irmovq $1, %rax   # Fall Through

6

W

DD

7

EE

8

MM

9

WW
FF DD EE MM WW

FF DD EE MM

The fine-grained multi-threading approach

Inst x from TID=1

Inst x+1 from TID=1

FF DD EE MM WW
FF DD EE MM WW

Inst y from TID=2

Inst y+1 from TID=2

Inst x+2 from TID=1
Inst y+2 from TID=2

FF DD EE
FF DD

… …
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•One big bonus of fine-grained switching: no need for branch 
predictor!!

• Context switching overhead would be very high! Use separate 
hardware contexts for each thread (e.g., separate register files).
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Fine-Grained Switching
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•One big bonus of fine-grained switching: no need for branch 
predictor!!

• Context switching overhead would be very high! Use separate 
hardware contexts for each thread (e.g., separate register files).

• GPUs do this (among other things). More later.
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