
CSC 252/452: Computer Organization 
 Fall 2024: Lecture 24 

Instructor: Yanan Guo

Department of Computer Science

University of Rochester

Carnegie Mellon

Announcements

2

• Final exam: Dec. 14th, 8:30 AM -- 11:30 AM

• Open book test: any sort of paper-based product, e.g., book,

notes, magazine, old tests.

• No electronic devices

• Problem sets and previous exams are helpful.

Carnegie Mellon

Today
• From process to threads

• Basic thread execution model

• Multi-threading programming

• Hardware support of threads

• Single core

• Multi-core

• Hyper-threading

• Cache coherence

3

Carnegie Mellon

Programmers View of A Process

• Process = process context + code, data, and stack

4

Shared libraries

Run-time heap

0

Read/write data

Program context:

 Data registers

 Condition codes

 Stack pointer (SP)

 Program counter (PC)

Code, data, and stack

Read-only code/data

StackSP

PC

brk

Process context

Kernel context:

 VM structures

 Descriptor table

 brk pointer

Carnegie Mellon

A Process With Multiple Threads
• Multiple threads can be associated with a process

• Each thread has its own logical control flow

• Each thread shares the same code, data, and kernel context

• Each thread has its own stack for local variables

• but not protected from other threads

• Each thread has its own thread id (TID)

5

Thread 1 context:

 Data registers

 Condition codes

 SP1

 PC1

stack 1

Thread 1 (main thread)

shared libraries

run-time heap

0

read/write data

 Shared code and data

read-only code/data

Kernel context:

 VM structures

 Descriptor table

 brk pointer

Thread 2 context:

 Data registers

 Condition codes

 SP2

 PC2

stack 2

Thread 2 (peer thread)

Carnegie Mellon

Logical View of Threads

• Threads associated with process form a pool of peers

• Unlike processes which form a tree hierarchy

6

P0

P1

sh sh sh

foo

bar

T1

Process hierarchyThreads associated with process foo

T2
T4

T5 T3

shared code, data

and kernel context

Carnegie Mellon

Concurrent Threads

• Two threads are concurrent if their flows overlap in
time

• Otherwise, they are sequential

• Examples:

• Concurrent: A & B, A&C

• Sequential: B & C

7

Time

Thread A Thread B Thread C

Carnegie Mellon

Concurrent Thread Execution
• Single Core Processor

• Simulate parallelism by
time slicing

8

Time

Thread A Thread B Thread C Thread A Thread B Thread C

Run 3 threads on 2 cores

• Multi Core Processor

• Threads can have true

parallelisms

Carnegie Mellon

Threads vs. Processes

• How threads and processes are similar

• Each has its own logical control flow

• Each can run concurrently with others (possibly on different cores)

• Each is context switched, controlled by kernel

9

Carnegie Mellon

Threads vs. Processes

• How threads and processes are similar

• Each has its own logical control flow

• Each can run concurrently with others (possibly on different cores)

• Each is context switched, controlled by kernel

• How threads and processes are different

• Threads share all code and data (except local stacks)

• Processes (typically) do not

• Threads are less expensive than processes

• Space: threads share the same virtual address space except stacks, but

processes have their own virtual address space

• Process control (creating and reaping) twice as expensive

• Typical Linux numbers:

• ~20K cycles to create and reap a process

• ~10K cycles (or less) to create and reap a thread

9

Carnegie Mellon

Posix Threads (Pthreads) Interface
•Pthreads: Standard interface for ~60 functions that manipulate threads from

C programs

• Creating and reaping threads

• pthread_create()

• pthread_join()

• Determining your thread ID

• pthread_self()

• Terminating threads

• pthread_cancel()

• pthread_exit()

• exit() [terminates all threads] , return()[terminates current thread]

• Synchronizing access to shared variables

• pthread_mutex_init

• pthread_mutex_[un]lock

10

Carnegie Mellon

The Pthreads "hello, world" Program

11

void *thread(void *vargp) /* thread routine */

{

 printf("Hello, world!\n");

 return NULL;

}

/*

 * hello.c - Pthreads "hello, world" program

 */

#include "csapp.h"

void *thread(void *vargp);

int main()

{

 pthread_t tid;

 Pthread_create(&tid, NULL, thread, NULL);

 Pthread_join(tid, NULL);

 exit(0);

}

hello.c

hello.c

Carnegie Mellon

The Pthreads "hello, world" Program

11

void *thread(void *vargp) /* thread routine */

{

 printf("Hello, world!\n");

 return NULL;

}

/*

 * hello.c - Pthreads "hello, world" program

 */

#include "csapp.h"

void *thread(void *vargp);

int main()

{

 pthread_t tid;

 Pthread_create(&tid, NULL, thread, NULL);

 Pthread_join(tid, NULL);

 exit(0);

}

hello.c

Thread ID

hello.c

Carnegie Mellon

The Pthreads "hello, world" Program

11

void *thread(void *vargp) /* thread routine */

{

 printf("Hello, world!\n");

 return NULL;

}

/*

 * hello.c - Pthreads "hello, world" program

 */

#include "csapp.h"

void *thread(void *vargp);

int main()

{

 pthread_t tid;

 Pthread_create(&tid, NULL, thread, NULL);

 Pthread_join(tid, NULL);

 exit(0);

}

Thread attributes

(usually NULL)

hello.c

Thread ID

hello.c

Carnegie Mellon

The Pthreads "hello, world" Program

11

void *thread(void *vargp) /* thread routine */

{

 printf("Hello, world!\n");

 return NULL;

}

/*

 * hello.c - Pthreads "hello, world" program

 */

#include "csapp.h"

void *thread(void *vargp);

int main()

{

 pthread_t tid;

 Pthread_create(&tid, NULL, thread, NULL);

 Pthread_join(tid, NULL);

 exit(0);

}

Thread attributes

(usually NULL)

hello.c

Thread ID

Thread routine

hello.c

Carnegie Mellon

The Pthreads "hello, world" Program

11

void *thread(void *vargp) /* thread routine */

{

 printf("Hello, world!\n");

 return NULL;

}

/*

 * hello.c - Pthreads "hello, world" program

 */

#include "csapp.h"

void *thread(void *vargp);

int main()

{

 pthread_t tid;

 Pthread_create(&tid, NULL, thread, NULL);

 Pthread_join(tid, NULL);

 exit(0);

}

Thread attributes

(usually NULL)

Thread arguments

(void *p)

hello.c

Thread ID

Thread routine

hello.c

Carnegie Mellon

The Pthreads "hello, world" Program

11

void *thread(void *vargp) /* thread routine */

{

 printf("Hello, world!\n");

 return NULL;

}

/*

 * hello.c - Pthreads "hello, world" program

 */

#include "csapp.h"

void *thread(void *vargp);

int main()

{

 pthread_t tid;

 Pthread_create(&tid, NULL, thread, NULL);

 Pthread_join(tid, NULL);

 exit(0);

}

Thread attributes

(usually NULL)

Thread arguments

(void *p)

Return value

(void **p)

hello.c

Thread ID

Thread routine

hello.c

Carnegie Mellon

Execution of Threaded “hello, world”

12

Main thread

Carnegie Mellon

Execution of Threaded “hello, world”

12

Main thread

call Pthread_create()

Carnegie Mellon

Execution of Threaded “hello, world”

12

Main thread

call Pthread_create()

Carnegie Mellon

Execution of Threaded “hello, world”

12

Main thread

Peer thread
call Pthread_create()

Carnegie Mellon

Execution of Threaded “hello, world”

12

Main thread

Peer thread
call Pthread_create()

Pthread_create() returns

Carnegie Mellon

Execution of Threaded “hello, world”

12

Main thread

Peer thread
call Pthread_create()

call Pthread_join()

Pthread_create() returns

Carnegie Mellon

Execution of Threaded “hello, world”

12

Main thread

Peer thread

Main thread waits for

peer thread to terminate

call Pthread_create()

call Pthread_join()

Pthread_create() returns

Carnegie Mellon

Execution of Threaded “hello, world”

12

Main thread

Peer thread

return NULL;Main thread waits for

peer thread to terminate

call Pthread_create()

call Pthread_join()
printf()

Peer thread

terminates

Pthread_create() returns

Carnegie Mellon

Execution of Threaded “hello, world”

12

Main thread

Peer thread

return NULL;Main thread waits for

peer thread to terminate

call Pthread_create()

call Pthread_join()

Pthread_join() returns

printf()

Peer thread

terminates

Pthread_create() returns

Carnegie Mellon

Execution of Threaded “hello, world”

12

Main thread

Peer thread

return NULL;Main thread waits for

peer thread to terminate

exit()

Terminates

main thread and

any peer threads

call Pthread_create()

call Pthread_join()

Pthread_join() returns

printf()

Peer thread

terminates

Pthread_create() returns

Carnegie Mellon

Today
• From process to threads

• Basic thread execution model

• Multi-threading programming

• Hardware support of threads

• Single core

• Multi-core

• Cache coherence

13

Carnegie Mellon

Shared Variables in Threaded C Programs
• One great thing about threads is that they can share same

program variables.

• Question: Which variables in a threaded C program are shared?

• Intuitively, the answer is as simple as “global variables are

shared” and “stack variables are private”. Not so simple in reality.

14

Thread 1 context:

 Data registers

 Condition codes

 SP1

 PC1

stack 1

Thread 1 (main thread) shared libraries

run-time heap

0

read/write data

 Shared code and data

read-only code/data

Kernel context:

 VM structures

 Descriptor table

 brk pointer

Thread 2 context:

 Data registers

 Condition codes

 SP2

 PC2

stack 2

Thread 2 (peer thread)

Carnegie Mellon

Example Program to Illustrate Sharing

15

char **ptr; /* global var */

void *thread(void *vargp)

{

 long myid = (long)vargp;

 static int cnt = 0;

 printf("[%ld]: %s (cnt=%d)\n",

 myid, ptr[myid], ++cnt);

 return NULL;

}

int main()

{

 long i;

 pthread_t tid;

 char *msgs[2] = {

 "Hello from foo",

 "Hello from bar"

 };

 ptr = msgs;

 for (i = 0; i < 2; i++)

 pthread_create(&tid,

 NULL,

 thread,

 (void *)i);

 pthread_exit(NULL);

} sharing.c

Memory mapped region

for shared libraries

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

Main thread stack

Peer thread 0 stack

Peer thread 1 stack

Carnegie Mellon

Example Program to Illustrate Sharing

15

char **ptr; /* global var */

void *thread(void *vargp)

{

 long myid = (long)vargp;

 static int cnt = 0;

 printf("[%ld]: %s (cnt=%d)\n",

 myid, ptr[myid], ++cnt);

 return NULL;

}

int main()

{

 long i;

 pthread_t tid;

 char *msgs[2] = {

 "Hello from foo",

 "Hello from bar"

 };

 ptr = msgs;

 for (i = 0; i < 2; i++)

 pthread_create(&tid,

 NULL,

 thread,

 (void *)i);

 pthread_exit(NULL);

} sharing.c

Memory mapped region

for shared libraries

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

Main thread stack

ptr

Peer thread 0 stack

Peer thread 1 stack

Carnegie Mellon

Example Program to Illustrate Sharing

15

char **ptr; /* global var */

void *thread(void *vargp)

{

 long myid = (long)vargp;

 static int cnt = 0;

 printf("[%ld]: %s (cnt=%d)\n",

 myid, ptr[myid], ++cnt);

 return NULL;

}

int main()

{

 long i;

 pthread_t tid;

 char *msgs[2] = {

 "Hello from foo",

 "Hello from bar"

 };

 ptr = msgs;

 for (i = 0; i < 2; i++)

 pthread_create(&tid,

 NULL,

 thread,

 (void *)i);

 pthread_exit(NULL);

} sharing.c

Memory mapped region

for shared libraries

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

Main thread stack

ptr

i tid

msgs

Peer thread 0 stack

Peer thread 1 stack

Carnegie Mellon

Example Program to Illustrate Sharing

15

char **ptr; /* global var */

void *thread(void *vargp)

{

 long myid = (long)vargp;

 static int cnt = 0;

 printf("[%ld]: %s (cnt=%d)\n",

 myid, ptr[myid], ++cnt);

 return NULL;

}

int main()

{

 long i;

 pthread_t tid;

 char *msgs[2] = {

 "Hello from foo",

 "Hello from bar"

 };

 ptr = msgs;

 for (i = 0; i < 2; i++)

 pthread_create(&tid,

 NULL,

 thread,

 (void *)i);

 pthread_exit(NULL);

} sharing.c

Memory mapped region

for shared libraries

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

Main thread stack

ptr

i tid

msgs

Peer thread 0 stack
myid

Peer thread 1 stack

Carnegie Mellon

Example Program to Illustrate Sharing

15

char **ptr; /* global var */

void *thread(void *vargp)

{

 long myid = (long)vargp;

 static int cnt = 0;

 printf("[%ld]: %s (cnt=%d)\n",

 myid, ptr[myid], ++cnt);

 return NULL;

}

int main()

{

 long i;

 pthread_t tid;

 char *msgs[2] = {

 "Hello from foo",

 "Hello from bar"

 };

 ptr = msgs;

 for (i = 0; i < 2; i++)

 pthread_create(&tid,

 NULL,

 thread,

 (void *)i);

 pthread_exit(NULL);

} sharing.c

Memory mapped region

for shared libraries

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

Main thread stack

ptr

i tid

msgs

Peer thread 0 stack
myid

myid
Peer thread 1 stack

Carnegie Mellon

Example Program to Illustrate Sharing

15

char **ptr; /* global var */

void *thread(void *vargp)

{

 long myid = (long)vargp;

 static int cnt = 0;

 printf("[%ld]: %s (cnt=%d)\n",

 myid, ptr[myid], ++cnt);

 return NULL;

}

int main()

{

 long i;

 pthread_t tid;

 char *msgs[2] = {

 "Hello from foo",

 "Hello from bar"

 };

 ptr = msgs;

 for (i = 0; i < 2; i++)

 pthread_create(&tid,

 NULL,

 thread,

 (void *)i);

 pthread_exit(NULL);

} sharing.c

Memory mapped region

for shared libraries

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

Main thread stack

ptr

i tid

msgs

Peer thread 0 stack
myid

cnt

myid
Peer thread 1 stack

Carnegie Mellon

Example Program to Illustrate Sharing

15

char **ptr; /* global var */

void *thread(void *vargp)

{

 long myid = (long)vargp;

 static int cnt = 0;

 printf("[%ld]: %s (cnt=%d)\n",

 myid, ptr[myid], ++cnt);

 return NULL;

}

int main()

{

 long i;

 pthread_t tid;

 char *msgs[2] = {

 "Hello from foo",

 "Hello from bar"

 };

 ptr = msgs;

 for (i = 0; i < 2; i++)

 pthread_create(&tid,

 NULL,

 thread,

 (void *)i);

 pthread_exit(NULL);

} sharing.c

Memory mapped region

for shared libraries

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

Main thread stack

ptr

i tid

msgs

Peer thread 0 stack
myid

cnt

myid
Peer thread 1 stack

p0 p1 main

Carnegie Mellon

Example Program to Illustrate Sharing

15

char **ptr; /* global var */

void *thread(void *vargp)

{

 long myid = (long)vargp;

 static int cnt = 0;

 printf("[%ld]: %s (cnt=%d)\n",

 myid, ptr[myid], ++cnt);

 return NULL;

}

int main()

{

 long i;

 pthread_t tid;

 char *msgs[2] = {

 "Hello from foo",

 "Hello from bar"

 };

 ptr = msgs;

 for (i = 0; i < 2; i++)

 pthread_create(&tid,

 NULL,

 thread,

 (void *)i);

 pthread_exit(NULL);

} sharing.c

Memory mapped region

for shared libraries

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

Main thread stack

ptr

i tid

msgs

Peer thread 0 stack
myid

cnt

myid
Peer thread 1 stack

p0 p1

p0 p1 main

Carnegie Mellon

Example Program to Illustrate Sharing

15

char **ptr; /* global var */

void *thread(void *vargp)

{

 long myid = (long)vargp;

 static int cnt = 0;

 printf("[%ld]: %s (cnt=%d)\n",

 myid, ptr[myid], ++cnt);

 return NULL;

}

int main()

{

 long i;

 pthread_t tid;

 char *msgs[2] = {

 "Hello from foo",

 "Hello from bar"

 };

 ptr = msgs;

 for (i = 0; i < 2; i++)

 pthread_create(&tid,

 NULL,

 thread,

 (void *)i);

 pthread_exit(NULL);

} sharing.c

Memory mapped region

for shared libraries

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

Main thread stack

ptr

i tid

msgs

Peer thread 0 stack
myid

cnt

myid
Peer thread 1 stack

p0 p1

p0 p1 main

main

Carnegie Mellon

Example Program to Illustrate Sharing

15

char **ptr; /* global var */

void *thread(void *vargp)

{

 long myid = (long)vargp;

 static int cnt = 0;

 printf("[%ld]: %s (cnt=%d)\n",

 myid, ptr[myid], ++cnt);

 return NULL;

}

int main()

{

 long i;

 pthread_t tid;

 char *msgs[2] = {

 "Hello from foo",

 "Hello from bar"

 };

 ptr = msgs;

 for (i = 0; i < 2; i++)

 pthread_create(&tid,

 NULL,

 thread,

 (void *)i);

 pthread_exit(NULL);

} sharing.c

Memory mapped region

for shared libraries

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

Main thread stack

ptr

i tid

msgs

Peer thread 0 stack
myid

cnt

myid
Peer thread 1 stack

p0 p1

p0 p1 main

main

p0 p1 main

Carnegie Mellon

Example Program to Illustrate Sharing

15

char **ptr; /* global var */

void *thread(void *vargp)

{

 long myid = (long)vargp;

 static int cnt = 0;

 printf("[%ld]: %s (cnt=%d)\n",

 myid, ptr[myid], ++cnt);

 return NULL;

}

int main()

{

 long i;

 pthread_t tid;

 char *msgs[2] = {

 "Hello from foo",

 "Hello from bar"

 };

 ptr = msgs;

 for (i = 0; i < 2; i++)

 pthread_create(&tid,

 NULL,

 thread,

 (void *)i);

 pthread_exit(NULL);

} sharing.c

Memory mapped region

for shared libraries

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

Main thread stack

ptr

i tid

msgs

Peer thread 0 stack
myid

cnt

myid
Peer thread 1 stack

p0

p0 p1

p0 p1 main

main

p0 p1 main

Carnegie Mellon

Example Program to Illustrate Sharing

15

char **ptr; /* global var */

void *thread(void *vargp)

{

 long myid = (long)vargp;

 static int cnt = 0;

 printf("[%ld]: %s (cnt=%d)\n",

 myid, ptr[myid], ++cnt);

 return NULL;

}

int main()

{

 long i;

 pthread_t tid;

 char *msgs[2] = {

 "Hello from foo",

 "Hello from bar"

 };

 ptr = msgs;

 for (i = 0; i < 2; i++)

 pthread_create(&tid,

 NULL,

 thread,

 (void *)i);

 pthread_exit(NULL);

} sharing.c

Memory mapped region

for shared libraries

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

Main thread stack

ptr

i tid

msgs

Peer thread 0 stack
myid

cnt

myid
Peer thread 1 stack

p0

p1

p0 p1

p0 p1 main

main

p0 p1 main

Carnegie Mellon

Synchronizing Threads		
• Shared variables are handy...

• …but introduce the possibility of nasty synchronization errors.

16

Carnegie Mellon

Improper Synchronization

17

/* Global shared variable */

volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)

{

 pthread_t tid1, tid2;

 long niters = 10000;

 Pthread_create(&tid1, NULL,

 thread, &niters);

 Pthread_create(&tid2, NULL,

 thread, &niters);

 Pthread_join(tid1, NULL);

 Pthread_join(tid2, NULL);

 /* Check result */

 if (cnt != (2 * 10000))

 printf("BOOM! cnt=%ld\n", cnt);

 else

 printf("OK cnt=%ld\n", cnt);

 exit(0);

}

/* Thread routine */

void *thread(void *vargp)

{

 long i, niters =

 *((long *)vargp);

 for (i = 0; i < niters; i++)

 cnt++;

 return NULL;

}

badcnt.c

https://www.geeksforgeeks.org/understanding-volatile-qualifier-in-c/

Carnegie Mellon

Improper Synchronization

17

/* Global shared variable */

volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)

{

 pthread_t tid1, tid2;

 long niters = 10000;

 Pthread_create(&tid1, NULL,

 thread, &niters);

 Pthread_create(&tid2, NULL,

 thread, &niters);

 Pthread_join(tid1, NULL);

 Pthread_join(tid2, NULL);

 /* Check result */

 if (cnt != (2 * 10000))

 printf("BOOM! cnt=%ld\n", cnt);

 else

 printf("OK cnt=%ld\n", cnt);

 exit(0);

}

/* Thread routine */

void *thread(void *vargp)

{

 long i, niters =

 *((long *)vargp);

 for (i = 0; i < niters; i++)

 cnt++;

 return NULL;

}

linux> ./badcnt

OK cnt=20000

linux> ./badcnt

BOOM! cnt=13051

cnt should be 20,000.

What went wrong?
badcnt.c

https://www.geeksforgeeks.org/understanding-volatile-qualifier-in-c/

Carnegie Mellon

Assembly Code for Counter Loop

18

for (i = 0; i < niters; i++)

 cnt++;

C code for counter loop in thread i

 movq (%rdi), %rcx

 testq %rcx,%rcx

 jle .L2

 movl $0, %eax

.L3:

 movq cnt(%rip),%rdx

 addq $1, %rdx

 movq %rdx, cnt(%rip)

 addq $1, %rax

 cmpq %rcx, %rax

 jne .L3

.L2:

Hi : Head

Ti : Tail

Li : Load cnt

Ui : Update cnt

Si : Store cnt

Asm code for thread i

Carnegie Mellon

Concurrent Execution
• Key observation: In general, any sequentially consistent

interleaving is possible, but some give an unexpected result!

19

L1
U1
S1
L2
U2
S2

1
1
1
2
2
2

0
1
1
-
-
-

0
0
1
1
1
2

i (thread) instri
cnt

(shared)
%rdx1

-
-
-
1
2
2

%rdx2

Thread 1 critical
section

Thread 2 critical
section

 movq cnt(%rip),%rdx

 addq $1, %rdx

 movq %rdx, cnt(%rip)

Li
Ui
Si

Carnegie Mellon

Concurrent Execution (cont)
• A legal (feasible) but undesired ordering: two threads increment

the counter, but the result is 1 instead of 2

20

L1
U1
L2
S1
U2
S2

1
1
2
1
2
2

0
1
-
1
-
-

0
0
0
1
1
1

i (thread) instri %rdx1

-
-
0
-
1
1

%rdx2
cnt

(shared)

 movq cnt(%rip),%rdx

 addq $1, %rdx

 movq %rdx, cnt(%rip)

Li
Ui
Si

Carnegie Mellon

Assembly Code for Counter Loop

21

for (i = 0; i < niters; i++)

 cnt++;

 movq (%rdi), %rcx

 testq %rcx,%rcx

 jle .L2

 movl $0, %eax

.L3:

 movq cnt(%rip),%rdx

 addq $1, %rdx

 movq %rdx, cnt(%rip)

 addq $1, %rax

 cmpq %rcx, %rax

 jne .L3

.L2:

Hi : Head

Ti : Tail

Li : Load cnt

Ui : Update cnt

Si : Store cnt

Asm code for thread i

critical
section
wrt cnt

C code for counter loop in thread i

Carnegie Mellon

Critical Section

22

• Code section (a sequence of instructions) where no more than one
thread should be executing concurrently.

• Critical section refers to code, but its intention is to protect data!

 movq (%rdi), %rcx

 testq %rcx,%rcx

 jle .L2

 movl $0, %eax

.L3:

 movq cnt(%rip),%rdx

 addq $1, %rdx

 movq %rdx, cnt(%rip)

 addq $1, %rax

 cmpq %rcx, %rax

 jne .L3

.L2:

Hi : Head

Ti : Tail

Li : Load cnt

Ui : Update cnt

Si : Store cnt

critical
section
wrt cnt

Carnegie Mellon

Critical Section

22

• Code section (a sequence of instructions) where no more than one
thread should be executing concurrently.

• Critical section refers to code, but its intention is to protect data!
• Threads need to have mutually exclusive access to critical section. That

is, the execution of the critical section must be atomic: instructions in a
CS either are executed entirely without interruption or not executed at all.

 movq (%rdi), %rcx

 testq %rcx,%rcx

 jle .L2

 movl $0, %eax

.L3:

 movq cnt(%rip),%rdx

 addq $1, %rdx

 movq %rdx, cnt(%rip)

 addq $1, %rax

 cmpq %rcx, %rax

 jne .L3

.L2:

Hi : Head

Ti : Tail

Li : Load cnt

Ui : Update cnt

Si : Store cnt

critical
section
wrt cnt

Carnegie Mellon

Enforcing Mutual Exclusion
• We must coordinate/synchronize the execution of the threads

• i.e., need to guarantee mutually exclusive access for each critical section.

• Classic solution:

• Semaphores/mutex (Edsger Dijkstra)

• Other approaches

• Condition variables

• Monitors (Java)

• 254/258 discusses these

23

Carnegie Mellon

Using Semaphores for Mutual Exclusion
• Basic idea:

24

Carnegie Mellon

Using Semaphores for Mutual Exclusion
• Basic idea:

• Associate each shared variable (or related set of shared variables) with
a unique variable, called semaphore, initially 1.

24

Carnegie Mellon

Using Semaphores for Mutual Exclusion
• Basic idea:

• Associate each shared variable (or related set of shared variables) with
a unique variable, called semaphore, initially 1.

• Every time a thread tries to enter the critical section, it first checks the
semaphore value. If it’s still 1, the thread decrements the mutex value to
0 (through a P operation) and enters the critical section. If it’s 0, wait.

24

Carnegie Mellon

Using Semaphores for Mutual Exclusion
• Basic idea:

• Associate each shared variable (or related set of shared variables) with
a unique variable, called semaphore, initially 1.

• Every time a thread tries to enter the critical section, it first checks the
semaphore value. If it’s still 1, the thread decrements the mutex value to
0 (through a P operation) and enters the critical section. If it’s 0, wait.

• Every time a thread exits the critical section, it increments the
semaphore value to 1 (through a V operation) so that other threads are
now allowed to enter the critical section.

24

Carnegie Mellon

Using Semaphores for Mutual Exclusion
• Basic idea:

• Associate each shared variable (or related set of shared variables) with
a unique variable, called semaphore, initially 1.

• Every time a thread tries to enter the critical section, it first checks the
semaphore value. If it’s still 1, the thread decrements the mutex value to
0 (through a P operation) and enters the critical section. If it’s 0, wait.

• Every time a thread exits the critical section, it increments the
semaphore value to 1 (through a V operation) so that other threads are
now allowed to enter the critical section.

• No more than one thread can be in the critical section at a time.

24

Carnegie Mellon

Using Semaphores for Mutual Exclusion
• Basic idea:

• Associate each shared variable (or related set of shared variables) with
a unique variable, called semaphore, initially 1.

• Every time a thread tries to enter the critical section, it first checks the
semaphore value. If it’s still 1, the thread decrements the mutex value to
0 (through a P operation) and enters the critical section. If it’s 0, wait.

• Every time a thread exits the critical section, it increments the
semaphore value to 1 (through a V operation) so that other threads are
now allowed to enter the critical section.

• No more than one thread can be in the critical section at a time.

• Terminology

24

Carnegie Mellon

Using Semaphores for Mutual Exclusion
• Basic idea:

• Associate each shared variable (or related set of shared variables) with
a unique variable, called semaphore, initially 1.

• Every time a thread tries to enter the critical section, it first checks the
semaphore value. If it’s still 1, the thread decrements the mutex value to
0 (through a P operation) and enters the critical section. If it’s 0, wait.

• Every time a thread exits the critical section, it increments the
semaphore value to 1 (through a V operation) so that other threads are
now allowed to enter the critical section.

• No more than one thread can be in the critical section at a time.

• Terminology
• Binary semaphore is also called mutex (i.e., the semaphore value

could only be 0 or 1)

24

Carnegie Mellon

Using Semaphores for Mutual Exclusion
• Basic idea:

• Associate each shared variable (or related set of shared variables) with
a unique variable, called semaphore, initially 1.

• Every time a thread tries to enter the critical section, it first checks the
semaphore value. If it’s still 1, the thread decrements the mutex value to
0 (through a P operation) and enters the critical section. If it’s 0, wait.

• Every time a thread exits the critical section, it increments the
semaphore value to 1 (through a V operation) so that other threads are
now allowed to enter the critical section.

• No more than one thread can be in the critical section at a time.

• Terminology
• Binary semaphore is also called mutex (i.e., the semaphore value

could only be 0 or 1)
• Think of P operation as “locking”, and V as “unlocking”.

24

Carnegie Mellon

Proper Synchronization
• Define and initialize a mutex for the shared variable cnt:

25

 volatile long cnt = 0; /* Counter */

 sem_t mutex; /* Semaphore that protects cnt */

 Sem_init(&mutex, 0, 1); /* mutex = 1 */

• Surround critical section with P and V:

 for (i = 0; i < niters; i++) {

 P(&mutex);

 cnt++;

 V(&mutex);

 }

linux> ./goodcnt 10000

OK cnt=20000

linux> ./goodcnt 10000

OK cnt=20000

linux>

Warning: It’s orders of magnitude slower
than badcnt.c.

goodcnt.c

Carnegie Mellon

Problem?
• Wouldn’t there be a problem when multiple threads access the

mutex? How do we ensure exclusive accesses to mutex itself?

26

 for (i = 0; i < niters; i++) {

 P(&mutex);

 cnt++;

 V(&mutex);

 } goodcnt.c

Carnegie Mellon

Problem?
• Wouldn’t there be a problem when multiple threads access the

mutex? How do we ensure exclusive accesses to mutex itself?
• Hardware MUST provide mechanisms for atomic accesses to the

mutex variable.

26

 for (i = 0; i < niters; i++) {

 P(&mutex);

 cnt++;

 V(&mutex);

 } goodcnt.c

Carnegie Mellon

Problem?
• Wouldn’t there be a problem when multiple threads access the

mutex? How do we ensure exclusive accesses to mutex itself?
• Hardware MUST provide mechanisms for atomic accesses to the

mutex variable.
• Checking mutex value and setting its value must be an atomic

unit: they either are performed entirely or not performed at all.

26

 for (i = 0; i < niters; i++) {

 P(&mutex);

 cnt++;

 V(&mutex);

 } goodcnt.c

Carnegie Mellon

Problem?
• Wouldn’t there be a problem when multiple threads access the

mutex? How do we ensure exclusive accesses to mutex itself?
• Hardware MUST provide mechanisms for atomic accesses to the

mutex variable.
• Checking mutex value and setting its value must be an atomic

unit: they either are performed entirely or not performed at all.
• on x86: the atomic test-and-set instruction.

26

 for (i = 0; i < niters; i++) {

 P(&mutex);

 cnt++;

 V(&mutex);

 } goodcnt.c

Carnegie Mellon

Deadlock
• Def: A process/thread is deadlocked if and only if it is waiting for

a condition that will never be true

• General to concurrent/parallel programming (threads,

processes)

• Typical Scenario

• Processes 1 and 2 needs two resources (A and B) to proceed

• Process 1 acquires A, waits for B

• Process 2 acquires B, waits for A

• Both will wait forever!

27

Carnegie Mellon

Deadlocking With Semaphores

28

void *count(void *vargp)

{

 int i;

 int id = (int) vargp;

 for (i = 0; i < NITERS; i++) {

	 P(&mutex[id]); P(&mutex[1-id]);

	 cnt++;

	 V(&mutex[id]); V(&mutex[1-id]);

 }

 return NULL;

}

int main()

{

 pthread_t tid[2];

 Sem_init(&mutex[0], 0, 1); /* mutex[0] = 1 */

 Sem_init(&mutex[1], 0, 1); /* mutex[1] = 1 */

 Pthread_create(&tid[0], NULL, count, (void*) 0);

 Pthread_create(&tid[1], NULL, count, (void*) 1);

 Pthread_join(tid[0], NULL);

 Pthread_join(tid[1], NULL);

 printf("cnt=%d\n", cnt);

 exit(0);

}

Tid[0]:

P(s0);

P(s1);

cnt++;

V(s0);

V(s1);

Tid[1]:

P(s1);

P(s0);

cnt++;

V(s1);

V(s0);

Carnegie Mellon

Avoiding Deadlock

29

Tid[0]:

P(s0);

P(s1);

cnt++;

V(s0);

V(s1);

Tid[1]:

P(s0);

P(s1);

cnt++;

V(s1);

V(s0);

Acquire shared resources in same order

Tid[0]:

P(s0);

P(s1);

cnt++;

V(s0);

V(s1);

Tid[1]:

P(s1);

P(s0);

cnt++;

V(s1);

V(s0);

Carnegie Mellon

Summary of Multi-threading Programming
• Concurrent/parallel threads access shared variables

• Need to protect concurrent accesses to guarantee correctness

• Semaphores (e.g., mutex) provide a simple solution

• Can lead to deadlock if not careful

• Take CSC 254/258 to know more about avoiding deadlocks

(and parallel programming in general)

30

Carnegie Mellon

Thread-level Parallelism (TLP)
• Thread-Level Parallelism

• Splitting a task into independent sub-tasks

• Each thread is responsible for a sub-task

31

Carnegie Mellon

Thread-level Parallelism (TLP)
• Thread-Level Parallelism

• Splitting a task into independent sub-tasks

• Each thread is responsible for a sub-task

• Example: Parallel summation of N number

• Partition values 0, …, n-1 into t ranges,⎣n/t⎦ values each range

• Each of t threads processes one range (sub-task)

• Sum all sub-sums in the end

31

Carnegie Mellon

Thread-level Parallelism (TLP)
• Thread-Level Parallelism

• Splitting a task into independent sub-tasks

• Each thread is responsible for a sub-task

• Example: Parallel summation of N number

• Partition values 0, …, n-1 into t ranges,⎣n/t⎦ values each range

• Each of t threads processes one range (sub-task)

• Sum all sub-sums in the end

• Question: if you parallel you work N ways, do you always an N
times speedup?

31

Carnegie Mellon

Why the Sequential Bottleneck?
• Maximum speedup limited by the

sequential portion
• Main cause: Non-parallelizable

operations on data

32

Carnegie Mellon

Why the Sequential Bottleneck?
• Maximum speedup limited by the

sequential portion
• Main cause: Non-parallelizable

operations on data
• Parallel portion is usually not

perfectly parallel as well

• e.g., Synchronization overhead

32

Carnegie Mellon

Why the Sequential Bottleneck?
• Maximum speedup limited by the

sequential portion
• Main cause: Non-parallelizable

operations on data
• Parallel portion is usually not

perfectly parallel as well

• e.g., Synchronization overhead

32

Each thread:

 loop {

 Compute

 P(A)

 Update shared data

 V(A)

 }

Carnegie Mellon

Why the Sequential Bottleneck?
• Maximum speedup limited by the

sequential portion
• Main cause: Non-parallelizable

operations on data
• Parallel portion is usually not

perfectly parallel as well

• e.g., Synchronization overhead

32

Each thread:

 loop {

 Compute

 P(A)

 Update shared data

 V(A)

 }

N

Carnegie Mellon

Why the Sequential Bottleneck?
• Maximum speedup limited by the

sequential portion
• Main cause: Non-parallelizable

operations on data
• Parallel portion is usually not

perfectly parallel as well

• e.g., Synchronization overhead

32

Each thread:

 loop {

 Compute

 P(A)

 Update shared data

 V(A)

 }

N

C

Carnegie Mellon

Why the Sequential Bottleneck?
• Maximum speedup limited by the

sequential portion
• Main cause: Non-parallelizable

operations on data
• Parallel portion is usually not

perfectly parallel as well

• e.g., Synchronization overhead

32

Each thread:

 loop {

 Compute

 P(A)

 Update shared data

 V(A)

 }

N

C

Carnegie Mellon

Amdahl’s Law

•Gene Amdahl (1922 – 2015). Giant in computer architecture
•Captures the difficulty of using parallelism to speed things up

33
Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.

Carnegie Mellon

Amdahl’s Law

•Gene Amdahl (1922 – 2015). Giant in computer architecture
•Captures the difficulty of using parallelism to speed things up
•Amdahl’s Law

• f: Parallelizable fraction of a program

• N: Number of processors (i.e., maximal achievable speedup)

33
Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.

Carnegie Mellon

Amdahl’s Law

•Gene Amdahl (1922 – 2015). Giant in computer architecture
•Captures the difficulty of using parallelism to speed things up
•Amdahl’s Law

• f: Parallelizable fraction of a program

• N: Number of processors (i.e., maximal achievable speedup)

33

1 - f

Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.

Carnegie Mellon

Amdahl’s Law

•Gene Amdahl (1922 – 2015). Giant in computer architecture
•Captures the difficulty of using parallelism to speed things up
•Amdahl’s Law

• f: Parallelizable fraction of a program

• N: Number of processors (i.e., maximal achievable speedup)

33

+1 - f

Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.

Carnegie Mellon

Amdahl’s Law

•Gene Amdahl (1922 – 2015). Giant in computer architecture
•Captures the difficulty of using parallelism to speed things up
•Amdahl’s Law

• f: Parallelizable fraction of a program

• N: Number of processors (i.e., maximal achievable speedup)

33

+1 - f f
N

Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.

Carnegie Mellon

Amdahl’s Law

•Gene Amdahl (1922 – 2015). Giant in computer architecture
•Captures the difficulty of using parallelism to speed things up
•Amdahl’s Law

• f: Parallelizable fraction of a program

• N: Number of processors (i.e., maximal achievable speedup)

33

Speedup =
1

+1 - f f
N

Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.

Carnegie Mellon

Amdahl’s Law

•Gene Amdahl (1922 – 2015). Giant in computer architecture
•Captures the difficulty of using parallelism to speed things up
•Amdahl’s Law

• f: Parallelizable fraction of a program

• N: Number of processors (i.e., maximal achievable speedup)

33

Speedup =
1

+1 - f f
N

Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.

•Completely parallelizable (f = 1): Speedup = N

Carnegie Mellon

Amdahl’s Law

•Gene Amdahl (1922 – 2015). Giant in computer architecture
•Captures the difficulty of using parallelism to speed things up
•Amdahl’s Law

• f: Parallelizable fraction of a program

• N: Number of processors (i.e., maximal achievable speedup)

33

Speedup =
1

+1 - f f
N

Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.

•Completely parallelizable (f = 1): Speedup = N
•Completely sequential (f = 0): Speedup = 1

Carnegie Mellon

Amdahl’s Law

•Gene Amdahl (1922 – 2015). Giant in computer architecture
•Captures the difficulty of using parallelism to speed things up
•Amdahl’s Law

• f: Parallelizable fraction of a program

• N: Number of processors (i.e., maximal achievable speedup)

33

Speedup =
1

+1 - f f
N

Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.

•Completely parallelizable (f = 1): Speedup = N
•Completely sequential (f = 0): Speedup = 1
•Mostly parallelizable (f = 0.9, N = 1000): Speedup = 9.9

Carnegie Mellon

Today
• From process to threads

• Basic thread execution model

• Multi-threading programming

• Hardware support of threads

• Single core

• Multi-core

• Cache coherence

34

Carnegie Mellon

Can A Single Core Support Multi-threading?

• Need to multiplex between different threads (time slicing)

35

Thread A Thread B Thread C

Sequential Multi-threaded

Carnegie Mellon

Any benefits?
• Can single-core multi-threading provide any performance gains?

36

Thread A Thread B Thread C

Carnegie Mellon

Any benefits?
• Can single-core multi-threading provide any performance gains?

36

Thread A Thread B Thread C

Cache

Miss!

Carnegie Mellon

Any benefits?
• Can single-core multi-threading provide any performance gains?

36

Thread A Thread B Thread C

Cache

Miss!

Carnegie Mellon

Any benefits?
• Can single-core multi-threading provide any performance gains?
• If Thread A has a cache miss and the pipeline gets stalled,

switch to Thread C. Improves the overall performance.

36

Thread A Thread B Thread C

Cache

Miss!

Carnegie Mellon

When to Switch?

37

• Coarse grained

• Event based, e.g., switch on L3 cache miss

• Quantum based (every thousands of cycles)

Carnegie Mellon

When to Switch?

37

• Coarse grained

• Event based, e.g., switch on L3 cache miss

• Quantum based (every thousands of cycles)

• Fine grained

• Cycle by cycle

• Thornton, “CDC 6600: Design of a Computer,” 1970.

• Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP

1978. The HEP machine. A seminal paper that shows that using multi-
threading can avoid branch prediction.

Carnegie Mellon

When to Switch?

37

• Coarse grained

• Event based, e.g., switch on L3 cache miss

• Quantum based (every thousands of cycles)

• Fine grained

• Cycle by cycle

• Thornton, “CDC 6600: Design of a Computer,” 1970.

• Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP

1978. The HEP machine. A seminal paper that shows that using multi-
threading can avoid branch prediction.

•Either way, need to save/restore thread context upon
switching.

Carnegie Mellon

Fine-Grained Switching

38

•One big bonus of fine-grained switching: no need for
branch predictor!!

1

F

2

D
F

3

E
D

4

M
E

5

M
W

FF

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

Stall

6

W

DD

7

EE

8

MM

9

WW
FF DD EE MM WW

FF DD EE MM

Stall
Stall

Stall

The stalling approach

Carnegie Mellon

Fine-Grained Switching

39

•One big bonus of fine-grained switching: no need for
branch predictor!!

The branch prediction approach

Carnegie Mellon

Fine-Grained Switching

40

•One big bonus of fine-grained switching: no need for branch
predictor!!

1

F

2

D
F

3

E
D

4

M
E

5

M
W

FF

 xorg %rax, %rax

 jne L1 # Not taken

irmovq $1, %rax # Fall Through

6

W

DD

7

EE

8

MM

9

WW
FF DD EE MM WW

FF DD EE MM

The fine-grained multi-threading approach

Inst x from TID=1

Inst x+1 from TID=1

FF DD EE MM WW
FF DD EE MM WW

Inst y from TID=2

Inst y+1 from TID=2

Inst x+2 from TID=1
Inst y+2 from TID=2

FF DD EE
FF DD

… …

Carnegie Mellon

Fine-Grained Switching

40

•One big bonus of fine-grained switching: no need for branch
predictor!!

• Context switching overhead would be very high! Use separate
hardware contexts for each thread (e.g., separate register files).

1

F

2

D
F

3

E
D

4

M
E

5

M
W

FF

 xorg %rax, %rax

 jne L1 # Not taken

irmovq $1, %rax # Fall Through

6

W

DD

7

EE

8

MM

9

WW
FF DD EE MM WW

FF DD EE MM

The fine-grained multi-threading approach

Inst x from TID=1

Inst x+1 from TID=1

FF DD EE MM WW
FF DD EE MM WW

Inst y from TID=2

Inst y+1 from TID=2

Inst x+2 from TID=1
Inst y+2 from TID=2

FF DD EE
FF DD

… …

Carnegie Mellon

Fine-Grained Switching

40

•One big bonus of fine-grained switching: no need for branch
predictor!!

• Context switching overhead would be very high! Use separate
hardware contexts for each thread (e.g., separate register files).

• GPUs do this (among other things). More later.

1

F

2

D
F

3

E
D

4

M
E

5

M
W

FF

 xorg %rax, %rax

 jne L1 # Not taken

irmovq $1, %rax # Fall Through

6

W

DD

7

EE

8

MM

9

WW
FF DD EE MM WW

FF DD EE MM

The fine-grained multi-threading approach

Inst x from TID=1

Inst x+1 from TID=1

FF DD EE MM WW
FF DD EE MM WW

Inst y from TID=2

Inst y+1 from TID=2

Inst x+2 from TID=1
Inst y+2 from TID=2

FF DD EE
FF DD

… …

Carnegie Mellon

41

