CSC 252/452: Computer Organization
Fall 2024: Lecture 3

Instructor: Yanan Guo
Department of Computer Science
University of Rochester

Announcement

* Programming Assignment 1 is out

e Detalls:
https://www.cs.rochester.edu/courses/252/fall2024/labs/
assignmenti.html

e Due on Sep 16th, 11:59 PM
e You have 3 slip days

https://www.cs.rochester.edu/courses/252/spring2021/labs/assignment1.html
https://www.cs.rochester.edu/courses/252/spring2021/labs/assignment1.html

Announcement

* Programming Assignment 1 is in C language.
* Seek help from TAs.
e [As are best positioned to answer your questions about
programming assignments!!!
* Programming assignments do NOT repeat the lecture

materials. They ask you to synthesize what you have
learned from the lectures and work out something new.

* Pay attention to Blackboard announcements
« There are changes about the office hour locations/time...

| have to move my office hour tomorrow to early next
week.

Last Lecture

* Why Binary (bits)?
* Bit-level manipulations

* Integers
- Representation: unsigned and signed
- Conversion, casting

Encoding Negative Numbers

* Two’s Complement

Encoding Negative Numbers

* Two’s Complement

Unsigned Binary

O 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Encoding Negative Numbers

* Two’s Complement

+—— 11—
-4 -3 -2 -10 1 2 3

Unsigned Binary

O 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Encoding Negative Numbers

* Two’s Complement

+—— 11—
-4 -3 -2 -10 1 2 3

Signed Unsigned Binary

0 0 000
1 1 001
2 2 010
3 3 011
-4 4 100
-3 5 101
-2 6 110
-1 / 111

Encoding Negative Numbers

* Two’s Complement

+—— 11—
-4 -3 -2 -10 1 2 3

b2b1bo Signed Unsigned Binary
/4 T '\ 0 0 000
: : 1 1 001
:/J\/el.ghtsdln 22 ot 90 > - e
nsighe 3 3 011
-4 4 100
-3 5 101
-2 6 110
-1 7 111

Encoding Negative Numbers

* Two’s Complement

+—— 11—
-4 -3 -2 -10 1 2 3

b2b1bo Signed Unsigned Binary
/‘ T '\ 0 0 000
: : 1 1 001

Weights in

¥ S j 92 91 20 > > 010
nsighe 3 3 011
: : -4 4 100
Welghts in 22 91 90 3 5 101
Signed 5 6 110
-1 7 111

Encoding Negative Numbers

* Two’s Complement

+—— 11—
-4 -3 -2 -10 1 2 3

b2b1bo Signed Unsigned Binary
/‘ T '\ 0 0 000
: : 1 1 001

Weights in

¥ S j 92 91 20 > > 010
nsighe 3 3 011
: : -4 4 100
Welghts in 22 91 90 3 5 101
Signed 5 6 110
-1 7 111

1012 =120+ 0*2" + (-1*2%) = -310

Encoding Negative Numbers

* Two’s Complement

+—— 11—
-4 -3 -2 -10 1 2 3

b2b1bo Signed Unsigned Binary
/‘ T '\ 0 0 000
: : 1 1 001

Weights in

¥ S j 92 91 20 > > 010
nsighe 3 3 011
: : -4 4 100
Welghts in 22 91 90 3 5 101
Signed 5 6 110
-1 7 111

1012 =2 1°2°% 0727 + (-172%) = -310

1

Encoding Negative Numbers

* Two’s Complement

+—— 11—
-4 -3 -2 -10 1 2 3

b2b1bo Signed Unsigned Binary
/‘ T '\ 0 0 000
: : 1 1 001

Weights in

¥ S j 92 91 20 > > 010
nsighe 3 3 011
: : -4 4 100
Welghts in 22 91 90 3 5 101
Signed 5 6 110
-1 7 111

1012 =2 1°2°% 0727 + (-172%) = -310

1

Encoding Negative Numbers

* Two’s Complement

+—— 11—
-4 -3 -2 -10 1 2 3

b2b1bo Signed Unsigned Binary
/‘ T '\ 0 0 000
: : 1 1 001

Weights in

¥ S j 92 91 20 > > 010
nsighe 3 3 011
: : -4 4 100
Welghts in 22 91 90 3 5 101
Signed 5 6 110
-1 7 111

1012 =2 1°2°% 0727 + (-172%) = -310

1

Two-Complement Implications

®* Only 1 zero
* There is (still) a bit that represents sign!
* Unsigned arithmetic still works

Signed
0

y
2
3

L A

Binary
000
001
010
011
100
101
110
111

Two-Complement Implications

®* Only 1 zero
* There is (still) a bit that represents sign!
* Unsigned arithmetic still works

010
+) 101

111

Signed
0

y
2
3

L A

Binary
000
001
010
011
100
101
110
111

Two-Complement Implications

®* Only 1 zero

* There is (still) a bit that represents sign!
* Unsigned arithmetic still works

010
+) 101

111

+) -3

Signed
0

y
2
3

L A

Binary
000
001
010
011
100
101
110
111

Two-Complement Implications

®* Only 1 zero gigned (I)B(i)rcl)ary
* There is (still) a bit that represents sign! | 001
* Unsigned arithmetic still works 2 010
3 011
-4 100
010 K -3 101
+) 101 +) -3) 110
111 -1 i 111

* 3 + 1 becomes -4 (called overflow. More on it later.)

Data Types (in C)

* Suppose you want to define a variable that represents a
person’s age. What assumptions can you make about this
variable’s numerical value?

Data Types (in C)

* Suppose you want to define a variable that represents a
person’s age. What assumptions can you make about this
variable’s numerical value?

« Integer
« Non-negative
« Between 0 and 255 (8 bits)

Data Types (in C)

* Suppose you want to define a variable that represents a
person’s age. What assumptions can you make about this
variable’s numerical value?

« Integer
« Non-negative
« Between 0 and 255 (8 bits)

* Define a data type that captures all these attributes:
unsigned charinC

« Internally, an unsigned char variable is represented as a 8-bit,
non-negative, binary number

Data Types (in C)

* What if you want to define a variable that could take
negative values?

Data Types (in C)

* What if you want to define a variable that could take
negative values?
« That's what signed data types (e.g., int, short, etc.) are for

Data Types (in C)

* What if you want to define a variable that could take
negative values?
« That's what signed data types (e.g., int, short, etc.) are for
* How are int values internally represented?

« Theoretically could be either signed-magnitude or two’s complement
« The C language designers chose two’s complement

Data Types (in C)

W
8 16 32 64
UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808

(unsigned) char

(unsigned) short

(unsigned) int

(unsigned) 1long

1

2

4

4

1

2

4

8

Data Types (in C)

W
8 16 32 64
UMax | 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin | -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808
- C Language
C Data Type ¥inolude <limits.h>
(unsigned) char -Declares constants, e.g.,
_ e ULONG MAX
(unsigned) short 2 2 -
« LONG MAX
(uns:l.gned) int 4 4 ° LONG_MIN

(unsigned) long 4 8 *Values platform specific

Mapping Between Signed & Unsigned

* Mappings between unsigned and two’s complement
numbers: Keep bit representations and reinterpret

Signed Unsigned Binary

0 0 000
1 1 001
2 2 010
3 3 011
-4 4 100
-3 5 101
-2 6 110
1 7 111

Mapping Signed <> Unsigned

Bits

0000

Signed

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Unsigned

@)

OO N|O|OW|B~|W[IN]| —

—1
o

—_
—_

—
\)

—1
w

—
N

—1
O1

11

Today: Representing Information in Binary

* Integers

- Expanding, truncating

12

The Problem

short int x

int

ix

short int y

int

iy

15213;
(int) x;
-15213;
(int) y;

C Data Type

1

char
short
int

long

2

4

13

The Problem

short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;

* Converting from smaller to larger integer data type
* Should we preserve the value?

* Can we preserve the value?

* How?

C Data Type

1

char
short
int

long

2

4

13

The Problem

short int x = 15213; char 1
int ix = (int) x;
short int y = -15213; S ETE 2
int iy = (int) y; Slimph 4
long 8
* Converting from smaller to larger integer data type
* Should we preserve the value?
* Can we preserve the value?
* How?
Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
ix 15213 | 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 c4 93 11000100 10010011
iy -15213| FF FF C4 93 11111111 11111111 11000100 10010011

Sighed Extension

®* Task:

« Given w-bit signed integer x
« Convert it to (w+k)-bit integer with same value

14

Sighed Extension

®* Task:

« Given w-bit signed integer x
« Convert it to (w+k)-bit integer with same value

®* Rule:

« Make k copies of sign bit:
- X' = X=1 5oy Xiet s X1 X2 5. ++5 Xp

k copies of MSB

14

Sighed Extension

®* Task:

« Given w-bit signed integer x
« Convert it to (w+k)-bit integer with same value

®* Rule:

« Make k copies of sign bit:
- X' = X=1 5oy Xiet s X1 X2 5. ++5 Xp

k copies of MSB) w

X o000

vy VY
/
o 00 o 00

14

Another Problem

unsigned short x = 47981;
unsigned int ux = x;
Decimal Hex Binary
X 47981 BB 6D 10111011 01101101

ux 47981 | 00 00 BB 6D 00000000 00000000 10111011 O1101101

Unsigned (Zero) Extension

®* Task:

« Given w-bit unsigned integer x
« Convert it to (w+k)-bit integer with same value

®* Rule:

e Simply pad zeros:
* X/: O,...,O,XW_1,XW_2,...,XO

—_
k copies of 0) w
X o000

X'
0jJo o 00 0jo o 00

Yet Another Problem

int x = 53191;
short sx = (short) x;
Decimal Hex Binary
X 53191 00 00 CF C7 00000000 00000000 11001111 11000111
SxX -12345 CF C7 11001111 11000111

17

Yet Another Problem

int x = 53191;
short sx = (short) x;
Decimal Hex Binary
X 53191 00 00 CF C7 00000000 00000000 11001111 11000111
SxX -12345 CF C7 11001111 11000111

* Truncating (e.g., int to short OR unsigned int to unsigned short)
« C’s implementation: leading bits are truncated, results reinterpreted
« SO can’t always preserve the numerical value

17

Today: Representing Information in Binary

* Integers

- Addition, negation, multiplication, shifting

18

Unsigned Addition

Unsigned Binary

0 000
1 001
2 010
3 011
4 100
5 101
6 110
[111

19

Unsigned Addition

® Similar to Decimal Addition

Unsigned Binary

0 000
1 001
2 010
3 011
4 100
5 101
6 110
[111

19

Unsigned Addition

* Similar to Decimal Addition Unsigned Binary

* Suppose we have a new data type that is (1) 88?
3-bit wide (c.f., short has 16 bits) 5 010

3 011

4 100

5 101

010 5 6 110

Normal +) 101 +) 5 i 1

Case 111 .

19

Unsigned Addition

® Similar to Decimal Addition

* Suppose we have a new data type that is
3-bit wide (c.f., short has 16 bits)

* Might overflow: result can’t be

represented within the size of the data type

010
Normal +) 101
Case 111

110
Overflow +) 101
Case

1011

N

+) 5

(o))}

+) 5

11

Unsigned Binary

0 000
1 001
2 010
3 011
4 100
5 101
6 110
[111

19

Unsigned Addition

® Similar to Decimal Addition

* Suppose we have a new data type that is
3-bit wide (c.f., short has 16 bits)

* Might overflow: result can’t be

represented within the size of the data type

Normal
Case

Overflow
Case

010
+) 101

111

110
+) 101

1011

N

+) 5

(o))}

+) 5

11

Unsigned Binary

0 000
1 001
2 010
3 011
4 100
5 101
6 110
[111

4———— True Sum

19

Unsigned Addition

® Similar to Decimal Addition

* Suppose we have a new data type that is
3-bit wide (c.f., short has 16 bits)

* Might overflow: result can’t be

represented within the size of the data type

Normal
Case

Overflow
Case

010
+) 101

111

110
+) 101

1011
011

N

+) 5

+) 5

Unsigned Binary

0 000
1 001
2 010
3 011
4 100
5 101
6 110
[111

4———— True Sum
44— Sum with same bits

19

Unsigned Addition in C

Operands: w bits u
+ v

True Sum: w+1 bits 3+ v

Discard Carry: W bits UAdd, (u , v)

20

Two’s Complement Addition

Signed
0

y
2
3

L A

Binary
000
001
010
011
100
101
110
111

21

Two’s Complement Addition

* Has identical bit-level behavior as
unsigned addition (a big advantage
over sign-magnitude)

Signed
0

y
2
3

L A

Binary
000
001
010
011
100
101
110
111

21

Two’s Complement Addition

* Has identical bit-level behavior as
unsigned addition (a big advantage
over sign-magnitude)

Normal
Case

010
+) 101

111

+) -3

Signed
0

y
2
3

L A

Binary
000
001
010
011
100
101
110
111

21

Two’s Complement Addition

* Has identical bit-level behavior as Signed Binary
unsigned addition (a big advantage (1) 88?
over sign-magnitude) 5 010

* Overflow can also occur 3 011

-4 100
010 2 -3 101
Normal 4) 101+ -3 2 110
Case 111 1 -1 111
110 -2
Overflow +) 101 +) -3
Case

1011 -5

21

Two’s Complement Addition

* Has identical bit-level behavior as
unsigned addition (a big advantage

over sign-magnitude)

®* Overflow can also occur

010

Normal +) 101
Case 111
110

Overflow +) 101
Case 1011
011

2
+) -3

Signed
0

y
2
3

L A

Binary
000
001
010
011
100
101
110
111

21

Two’s Complement Addition

* Has identical bit-level behavior as
unsigned addition (a big advantage

over sign-magnitude)
®* Overflow can also occur

010 2
Normal +) 101 +) -3
Case 111 1

110 -2
Overflow +) 101 +) -3
Case 1011 -5

011 3

Negative Overflow

Min —¥%

Signed

Binary
000
001
010
011
100
101
110
111

21

Two’s Complement Addition

* Has identical bit-level behavior as gigned
unsigned addition (a big advantage 1
over sign-magnitude) 5

* Overflow can also occur 3

Min —% -4
010 2 -3
Normal +) 101 +) -3 2
Case 111 1 -1
110 -2 011
Overflow 4y 101 +) -3 +) 001
Case 1011 -5 0100
011 3

Negative Overflow

+)

Binary
000
001
010
011
100
101
110
111

=

21

Two’s Complement Addition

* Has identical bit-level behavior as gigned g(i)f(‘)ary
unsigned addition (a big advantage 1 T
over sign-magnitude) 5 010

* Overflow can also occur 3 011

Min —¥% 4 100

010 2 -3 101

Normal 4) 101+ -3 2 110
Case 111 1 -1 111
110 -2 011 3

Overflow) 101 +) -3 +) 001) 1
Case 1011 -5 0100 4
011 3 100 -4

Negative Overflow

21

Two’s Complement Addition

* Has identical bit-level behavior as Signed

unsigned addition (a big advantage

over sign-magnitude)
®* Overflow can also occur

Normal
Case

Overflow
Case

010 2

+) 101 +) -3
111 -1
110 -2

+) 101 +) -3
1011 -5
011 3

Negative Overflow

0

Max —#% 3
Min — -4

011
+) 001

0100
100

Binary
000
001
010
011
100
101
110
111

+)

> 1R W

Positive Overflow

21

Two’s Complement Addition in C

Operands: w bits u

+ v

True Sum: w+1 bits

u-+v

Discard Carry: w bits TAdd, (u , v)

22

Is This Signed Addition an Overflow?

Signed Binary

0 000
1 001

111 2 010

+) 110 3 ?;;
1101 {01

110
111

L b A

23

Is This Signed Addition an Overflow?

Signed Binary

0 000
1 001

111 2 010

+) 110 3 ?(1);
101 101

110
111

L b A

23

Is This Signed Addition an Overflow?

Signed Binary

0 000
1 001

111 2 010

+) 110 3 011
100

(1101 » {01

Truncate 110

111

L A

23

Is This Signed Addition an Overflow?

Signed Binary

0 000
1 001

111 1 2 010

+) 110 +) -2 3 011
4 100

101 » -3 3 101
Truncate 5 110

-1 111

23

Is This Signed Addition an Overflow?

Signed Binary

0 000
1 001

111 1 2 010

+) 110 +) -2 3 011
4 100

101 » -3 3 101
Truncate 5 110

-1 111

* This is not an overflow by definition

23

Is This Signed Addition an Overflow?

Signed Binary

0 000
1 001

111 1 2 010

+) 110 +) -2 3 011
4 100

101 » -3 3 101
Truncate 5 110

-1 111

* This is not an overflow by definition

* Because the actual result can be represented using
the bit width of the datatype (3 bits here)

23

Multiplication

Multiplication

* Goal: Computing Product of w-bit numbers x, y

24

Multiplication

* Goal: Computing Product of w-bit numbers x, y

Original Number (w bits)

OMax 2»-'-1

0

OMin -2v-1L

24

Multiplication

* Goal: Computing Product of w-bit numbers x, y

Original Number (w bits) Product

OMax 2»-'-1

0

OMin -2v-1L

24

Multiplication

* Goal: Computing Product of w-bit numbers x, y

Original Number (w bits) Product

PMax
OMax 2v-1-1

0

OMin -2v-1L

24

Multiplication

* Goal: Computing Product of w-bit numbers x, y

Original Number (w bits)

PMax
OMax 2v-1-1

0

OMin -2v-1L

Product

22w-2

OMin?

24

Multiplication

* Goal: Computing Product of w-bit numbers x, y

Original Number (w bits)

PMax
OMax 2v-1-1

0

OMin -2v-1L

PMin

Product

22w-2

OMin?

24

Multiplication

* Goal: Computing Product of w-bit numbers x, y

Original Number (w bits) Product
PMax 2w
OMax 2v-'-1
0
0
OMin -2#"%

PMin —22w-2 4 2w-1 L

OMin?

OMin * OMax

24

Multiplication

* Goal: Computing Product of w-bit numbers x, y

Original Number (w bits) Product (2w bits)
PMax 222 1 OMin?
OMax 2v-'-1
0
0
OMin -2v-\

PMin -22-2+2»' = OMin * OMax

24

Multiplication

* Goal: Computing Product of w-bit numbers x, y

* Exact results can be bigger than w bits
« Up to 2w bits (both signed and unsigned)

Original Number (w bits) Product (2w bits)
PMax 222 OMin?
OMax 2v-'-1
0
0
OMin -2v-\

PMin —22w-2 4 2w-1 L

OMin * OMax

24

Unsigned Multiplication in C

Operands: w bits

True Product: 2*w bits U ° V o0

Discard w bits: w bits

* Standard Multiplication Function
« Ignores high order w bits

® Effectively Implements the following:
UMult,(u,v) = u -v mod2¥

25

Unsigned Multiplication in C

u o000
Operands: w bits
* v o000
True Product: 2*w bits u "V 0o 000
. . . o000
Discard w bits: w bits
* Standard Multiplication Function
« Ignores high order w bits
® Effectively Implements the following:
UMult, (u,v) = u -v mod2¥
1110 1001 E9 223
* 1101 0101 * D5 * 213
*kkk *xkk*x 1101 1101 C1DD 47499
1101 1101 DD 221

25

Signhed Multiplication in C

u o000
Operands: w bits
* o000
y
True Product: 2*w bits # "V X v 00

Discard w bits: w bits

* Standard Multiplication Function
« Ignores high order w bits
« Some of which are different for signed vs. unsigned multiplication
« Lower bits are the same

26

Signhed Multiplication in C

Operands: w bits

True Product: 2*w bits

Discard w bits: w bits

u

. o0 0

* Standard Multiplication Function
« Ignores high order w bits

« Some of which are different for signed vs. unsigned multiplication

« Lower bits are the same

*

1110 1001
1101 0101

*¥kkx *xkkx 1101 1101

1101 1101

E9 -23

* D5 * -43
03DD 989
DD -35

26

Power-of-2 Multiply with Shift

* Operation
- u << kgivesu * 2K

« Both signed and unsigned

Operands: w bits

Power-of-2 Multiply with Shift

* Operation
- u << kgivesu * 2K k
 Both signed and unsigned y oo

Operands: w bits

* 2k O] eee |0|1]10]| eee

True Product: w+k bits U - 2k oo o0 0| eee

Power-of-2 Multiply with Shift

* Operation
- u << kgivesu * 2K
« Both signed and unsigned

Operands: w bits

* 2k O] eee |0|1]10]| eee

True Product: w+k bits U - 2k oo o0 0| eee

Discard k bits: w bits XX 0

Power-of-2 Multiply with Shift

* Operation
- u << kgivesu * 2K
« Both signed and unsigned

Operands: w bits

* 2k O] eee |0|1]10]| eee

True Product: w+k bits u * 2K ©oo0 O] eee
Discard k bits: w bits coe O eee
* Examples
e u <KL 3 == u * 8
¢« (U< b)) - (u<k 3) == u * 24

« Most machines shift and add faster than multiply
« Compiler generates this code automatically

Today: Representing Information in Binary

* Integers

- Summary

28

Arithmetic: Basic Rules

* Addition:
« Unsigned/signed: Normal addition followed by truncate,
same operation on bit level

* Multiplication:

« Unsigned/signed: Normal multiplication followed by truncate,
same operation on bit level

o Shift: Power-of-2 Multiply

Why Should | Use Unsigned?

* Don’t use without understanding implications
o Easy to make mistakes

unsigned int i;
for (i = cnt-2; i >= 0; i--)
af[i] += a[i+l];

« Can be very subtle
#define DELTA sizeof (int)
int i;

for (i = CNT; i-DELTA >= 0; i-= DELTA)

Why Should | Use Unsigned? - Bit Set

* Use bits to represent my availability of the week

b b b, b, b, b, b,
Sun | Mon | Tue | Wed | Thu | Fri | Sat

« Use 1 bit per day, 7 bits in total.
« If bit x is set to 1 then I’m available on day mapped to bit x.

Why Should | Use Unsigned? - Bit Set

* Use bits to represent my availability of the week

b b b, b, b, b, b,
Sun | Mon | Tue | Wed | Thu | Fri | Sat

« Use 1 bit per day, 7 bits in total.
« If bit x is set to 1 then I’m available on day mapped to bit x.

* |InC: unsigned int aval;

Why Should | Use Unsigned? - Bit Set

* Use bits to represent my availability of the week

b b b, b, b, b, b,
Sun | Mon | Tue | Wed | Thu | Fri | Sat

« Use 1 bit per day, 7 bits in total.
« If bit x is set to 1 then I’m available on day mapped to bit x.

* |InC: unsigned int aval;

aval = 129+ 072" + 0"22 + 1"23 + 1°2% + 0*2° + 1*2° = 8910

Today: Floating Point

* Background: Fractional binary numbers and fixed-point

33

Can We Represent Fractions in Binary?

® What does 10.012 mean?
e C.f., Decimal

34

Can We Represent Fractions in Binary?

® What does 10.012 mean?
e C.f., Decimal

12.45 =1*10" + 2*10° + 4*10°" + 5*102

|

Can We Represent Fractions in Binary?

®* What does 10.012 mean?
e C.f., Decimal

|

Can We Represent Fractions in Binary?

®* What does 10.012 mean?
e C.f., Decimal

|

Can We Represent Fractions in Binary?

®* What does 10.012 mean?
e C.f., Decimal

|

Can We Represent Fractions in Binary?

®* What does 10.012 mean?
e C.f., Decimal

Can We Represent Fractions in Binary?

® What does 10.012 mean?
e C.f., Decimal

12.45 =1*10" + 2*10° + 4*10°" + 5*102

10.012 = 127 + 0*2° + 0*2°1 + 1*22

Can We Represent Fractions in Binary?

® What does 10.012 mean?
e C.f., Decimal

12.45 =1*10" + 2*10° + 4*10°" + 5*102

10.012 = 121 |+ 0%20 + 0*21 + 1*2-2
|

Can We Represent Fractions in Binary?

® What does 10.012 mean?
e C.f., Decimal

12.45 =1*10" + 2*10° + 4*10°" + 5*102

10.012 = 121 |+ 0%20 + 0*21 + 1*2-2
|

Can We Represent Fractions in Binary?

® What does 10.012 mean?
e C.f., Decimal

12.45 =1*10" + 2*10° + 4*10°" + 5*102

10.012 = 121 |+ 0%20 + 0*21 + 1*2-2
|

Can We Represent Fractions in Binary?

® What does 10.012 mean?
e C.f., Decimal

12.45 =1*10" + 2*10° + 4*10°" + 5*102

10.012 = 121 |+ 0%20 + 0*21 + 1*2-2
|

Can We Represent Fractions in Binary?

® What does 10.012 mean?
e C.f., Decimal

12.45 =1*10" + 2*10° + 4*10°" + 5*102

10.012 = 121 + 0*20 + 0*2-1 4+ 1*2-2
= 2.2510

Fractional Binary Numbers

bi

bi-1

35

Can We Represent Fractions in Binary?

* What does 10.012 mean?
* C.f., Decimal

¢ 12.45=1"10"+ 2*10° + 410" + 5102
®10.012 =121 + 0*2° + 0*21 + 1*22 = 2.2510

36

Can We Represent Fractions in Binary?

®* What does 10.012 mean?
* C.f., Decimal
e 12.45 =110 + 2*10° + 4*10" + 5*102

®10.012=12"+ 0729 + 0*2°1 + 1*22 = 2.2510

]
0

1

11—
2 3 4 5 6 7T

I
15

Decimal Binary
0000
0001
0010
0011
0100
0101
0110
0111
1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

0 NO O &N+ O

36

Can We Represent Fractions in Binary?

* What does 10.012 mean?

* C.f., Decimal

¢ 12.45=1"10"+ 2*10° + 410" + 5102
®10.012 =121 + 0*2° + 0*21 + 1*22 = 2.2510

HHHHHHHHHHH

0

1

2

3

Decimal Binary

0 00.00
0.25 00.01
0.5 00.10
0.75 00.11
1 01.00
1.25 01.01
1.5 01.10
1.75 01.11
2 10.00
2.25 10.01
2.5 10.10
2.75 10.11
3 11.00
3.25 11.01
3.5 11.10

3.75 11.11

37

Can We Represent Fractions in Binary?

Decimal Binary

* What does 10.012 mean? 0 00.00
* C.f., Decimal 0.25 00.01
* 1 * 0 * -1 * -2 0.5 00.10

e 1245 =1"10"+ 210 + 410" + 5*10 W L
®*10.012 =121+ 020 + 021 + 1*22 =2.2510 1 01.00
1.25 01.01

1.5 01.10

||||||||||||”” 1.75 01.11
2 10.00

0 1 2 3 225 1001
2.5 10.10

2.75 10.11

01.10 1.50 325]18?

+ 01.01 + 1.25 e s

10.11 2.75 3.75 11.11

37

Can We Represent Fractions in Binary?

Decimal Binary

®* What does 10.012 mean? 0 00.00
®* C.f., Decimal 0.25 00.01
o R 1 * 0 * -1 * -2 0.5 00.10
12.45 = 110" + 2109 + 4107 + 5102 05 %0
®10.012=1*21 + 020 + 0*2°1 + 1*22=2.2510 1 01.00
125 01.01

15 01.10

+HHHHHHH 175 0111
2 10.00

0 1 2 3 2025 10.01
Integer Arithmetic Still Works! - B

S— 275 1011

01.10 1.50 325 118?

+ 01.01 + 1.25 — R

10.11 2.75 3.75 11.11

37

Fixed-Point Representation

Decimal Bi
®* Binary point stays fixed Oec'ma Inary

00.00

* Fixed interval between two representable 0.25 00.01
numbers as long as the binary point stays fixed 0.5 00.10

e [The interval in this example is 0.2510 ?‘75 8?';;

* Fixed-point representation of numbers 1 05 01.01
 Integer is one special case of fixed-point 1.5 01.10

_| | | | 1.75 01.11
2 10.00

0 1 2 3 205 10.01
2.5 10.10

2.75 10.11

3 11.00

8.25 11.01

3.5 11.10

3.75 11.11

38

Fixed-Point Representation

* Binary point stays fixed

* Fixed interval between two representable
numbers as long as the binary point stays fixed

e [The interval in this example is 0.2510
* Fixed-point representation of numbers
e Integer is one special case of fixed-point

]
0

I
1

11—
2 3 4 5 6 7T

I
15

Decimal Binary
0000.
0001.
0010.
0011.
0100.
0101.
0110.
0111.
1000.
1001.
1010.
1011.
1100.
1101.
1110.
1111,

O NO O &N = O

_L_L_L_L_L_L(O
o >0 DN —+ O

38

Limitations of Fixed-Point (#7)

Limitations of Fixed-Point (#7)

* Can exactly represent numbers only of the form x/2%

39

Limitations of Fixed-Point (#7)

* Can exactly represent numbers only of the form x/2%

+—+—+—+—+—+—+—+—+—+—+— hsbabibo
0 1/4 1/2 3/4 5/4 3/2 7/4 2 ... 15/4 — —

39

Limitations of Fixed-Point (#7)

* Can exactly represent numbers only of the form x/2%
« Other rational numbers have repeating bit representations

+—+—+—+—+—+—+—+—+—+—+— hsbabibo
0 1/4 1/2 3/4 5/4 3/2 7/4 2 ... 15/4 — —

39

Limitations of Fixed-Point (#7)

* Can exactly represent numbers only of the form x/2%
« Other rational numbers have repeating bit representations

Decimal Value Binary Representation

1/3 0.0101010101[01]...
1/5 0.001100110011[0011]...
1/10 0.0001100110011[0011]...

+—+—+—+—+—+—+—+—+—+—+— hibrbibo
0 1/4 1/2 3/4 5/4 3/2 7/4 2 ... 15/4 — -

39

Limitations of Fixed-Point (#2)

Limitations of Fixed-Point (#2)

* Can’t represent very small and very large numbers at
the same time

40

Limitations of Fixed-Point (#2)

* Can’t represent very small and very large numbers at
the same time

e TO represent very large numbers, the (fixed) interval needs to be
large, making it hard to represent small numbers

40

Limitations of Fixed-Point (#2)

* Can’t represent very small and very large numbers at
the same time

e TO represent very large numbers, the (fixed) interval needs to be
large, making it hard to represent small numbers

40

Limitations of Fixed-Point (#2)

* Can’t represent very small and very large numbers at
the same time

e TO represent very large numbers, the (fixed) interval needs to be
large, making it hard to represent small numbers

+————————F——1— 4+
0 s

|

A Large
Number

40

Limitations of Fixed-Point (#2)

* Can’t represent very small and very large numbers at
the same time

e TO represent very large numbers, the (fixed) interval needs to be
large, making it hard to represent small numbers

Unrepresentable
small numbers

1 4+
0 4

|

A Large
Number

40

Limitations of Fixed-Point (#2)

* Can’t represent very small and very large numbers at
the same time

e TO represent very large numbers, the (fixed) interval needs to be
large, making it hard to represent small numbers

o To represent very small numbers, the (fixed) interval needs to
be small, making it hard to represent large numbers

40

Limitations of Fixed-Point (#2)

* Can’t represent very small and very large numbers at
the same time

e TO represent very large numbers, the (fixed) interval needs to be
large, making it hard to represent small numbers

o To represent very small numbers, the (fixed) interval needs to
be small, making it hard to represent large numbers

HHHHHHHH +00
ot

A Small
Number

40

Limitations of Fixed-Point (#2)

* Can’t represent very small and very large numbers at
the same time

e To represent very large numbers, the (fixed) interval needs to be
large, making it hard to represent small numbers

o To represent very small numbers, the (fixed) interval needs to
be small, making it hard to represent large numbers

Unrepresentable
large numbers

HHHHHH SSSSSSSNNNN——— +co
ot

A Small
Number

40

Today: Floating Point

* Floating point representation

41

Primer: (Normalized) Scientific Notation

®* In decimal: M x 10F
- E Is an integer
« Normalized form: 1<= |[M| < 10

42

Primer: (Normalized) Scientific Notation

®* In decimal: M x 10F
- E Is an integer
« Normalized form: 1<= |[M| < 10

Decimal Value Scientific Notation
2 2%x100°
-4 321.768 -4.321768x103

0.000 000 007 51 7.51x10-°

42

Primer: (Normalized) Scientific Notation

®* In decimal: M x 10F
- E Is an integer
« Normalized form: 1<= |[M| < 10

M x 10E
Decimal Value Scientific Notation
2 2%x100°
-4 321.768 -4.321768x103

0.000 000 007 51 7.51x10-°

42

Primer: (Normalized) Scientific Notation

®* In decimal: M x 10F
- E Is an integer
« Normalized form: 1<= |[M| < 10

M x 10E
A

|
Significand
Decimal Value Scientific Notation
2 2x100
-4,321.768 -4.321768x103
0.000 000 007 51 7.51x107°

42

Primer: (Normalized) Scientific Notation

®* In decimal: M x 10F
- E Is an integer
« Normalized form: 1<= |[M| < 10

M x 10E

T

Significand Base

Decimal Value Scientific Notation
2 2%x100°
-4 321.768 -4.321768x103

0.000 000 007 51 7.51x10-°

42

Primer: (Normalized) Scientific Notation

®* In decimal: M x 10F
- E Is an integer
« Normalized form: 1<= |[M| < 10

M x 10E*— Exponent

T

Significand Base

Decimal Value Scientific Notation
2 2%x100°
-4 321.768 -4.321768x103

0.000 000 007 51 7.51x10-°

42

Primer: (Normalized) Scientific Notation

* In binary: (-1)5 M 2
®* Normalized form:

e I<=M<?2

- M =1.bobi1b2bs...
Fraction
Binary Value
1110110110110
-101.11
0.00101

Sign Exponent
. '
(-1)5 M x 2F

Pt

Significand ~ Base

Scientific Notation
(-1)°1.110110110110 x 212
(-1)71.0111 x 22

(-1)°1.01 x 2%

43

Primer: (Normalized) Scientific Notation

* In binary: (-1)5 M 2

| Sign Exponent
®* Normalized form: i i
e I<=M<?2
. M = 1.bob1bzbs. .. (-1)° M x 2F
Fraction T T

Significand ~ Base
* If | tell you that there is a number where:

e Fraction = 0101

e S=1

e E=10

« You could reconstruct the number as (-1)11.0101x21°

44

Primer: Floating Point Representation

* In binary: (-1)5 M 2

| Sign Exponent
®* Normalized form: l l
e I<=M<?2
. M = 1.bobibzbs. .. ('1)S M x 25
Fraction T T

Significand ~ Base

45

Primer: Floating Point Representation

* In binary: (-1)5 M 2

| Sign Exponent
®* Normalized form: l l
e I<=M<?2
. M = 1.bob1b2bs. .. ('1)S M x 25
Fraction T T

* Encoding Significand Base

45

Primer: Floating Point Representation

* In binary: (-1)5 M 2

| Sign Exponent
®* Normalized form: i l
e I<=M<?2
. M = 1.bob1b2bs. .. ('1)S M x 25
Fraction T T

* Encoding Significand Base

45

Primer: Floating Point Representation

* In binary: (-1)5 M 2

| Sign Exponent
®* Normalized form: l l
e I<=M<?2
. M = 1.bobibzbs. .. ('1)S M x 25
Fraction T T

* Encoding

Significand ~ Base
« MSB s is sign bit s

45

Primer: Floating Point Representation

* In binary: (-1)5 M 2

| Sign Exponent
®* Normalized form: l vL
e I<=M<?2
. M = 1.bobibzbs. .. ('1)S M x 25
Fraction T T

* Encoding
« MSB s is sign bit s

- exp field encodes Exponent (but not exactly the same, more later)

Significand ~ Base

S exp

45

Primer: Floating Point Representation

* In binary: (-1)5 M 2

_ Sign Exponent
* Normalized form: l l
e I<=M<?2
- M =1.bobi1b2bs... (_1)8 M X 2E
Fraction T T

* Encoding
« MSB s is sign bit s

- exp field encodes Exponent (but not exactly the same, more later)
- frac field encodes Fraction (but not exactly the same, more later)

S exp frac

Significand ~ Base

45

6-bit Floating Point Example

ez P

1 3 2

6-bit Floating Point Example

v=crmz
o 1 3 2
* exp has 3 bits, interpreted as an unsigned value

46

6-bit Floating Point Example

ez P
o o 1 3 2

* exp has 3 bits, interpreted as an unsigned value
 If exp were E, we could represent exponents from 0 to 7

46

6-bit Floating Point Example

v=crwe
4 3 2

* exp has 3 bits, interpreted as an unsigned value
 If exp were E, we could represent exponents from 0 to 7
« How about negative exponent?

46

6-bit Floating Point Example

v=crwe
14 3 2

* exp has 3 bits, interpreted as an unsigned value
 If exp were E, we could represent exponents from 0 to 7
« How about negative exponent?
« Subtract a bias term: E = exp - bias (i.e., exp = E + bias)

46

6-bit Floating Point Example

ez P
1 3 2

* exp has 3 bits, interpreted as an unsigned value
 If exp were E, we could represent exponents from 0 to 7
« How about negative exponent?
« Subtract a bias term: E = exp - bias (i.e., exp = E + bias)
« bias is always 2k1 - 1, where k is number of exponent bits

46

6-bit Floating Point Example

ecrnz TR
1 3 2

* exp has 3 bits, interpreted as an unsigned value
 If exp were E, we could represent exponents from 0 to 7
« How about negative exponent?
« Subtract a bias term: E = exp - bias (i.e., exp = E + bias)
« bias is always 2k1 - 1, where k is number of exponent bits

* Example when we use 3 bits for exp (i.e., k = 3):

46

6-bit Floating Point Example

ecrnz TR
1 3 2

* exp has 3 bits, interpreted as an unsigned value
 If exp were E, we could represent exponents from 0 to 7
« How about negative exponent?
« Subtract a bias term: E = exp - bias (i.e., exp = E + bias)
« bias is always 2k1 - 1, where k is number of exponent bits

* Example when we use 3 bits for exp (i.e., k = 3):
e bias=3

46

6-bit Floating Point Example

ecrnz TR
1 3 2

* exp has 3 bits, interpreted as an unsigned value
 If exp were E, we could represent exponents from 0 to 7
« How about negative exponent?
« Subtract a bias term: E = exp - bias (i.e., exp = E + bias)
« bias is always 2k1 - 1, where k is number of exponent bits

* Example when we use 3 bits for exp (i.e., k = 3):
e bias=3
e IfE=-2,expis1(0012)

46

6-bit Floating Point Example

ecrnz TR
1 3 2

* exp has 3 bits, interpreted as an unsigned value
 If exp were E, we could represent exponents from 0 to 7
« How about negative exponent?
« Subtract a bias term: E = exp - bias (i.e., exp = E + bias)
« bias is always 2k1 - 1, where k is number of exponent bits

* Example when we use 3 bits for exp (i.e., k = 3):
e bias=3
e IfE=-2,expis1(0012)

exp
000
001
010
011
100
101
110
111

46

6-bit Floating Point Example

ecrnz TR
1 3 2

* exp has 3 bits, interpreted as an unsigned value =

- If exp were E, we could represent exponents from 0 t0 7 .egums@@@me
« How about negative exponent? -2 001

. Subtract a bias term: E = exp - bias (i.e., exp = E + biag) 1 010

o _ . O O11
o bias is always 2k1 - 1, where k is number of exponent bits 1100

* Example when we use 3 bits for exp (i.e., k = 3): g 1?;
o« fE=-2,expis1(0012)

« Reserve 000 and 111 for other purposes (more on this later)

46

6-bit Floating Point Example

ecrnz TR
1 3 2

* exp has 3 bits, interpreted as an unsigned value -
- If exp were E, we could represent exponents from 0 10 7 ,egums@@@me
« How about negative exponent? -2 001
« Subtract a bias term: E = exp - bias (i.e., exp = E + bias) -1 010

o _ . O O11
o bias is always 2k1 - 1, where k is number of exponent bits 1100

* Example when we use 3 bits for exp (i.e., k = 3): g 1?;
e bias=3 == N—
e IfE=-2,expis1(0012)
« Reserve 000 and 111 for other purposes (more on this later)
« We can now represent exponents from -2 (exp 001) to 3 (exp 110)

46

6-bit Floating Point Example

v=cirwz PR
1 3 2

®* frac has 2 bits, append them after “1.” to form M
.+ frac = 10 implies M = 1.10

47

6-bit Floating Point Example

v=crw
1 3 2

®* frac has 2 bits, append them after “1.” to form M
.+ frac = 10 implies M = 1.10

* Putting it Together: An Example:

-10.12=(-1)" 1.01 x 21

47

6-bit Floating Point Example

v=crw
1 3 2

®* frac has 2 bits, append them after “1.” to form M
.+ frac = 10 implies M = 1.10

* Putting it Together: An Example:

‘
-10.12=(-1)" 1.01 x 21

47

6-bit Floating Point Example

v=crw
1 3 2

®* frac has 2 bits, append them after “1.” to form M
.+ frac = 10 implies M = 1.10

* Putting it Together: An Example:

‘
-10.12=(-1)" 1.01 x 21

47

6-bit Floating Point Example

v=crw
1 3 2

®* frac has 2 bits, append them after “1.” to form M
.+ frac = 10 implies M = 1.10

* Putting it Together: An Example:

‘ ‘
-10.12=(-1)" 1.01 x 21

47

6-bit Floating Point Example

=cornz (RN

1 3 2

* frac has 2 bits, append them after “1.” to form M

. frac =10 implies M =1.10
* Putting it Together: An Example:

‘ .

-10.12=(-1)" 1.01 x 21

exp

001
010
011
100
101
110

47

6-bit Floating Point Example

=cormz [RETRET

1 3 2

* frac has 2 bits, append them after “1.” to form M

. frac =10 implies M =1.10
* Putting it Together: An Example:

‘ .

-10.12=(-1)" 1.01 x 21

exp

001
010
011
100
101
110

47

6-bit Floating Point Example

v=cirme T
1 3 2

®* frac has 2 bits, append them after “1.” to form M E exp
. frac = 10 implies M = 1.10 P V-

* Putting it Together: An Example: -2 001

Loy 4 oo
1042 = (1)1 1.01 x 2! * @

100
I T = R—

47

6-bit Floating Point Example

v=cirwe N
1 3 2

®* frac has 2 bits, append them after “1.” to form M E exp
. frac = 10 implies M = 1.10 P V-

* Putting it Together: An Example: -2 001

Loy 4 oo
1042 = (1)1 1.01 x 2! * @

100
I T = R—

47

