CSC 252/452: Computer Organization
Fall 2024: Lecture 5

Instructor: Yanan Guo

Department of Computer Science
University of Rochester

Announcements

* Programming Assignment 1 is due on Monday!

e Detalls:
https://www.cs.rochester.edu/courses/252/spring2021/la
bs/assignmenti.html

e Due on Sep. 16th, 11:59 PM
e You have 3 slip days

https://www.cs.rochester.edu/courses/252/spring2021/labs/assignment1.html
https://www.cs.rochester.edu/courses/252/spring2021/labs/assignment1.html

IEEE 754 Floating Point Standard

* Single precision: 32 bits

S exp frac

1 8-bit 23-bit
* Double precision: 64 bits

S exp frac

1 11-bit 52-bit

* In C language
-float single precision
-double double precision

Floating Point in C 32-bit Machine

, Max Value
C Data Type Bits Max Value (Decimal)
char 8 27 -1 127
short 16 215 - 1 32767
Fixed point _
: C L : int 32 231 - 1 2147483647
(implicit binary point)
long 64 268 - 1 ~9.2 x 1018
SP floating point float 32 (2-2%)x2127 ~3.4x10%

DP floating point double 64 (2-2°%)x219%° ~1.8x10°%

Floating Point in C 32-bit Machine

, Max Value
C Data Type Bits Max Value (Decimal)
char 8 27 -1 127
short 16 215 - 1 32767
Fixed point _
: C L : int 32 231 - 1 2147483647
(implicit binary point)
long 64 268 - 1 ~9.2 x 1018
SP floating point float 32 (2-2%)x2127 ~3.4x10%
DP floating point double 64 (2-292) x 21023 ~1.8 x 10308

®* To represent 231 in fixed-point, you need at least 32 bits
« Because fixed-point is a weighted positional representation
* In floating-point, we directly encode the exponent

« Floating point is based on scientific notation
« Encoding 31 only needs 7 bits in the exp field

Floating Point Conversions/Casting in C

® double/float — int
« Truncates fractional part
 Like rounding toward zero
« Not defined when out of range or NaN

Floating Point Conversions/Casting in C

®* double/float — int

« Truncates fractional part
e Like rounding toward zero
« Not defined when out of range or NaN

®*int —» float

s exp frac

1 8-bit 23-bit

Floating Point Conversions/Casting in C

®* double/float — int

« Truncates fractional part
e Like rounding toward zero
« Not defined when out of range or NaN

®*int — float
« Can’t guarantee exact casting. Will round according to rounding mode

s exp frac

1 8-bit 23-bit

Floating Point Conversions/Casting in C

®* double/float — int

« Truncates fractional part
e Like rounding toward zero
« Not defined when out of range or NaN

®*int — float
« Can’t guarantee exact casting. Will round according to rounding mode

s exp frac

1 8-bit 23-bit

® int —» double

S exp frac

1 11-bit 52-bit

Floating Point Conversions/Casting in C

®* double/float — int

« Truncates fractional part
e Like rounding toward zero
« Not defined when out of range or NaN

®*int — float
« Can’t guarantee exact casting. Will round according to rounding mode

s exp frac

1 8-bit 23-bit
int — double

e Exact conversion

S exp frac

1 11-bit 52-bit

So far in 252...

int, float

C Program if, else
+, -, >>

So far in 252...

C Program

v

Machine
Code

int, float
1f, else
+, -, >>

H)

00001111
01010101
11110000

So far in 252...

int, float
C Program if, else
+, =, >>
Compilerl
ret, call
Assembly fadd, add
Program imp, jne
: 00001111
Machine 01010101
Code

11110000

So far in 252...

int, float
C Program if, else
, R\‘\ Semantically * T 77
Compllerl Eaui
/ Equivalent cot. call
S ,
Assembly fadd, add
Program imp, jne
: 00001111
Machine 01010101
Code

11110000

So far in 252...

int, float
C Program if, else
, R\ Semantically * T 77
Compllerl | Eaui
/ Equivalent cot. call
S ,
Assembly fadd, add
Program imp, jne
Assemblerl
: 00001111
Machine 01010101
Code

11110000

So far in 252...

int, float
C Program 1f, else
- °| l '\E Semantically T T 22
ompliier ‘,f' Equivalent ret. call
Alsssembly fad;i, add
rogram jmp, Jjne
N bl l '\E Semantically
ssembler / Equivalent 000011 11
Machine 01010101
Code

11110000

So far in 252...

C Program |

Compilerl

Assembly
Program

Assemblerl

Machine
Code

!

Processor

\ Semantically
' Equivalent

\ Semantically
' Equivalent

int, float
1f, else
+, =, >>

H H

ret, call
fadd, add

jmp, jne

00001111
01010101
11110000

Fixed-point adder

(e.g., ripple carry),
Floating-point adder

So far in 252...

C Program _

Compilerl
Assembly

\ Semantically
Equivalent

Program

Assemblerl

Machine
Code

!

Processor

!

Transistor

\ Semantically
' Equivalent

int, float
1f, else
+, =, >>

H H

ret, call
fadd, add

jmp, jne

00001111
01010101
11110000

Fixed-point adder

(e.g., ripple carry),
Floating-point adder

NAND Gate
NOR Gate

So far in 252...

High-Level

Language C Program

!

Assembly
Program

}

Machine
Code

!

Processor

!

Transistor

So far in 252...

High-Level C Program * |SA: Software programmers’
Language view of a computer
l » Provide all info for someone wants
A ol to write assembly/machine code
SR o “Contract” between
i Program assembly/machine code and
Instruction Set
Architecture | PIOEESSET
(ISA) Machine
Code
Processor

!

Transistor

So far in 252...

High-Level * |SA: Software programmers’
C Program :
Language view of a computer
l e Provide all info for someone wants
to write assembly/machine code
Assembly))
« “Contract” between
Instruction Set Program assembly/machine code and
Architecture | , o Procemser .
(ISA) _ Processors execute machine
Machine code (binary). Assembly
Code program is merely a text
l representation of machine
code
Processor

!

Transistor

So far in 252...

High-Level
Language

Instruction Set
Architecture
(ISA)

Microarchitecture

Circuit

C Program

!

Assembly
Program

}

Machine
Code

!

Processor

!

Transistor

* ISA: Software programmers’
view of a computer

e Provide all info for someone wants
to write assembly/machine code

o “Contract” between
assembly/machine code and
Processor

®* Processors execute machine
code (binary). Assembly
program is merely a text
representation of machine
code

®* Microarchitecture: Hardware
implementation of the ISA (with
the help of circuit technologies)

This Module (4 Lectures)

High-Level
Language

Instruction Set
Architecture
(ISA)

Microarchitecture

Circuit

C Program

!

Assembly
Program

}

Machine
Code

!

Processor

!

Transistor

* Assembly Programming

e Explain how various C
constructs are implemented in
assembly code

o Effectively translating from C to
assembly program manually

« Helps us understand how
compilers work

« Helps us understand how
assemblers work
®* Microarchitecture is the
topic of the next module

Today: Assembly Programming |: Basics

* Different ISAs and history behind them

Instruction Set Architecture

* There used to be many ISAs
« x86, ARM, Power/PowerPC, Sparc, MIPS, |A64, z
« Very consolidated today: ARM and x86

10

Instruction Set Architecture

* There used to be many ISAs
« x86, ARM, Power/PowerPC, Sparc, MIPS, |A64, z
« Very consolidated today: ARM and x86

®* There are even more microarchitectures

« Apple/Samsung/Qualcomm have their own microarchitecture
(implementation) of the ARM ISA

o Intel and AMD have different microarchitectures for x86

10

Instruction Set Architecture

* There used to be many ISAs
« x86, ARM, Power/PowerPC, Sparc, MIPS, |A64, z
« Very consolidated today: ARM and x86

®* There are even more microarchitectures

« Apple/Samsung/Qualcomm have their own microarchitecture
(implementation) of the ARM ISA

« Intel and AMD have different microarchitectures for x86
® ISA is lucrative business: ARM’s Business Model
« Patent the ISA, and then license the ISA
« Every implementer pays a royalty to ARM
« Apple/Samsung pays ARM whenever they sell a smartphone

The ARM Diaries, Part 1: How ARM’s Business Model Works:
https://www.anandtech.com/show/7112/the-arm-diaries-part-1-how-arms-business-model-works

https://www.anandtech.com/show/7112/the-arm-diaries-part-1-how-arms-business-model-works

Intel x86 ISA

* Dominate laptop/desktop/cloud market

11

Intel x86 ISA

* Dominate laptop/desktop/cloud market

dolays Storage Support Service

OS X Yosemite

Version 10.10.5

MacBook Pro (Retinay#3-inch, Mid 2014)
Processor 2.6 z Intel Cope i5
Memory 8 GB 1600 Wz DDR3

Graphics Intel Iris 1536 MB
Serial Number C02NVN6JG3QH

System Report... Software Update...

Intel x86 ISA

* Dominate laptop/desktop/cloud market

dolays Storage Support Service

OS X Yosemite

Version 10.10.5

MacBook Pro (Retinay#3-inch, Mid 2014)
Processor 2.6 z Intel Cope i5
Memory 8 GB 160 Zz DDR3

Graphics Intel Iris 1536 MB
Serial Number C02NVN6JG3QH

System Report... Software Update...

amazon

web services

intel.

11

Intel x86 ISA Evolution (Milestones)

* Evolutionary design: Added more features as time goes on

12

Intel x86 ISA Evolution (Milestones)

* Evolutionary design: Added more features as time goes on

Date

1974
1978
1980
1985
1997
=t
2001
2004
2008

Feature LSl :
Implementation

8-bit ISA 8080

16-bit ISA (Basis for IBM PC & DOS) 8086

Add Floating Point instructions 3087

32-bit ISA (Refer to as IA32) 386

Add Multi-Media eXtension (MMX) Pentium/MMX

Add Streaming SIMD Extension (SSE) Pentium |lI

Intel’s first attempt at 64-bit ISA (|IA64, failed) ltanium
Implement AMD’s 64-bit ISA (x86-64, AMD64) Pentium 4E
Add Advanced Vector Extension (AVE) Core i7 Sandy Bridge

12

Intel x86 ISA Evolution (Milestones)

* Evolutionary design: Added more features as time goes on

Date

1974
1978
1980
1985
==
=t
2001
2004
2008

Fea

8-bi
16-t
Add
32-k
Add
Add
Intel
Impl
Add

Number of Instructions

1000
900 -
800 -
700
600
500 -
400 +
300
200 4
100 A

0

L S 2 B

> O O © D Dol
S @:dpc§<§>§>dpég

S T R O O Y e U N e D e S T e N G D e e O U s S |
ﬁ@@@ @

Year

ge

12

Backward Compatibility

* Binary executable generated for an older processor can
execute on a newer processor

* Allows legacy code to be executed on newer machines
« Buy new machines without changing the software
* x86 is backward compatible up until 8086 (16-bit ISA)

e i.e., an 8086 binary executable can be executed on any of today’s
Xx86 machines

* Great for users, nasty for processor implementers

« Every instruction you put into the ISA, you are stuck with it
FOREVER

13

x86 Clones: Advanced Micro Devices (AMD)

* Historically ‘
« AMD build processors for x86 ISA
o A little bit slower, a lot cheaper
AMD

 Recruited top circuit designers from Digital Equipment Corp. and
other downward trending companies

« Developed x86-64, their own 64-bit x86 extension to IA32
e Built first 1 GHz CPU

® Intel felt hard to admit mistake or that AMD was better

¢ 2004: Intel Announces EM64T extension to IA32
o Almost identical to x86-64!
« Today’s 64-bit x86 ISA is basically AMD’s original proposal

14

x86 Clones: Advanced Micro Devices (AMD)

* Today: Holding up not too badly

Market Summary > Advanced Micro Devices, Inc.

134.35 uso
+103.79 (339.63%) 4 past 5 years

Closed: Sep 6, 7:59 PM EDT - Disclaimer
After hours 134.02 -0.33 (0.25%)

1D 5D ™ 6M YTD 1Y 5Y Max

250 30.56 USD Sep 6,2019

200
150
100
50 |
0 T T T T
2021 2022 2023 2024
Open 138.70 Mkt cap 217.44B CDP score B
High 139.13 P/E ratio 161.68 52-wk high 227.30
Low 132.11 Div yield - 52-wk low 93.12

Feedback
More about Advanced Micro Device.. —>

15

x86 Clones: Advanced Micro Devices (AMD)

* Today: Holding up not too badly

Market Summary > Intel Corp

18.89 uso
-32.03 (-62.90%) ¥ past 5 years

Closed: Sep 6, 7:59 PM EDT - Disclaimer
After hours 18.83 -0.060 (0.32%)

1D 5D ™ 6M YTD 1Y 5Y Max

80 18.89 USD Sep 6, 2024

T T T T
2021 2022 2023 2024

Open 19.44 Mkt cap 80.60B CDP score A-
High 19.49 P/E ratio 84.84 52-wk high 51.28
Low 18.64 Div yield 2.65% 52-wk low 18.64

Feedback
More about Intel Corp =

Our Coverage

* |A32
e The traditional x86
« 2nd edition of the textbook

* x86-64
e The standard
« CSUG machine
« 3" edition of the textbook
« Our focus

16

Moore’s Law

* More instructions typically require more transistors to
implement

17

Moore’s Law

* More instructions typically require more transistors to

imple

Number of Instructions

1000
900 -
800

100 -+

0

T F T F T T YT VYV OV YFTVOTYYVOYVTOYYVOVYVUVOYTYIYOTOYFOTOTY

® O & 2 o> P D ®
ST F S S quQ w@%@h ..,,ocgo >

Year

17

Moore’s Law

* More instructions typically require more transistors to

implement

2,600,000,000
1,000,000,000 -

Transistor count

100,000,000

10,000,000

1,000,000

100,000

10,000

2,300 -

16-Core SPARC T3
Six-Core Core i7.

Six-Core Xeon 7400\ @10-Core Xeon Westmere-EX

Dual-Core ltanium 2@ @ gcoée POWE;!G?
+—Quad-core z1
AMD K10 +—Quad-Core Itanium Tukwila
POWERG® “ .-\ —8-Core Xeon Nehalem-EX

Itanium 2 with 9MB cache ® /™. Six-Core Opteron 2400
AMD K19. Core i7 (Quad)

p : Sorc 2 Duo
Itanium 2@ ell

@ AMD K8

4 @Barton
Pentium 4 @ ® Atom

/L AMD K7
® AMD Ke-lil

curve shows transistor /" AMD K6
count doubling every / &on S, entivm
two years
®AMD K5
‘ Pentium
80486 @
803860,
/
80286 @
/
se000® /@086
8085 ® 98088
8085,
63100 \‘. ©6809
. Vi
8080\ 0280
8008@ /"t @MOS 6502
4004@ “RCA 1802
| T T T S
1971 1980 1990 2000 2011

17

Moore’s Law

* More instructions require more transistors to implement

18

Moore’s Law

* More instructions require more transistors to implement

* Gordon Moore in 1965 predicted that the number of
transistors doubles every year

18

Moore’s Law

* More instructions require more transistors to implement

* Gordon Moore in 1965 predicted that the number of
transistors doubles every year

'R INTEGRATED FUNCTION
N

LOG, OF THE NUMBER OF

9
8
7
6t
S
4}
3
2.-
|+
0

=
O
(&)

18

Moore’s Law

* More instructions require more transistors to implement

* Gordon Moore in 1965 predicted that the number of
transistors doubles every year

'R INTEGRATED FUNCTION
N

LOG, OF THE NUMBER OF

S
8
7
6-
S
4
3
2.-
|...
0

=
O
(&)

18

Moore’s Law

* More instructions require more transistors to implement

* Gordon Moore in 1965 predicted that the number of
transistors doubles every year

'R INTEGRATED FUNCTION
N

LOG, OF THE NUMBER OF

T Iy Ty

S
8
7
6
S
4
3
&
| +
0

=
O
(&)

18

Moore’s Law

* More instructions require more transistors to implement

* Gordon Moore in 1965 predicted that the number of
transistors doubles every year

*In 1975 he revised the prediction to doubling every 2 years

18

Moore’s Law

* More instructions require more transistors to implement

* Gordon Moore in 1965 predicted that the number of
transistors doubles every year

*In 1975 he revised the prediction to doubling every 2 years

* Today’s widely-known Moore’s Law: number of transistors
double about every 18 months
« Moore never used the number 18...

18

Moore’s Law

* Question: why is transistor count increasing but computers
are becoming smaller?

19

Moore’s Law

* Question: why is transistor count increasing but computers
are becoming smaller?

« Because transistors are becoming smaller

19

Moore’s Law

* Question: why is transistor count increasing but computers
are becoming smaller?
« Because transistors are becoming smaller
e ~1.4x smaller each dimension(1.4? ~ 2)

19

Moore’s Law

* Question: why is transistor count increasing but computers
are becoming smaller?

« Because transistors are becoming smaller
e ~1.4x smaller each dimension(1.4? ~ 2)

®* Moore’s Law Is:

19

Moore’s Law

* Question: why is transistor count increasing but computers
are becoming smaller?

« Because transistors are becoming smaller
e ~1.4x smaller each dimension(1.4? ~ 2)

®* Moore’s Law Is:
« A law of physics?

19

Moore’s Law

* Question: why is transistor count increasing but computers
are becoming smaller?

« Because transistors are becoming smaller
e ~1.4x smaller each dimension(1.4? ~ 2)

* Moore’s Law is:
« A law of physics? No

19

Moore’s Law

* Question: why is transistor count increasing but computers
are becoming smaller?

« Because transistors are becoming smaller
e ~1.4x smaller each dimension(1.4? ~ 2)
* Moore’s Law is:
« A law of physics? No
« A law of circuits?

19

Moore’s Law

* Question: why is transistor count increasing but computers
are becoming smaller?

« Because transistors are becoming smaller
e ~1.4x smaller each dimension(1.4? ~ 2)
* Moore’s Law is:
« A law of physics? No
« A law of circuits? No

19

Moore’s Law

* Question: why is transistor count increasing but computers
are becoming smaller?
« Because transistors are becoming smaller
e ~1.4x smaller each dimension(1.4? ~ 2)

* Moore’s Law is:
« A law of physics? No
« A law of circuits? No
« A law of economy?

19

Moore’s Law

* Question: why is transistor count increasing but computers
are becoming smaller?
« Because transistors are becoming smaller
e ~1.4x smaller each dimension(1.4? ~ 2)

®* Moore’s Law is:
« A law of physics? No
o A law of circuits? No
« A law of economy”? Yes

19

Moore’s Law

adrS TECHNICA BIZ&IT TECH SCIENCE POLICY CARS GAMING & CULTURE

dECH —

Transistors will stop shrinking in 2021,
but Moore’s law will live on

Final semiconductor industry roadmap says the future is 3D packaging and cooling.

The first problem has been known about for a long while. Basically, starting at around the 65nm
node in 2006, the economic gains from moving to smaller transistors have been slowly dribbling
away. Previously, moving to a smaller node meant you could cram tons more chips onto a single
silicon wafer, at a reasonably small price increase. With recent nodes like 22 or 14nm, though,

there are so many additional steps required that it costs a lot more to manufacture a completed

wafer—not to mention additional costs for things like package-on-package (PoP) and through-
silicon vias (TSV) packaging.

19

Moore’s Law

dl'S TECHNICA

TECH —

Transistors will stop shrinking in 2021,
but Moore’s law will live on

Final semiconductor industry roadmap says the future is 3D packaging and cooling.

The first problem has been known about for a long while. Basically, starting at around the 65nm
node in 2006, the economic gains from moving to smaller transistors have been slowly dribbling
away. Previously, moving to a smaller node meant you could cram tons more chips onto a single
silicon wafer, at a reasonably small price increase. With recent nodes like 22 or 14nm, though,
there are so many additional steps required that it costs a lot more to manufacture a completed
wafer—not to mention additional costs for things like package-on-package (PoP) and through-
silicon vias (TSV) packaging.

19

Moore’s Law

* Question: why is transistor count increasing but computers
are becoming smaller?

« Because transistors are becoming smaller
e ~1.4x smaller each dimension(1.4? ~ 2)

®* Moore’s Law Is:

« A law of physics? No
« A law of circuits? No
« A law of economy? Yes

« A law of psychology?

19

Moore’s Law

* Question: why is transistor count increasing but computers
are becoming smaller?

« Because transistors are becoming smaller
e ~1.4x smaller each dimension(1.4? ~ 2)

®* Moore’s Law Is:

« A law of physics? No
« A law of circuits? No
« A law of economy? Yes

A law of psychology? Yes

19

Today: Assembly Programming |: Basics

* Memory, C, assembly, machine code

20

Byte-Oriented Memory Organization

QQ. Q‘Q.

* Programs refer to data by address
« Conceptually, envision it as a very large array of bytes: byte-addressable
o An address is like an index into that array
e and, a pointer variable stores an address

21

How Does Pointer Work in C???

char a = 4;
char b = 3;
char* c;
cC = &a;
b += (*c);

22

How Does Pointer Work in C???

char a = 4;
char b = 3;

char* c;
c = &a;
b += (*c);

Memory Memory
Content Address

0x10
Ox11

Ox16

22

How Does Pointer Work in C???

~—3p char a = 4; Memory Memory
char b = 3; Content Address
char* c; 0x10
c = &a; Ox11
b += (*c);

Ox16

How Does Pointer Work in C???

——3% char a = 4; C Memory Memory
char b = 3; Variable Content Address
char* c; a 0x10
c = &a; Ox11
b += (*c);

Ox16

How Does Pointer Work in C???

——3% char a = 4; C Memory Memory
char b = 3; Variable Content Address
char* c; a 0x10
c = &a; Ox11
b += (*c);

Ox16

How Does Pointer Work in C???

——+% char a = 4; C Memory Memory
char b = 3; Variable Content Address
char* c; a 0x10
c = &a; b Ox11
b += (*c);

Ox16

How Does Pointer Work in C???

——+% char a = 4; C Memory Memory
char b = 3; Variable Content Address
char* c; a 0x10
c = &a; b Ox11
b += (*c);

Ox16

How Does Pointer Work in C???

- char a = 4;
char b = 3;
char* c;
cC = &a;

b += (*c);
e The content of a pointer

variable is memory address.

C Memory
Variable Content
a 4

b

Memory
Address

0x10
Ox11

Ox16

22

How Does Pointer Work in C???

——p char a = 4; C Memory Memory
char b = 3; Variable Content Address
char* c; a 4 0x10
c = &a; b 0x11
b += (*c);

e The content of a pointer
variable is memory address.

C random Ox16

How Does Pointer Work in C???

——p char a = 4; C Memory Memory
char b = 3; Variable Content Address
char* c; a 4 0x10
c = &a; b 0x11
b += (*c);

e The content of a pointer
variable is memory address.

C random Ox16

How Does Pointer Work in C???

- char a = 4;
char b = 3;
char* c;
cC = &a;

b += (*c);
e The content of a pointer

variable is memory address.
e The ‘& operator (address-of

operator) returns the memory
address of a variable.

C Memory Memory
Variable Content Address

a 0x10
b Ox11
C random Ox16

22

How Does Pointer Work in C???

- char a = 4;
char b = 3;
char* c;
cC = &a;

b += (*c);
e The content of a pointer

variable is memory address.
e The ‘& operator (address-of

operator) returns the memory
address of a variable.

C Memory Memory
Variable Content Address

a 0x10
b Ox11
C Ox16

22

How Does Pointer Work in C???

- char a = 4;
char b = 3;
char* c;
cC = &a;

b += (*c);
e The content of a pointer

variable is memory address.
e The ‘& operator (address-of

operator) returns the memory
address of a variable.

C Memory Memory
Variable Content Address

a 0x10
b Ox11
C Ox16

22

How Does Pointer Work in C???

—»@p char a = 4;

char b = 3;

char* c;

cC = &a;

b += (*c);
The content of a pointer

variable is memory address.
The ‘&’ operator (address-of

operator) returns the memory
address of a variable.

The “*’ operator returns the
content stored at the memory
location pointed by the pointer
variable (dereferencing)

C Memory Memory
Variable Content Address

a 0x10
b Ox11
C Ox16

22

How Does Pointer Work in C???

—»@p char a = 4;

char b = 3;

char* c;

cC = &a;

b += (*c);
The content of a pointer

variable is memory address.
The ‘&’ operator (address-of

operator) returns the memory
address of a variable.

The “*’ operator returns the
content stored at the memory
location pointed by the pointer
variable (dereferencing)

C Memory Memory
Variable Content Address

a 0x10
b Ox11
C Ox16

22

Assembly Code’s View of Computer

Assembly Code’s View of Computer

Assembly
Programmer’s
Perspective
of a Computer

CPU

Memory

23

Assembly Code’s View of Computer

CPU Memo
Assembly vy
Programmer’s Code
Perspective Data
Stack
of a Computer

* (Byte Addressable) Memory
« Code: instructions
« Data
« Stack to support function call

23

Assembly Code’s View of Computer

Assembly e

Programmer’s
Perspective
of a Computer

* (Byte Addressable) Memory
« Code: instructions
« Data
« Stack to support function call

Memory

Code
Data
Stack

Data

23

Assembly Code’s View of Computer

Assembly e

Programmer’s
Perspective
of a Computer

* (Byte Addressable) Memory
« Code: instructions
« Data
« Stack to support function call

Memory

Code
Data
Stack

Data

0x53
0x48
0x89
0xd3

23

Assembly Code’s View of Computer

Assembly e

Programmer’s
Perspective
of a Computer

* (Byte Addressable) Memory

« Code: instructions
« Data
« Stack to support function call

Instruction is the fundamental
unit of work.

All instructions are encoded as
bits (just like data!)

0x05

Memory
Code
Data
Stack
Code
(Instructions) DEIE
0x78
Oxfe
Oxe3

23

Assembly Code’s View of Computer

Assembly e

Programmer’s
Perspective
of a Computer

* (Byte Addressable) Memory
« Code: instructions
« Data
« Stack to support function call

Memory

Code
Data
Stack

Code
(Instructions)

Data

Stack

0x53
0x48
0x89
0xd3

23

Assembly Code’s View of Computer

Assembly e

Programmer’s
Perspective
of a Computer

Register
File

* (Byte Addressable) Memory

o Code: instructions
o Data

« Stack to support function call

* Register file

« Faster memory (e.g., 0.5 nsvs. 15 nyg)
« Small memory (e.g., 128 B vs. 16 GB)

« Heavily used program data

Memory

Code
Data
Stack

23

x86-64 Integer Register File

< 8 Bytes —»

rax %r8

%srbx %r9

srcx %rl0
srdx srll
srsi %rl2
$rdi %rl3
3rsp srld
%rbp %rl5

24

x86-64 Integer Register File

* Lower-half of each register can be independently
addressed (until 1 bytes)

26

x86-64 Integer Register File

* Lower-half of each register can be independently
addressed (until 1 bytes)

$rax

8 Bytes

x86-64 Integer Register File

* Lower-half of each register can be independently
addressed (until 1 bytes)

8 Bytes

4 Bytes

26

x86-64 Integer Register File

* Lower-half of each register can be independently
addressed (until 1 bytes)

$rax -%eax

8 Bytes

4 Bytes
«—2 Bytes—

26

x86-64 Integer Register File

* Lower-half of each register can be independently
addressed (until 1 bytes)

$rax -%eax

8 Bytes

4 Bytes
«—2 Bytes—

26

x86-64 Integer Register File

* Lower-half of each register can be independently
addressed (until 1 bytes)

$rax -%eax

8 Bytes

_) 4 Bytes
C Data Type Size (Bytes)

«—2 Bytes—

char 1 4_1 B_’
short 2
int 4
long 3

Pointer 8

26

x86-64 Integer Register File

* Lower-half of each register can be independently
addressed (until 1 bytes)

$rax -%eax

8 Bytes

_ y 4 Bytes
C Data Type Size (Bytes)

«—2 Bytes—

char 1
short 2
int 4 Floating point data is stored
long 8 in a separate set of register

Pointer 8 file

26

Assembly Code’s View of Computer

Assembly e

Programmer’s
Perspective
of a Computer

Register
File

* (Byte Addressable) Memory

o Code: instructions
o Data

« Stack to support function call

* Register file

« Faster memory (e.g., 0.5 nsvs. 15 nyg)
« Small memory (e.g., 128 B vs. 16 GB)

« Heavily used program data

Memory

Code
Data
Stack

27

Assembly Code’s View of Computer

CPU . Memo
Assembly Register ry
Programmer’s PC File %O?e
Perspective 2
Stack
of a Computer
* (Byte Addressable) Memory * PC: Program counter
« Code: instructions « A special register containing address
« Data of next instruction

. Stack to support function call « Called “RIP” in x86-64

* Register file
« Faster memory (e.g., 0.5 nsvs. 15 nyg)
« Small memory (e.g., 128 B vs. 16 GB)
« Heavily used program data

27

Assembly Code’s View of Computer

Assembly CPU Register Addresses Memory
Programmer’s PC File %O?e
Perspective ata
Stack
of a Computer
* (Byte Addressable) Memory * PC: Program counter
« Code: instructions « A special register containing address
. Data of next instruction

. Stack to support function call « Called “RIP” in x86-64

* Register file
« Faster memory (e.g., 0.5 nsvs. 15 nyg)
« Small memory (e.g., 128 B vs. 16 GB)
« Heavily used program data

27

Assembly Code’s View of Computer

P . Mem
Assembly CPU Register Addresses emory
Programmer’s PC File %O?e
: ata
Perspective I Stack
of a Computer __Instructions
* (Byte Addressable) Memory * PC: Program counter
« Code: instructions « A special register containing address
. Data of next instruction

. Stack to support function call « Called “RIP” in x86-64

* Register file
« Faster memory (e.g., 0.5 nsvs. 15 nyg)
« Small memory (e.g., 128 B vs. 16 GB)
« Heavily used program data

27

Assembly Code’s View of Computer

Assembly A Register

Programmer’s PC File
Perspective
of a Computer

Addresses

Data

 Instructions

>

* (Byte Addressable) Memory
« Code: instructions
« Data
« Stack to support function call

* Register file
« Faster memory (e.g., 0.5 nsvs. 15 nyg)
« Small memory (e.g., 128 B vs. 16 GB)
« Heavily used program data

Memory

Code
Data
Stack

* PC: Program counter

« A special register containing address
of next instruction

« Called “RIP” in x86-64

27

Assembly Code’s View of Computer

Assembly A Register

Programmer’s PC File

Perspective
of a Computer ALU

Addresses

Data

 Instructions

>

* (Byte Addressable) Memory
« Code: instructions
« Data
« Stack to support function call

* Register file
« Faster memory (e.g., 0.5 nsvs. 15 nyg)
« Small memory (e.g., 128 B vs. 16 GB)
« Heavily used program data

Memory

Code
Data
Stack

* PC: Program counter

« A special register containing address
of next instruction

 Called “RIP” in x86-64
* Arithmetic logic unit (ALU)
« Where computation happens

27

Assembly Code’s View of Computer

Assembly Gr Register Addresses
’ File
Programmer S PC . Data
Perspective 1 [Condition |
of a Computer Codes _Instructions

* (Byte Addressable) Memory
« Code: instructions
« Data
« Stack to support function call

* Register file
« Faster memory (e.g., 0.5 nsvs. 15 nyg)
« Small memory (e.g., 128 B vs. 16 GB)
« Heavily used program data

Memory

Code
Data
Stack

* PC: Program counter

« A special register containing address
of next instruction

» Called “RIP” in x86-64
* Arithmetic logic unit (ALU)
« Where computation happens
® Condition codes

« Store status information about most
recent arithmetic or logical operation

» Used for conditional branch

27

Assembly Program Instructions

Assembly CPU Register Addresses : Memory
P;ogrammer’s PC File 4 Data %(;(tjae

erspective Condition| | | stack
of a Computer ALU Codes __Instructions Hoap

28

Assembly Program Instructions

Assembly CPU Register Addresses : Memory
P;ogrammer’s PC File 4 Data %(;(tjae

erspective Condition| | | stack
of a Computer ALU Codes __Instructions Hoap

®* Compute Instruction: Perform arithmetics on register or memory data
e addg %rax, S3%rbx

o C constructs: +, -, >>, etc.

Assembly Program Instructions

Assembly CPU Register Addresses : Memory
P;ogrammer’s PC File 4 Data %(;?ae

erspective Condition| | | stack
of a Computer ALU Codes __Instructions Hoap

®* Compute Instruction: Perform arithmetics on register or memory data
e addg %rax, S3%rbx
« C constructs: +, -, >>, etc.

® Data Movement Instruction: Transfer data between memory and register
- movqg %rax, (%rbx)

28

Assembly Program Instructions

Assembly CPU Register Addresses : Memory
P;ogrammer’s PC File 4 Data %(;?ae

erspective Condition| | | stack
of a Computer ALU Codes __Instructions Hoap

®* Compute Instruction: Perform arithmetics on register or memory data
e addg %rax, S3%rbx
« C constructs: +, -, >>, etc.

® Data Movement Instruction: Transfer data between memory and register
- movqg %rax, (%rbx)

® Control Instruction: Alter the sequence of instructions (by changing PC)
- Jmp, call
« C constructs: if-else, do-while, function call, etc.

28

Turning C into Object Code

C Code (sum.c)
long plus(long x, long y);

void sumstore(long x, long vy,
long *dest)
{
long t = plus(x, y);
*dest = t;

29

Turning C into Object Code

C Code (sum.c) Generated x86-64 Assembly
long plus(long x, long y);

sumstore:
. pushq srbx
void sumstore(long x, long y, movq srdx. %rbx
long *dest) call plus,
{ movq $rax, (%rbx)

long t = plus(x, y);
%rb
*dest = t; SR woR
} ret

29

Turning C into Object Code

C Code (sum.c) Generated x86-64 Assembly
long plus(long x, long y);

sumstore:
. pushq srbx
void sumstore(long x, long y, movq srdx. %rbx
long *dest) call plus,
{ movq $rax, (%rbx)
long t = plus(x, y): popq $rbx
*dest = t; ret
}

Obtain (on CSUG machine) with command
gcc -Og -S sum.c -0 sum.s

29

Turning C into Object Code

Generated x86-64 Assembly Binary Code for sumstore
sumstore: Memory
pushq Srbx
movq srdx, S%rbx 0x53
call plus 0x48
movq Srax, (%rbx) 0x89
popq Srbx 0xd3
ret Oxe8
0xf2
Oxff
Oxff
Oxff
0x48
0x89
0x03
0x5b

0xc3

Turning C into Object Code

Generated x86-64 Assembly ~ Binary Code for sumstore
sumstore: Address Memory
pushq srbx
movq $rdx, %rbx 0x0400595 0x53
call plus 0x48
movq $rax, (%rbx) 0x89
popq %rbx 0xd3
ret Oxe8
0xf2
Oxff
Oxff
Oxff
0x48
0x89
0x03
0x5b

0xc3

Turning C into Object Code

Generated x86-64 Assembly Binary Code for sumstore
sumstore: Address Memory
pushq srbx
movq $rdx, S%rbx 0x0400595 0x53
call plus 0x48
movq $rax, (%rbx) 0x89
popq Srbx 0xd3
ret Oxe8
. . _ O0xf2
Obtain (on CSUG machine) with command OxfEf
gcc —C sum.s -O sum.o S
Oxff
0x48
0x89
0x03
0x5b

0xc3

Turning C into Object Code

Generated x86-64 Assembly Binary Code for sumstore
sumstore: Address Memory
pushq srbx
movq $rdx, S%rbx 0x0400595 0x53
call plus 0x48
movq $rax, (%rbx) 0x89
popq %rbx 0xd3
ret Oxe8
. _ _ Oxf2
Obtain (on CSUG machine) with command OxfEf
gcc —C sum.s -O Sum.o st
Oxff
- Total of 14 bytes 0x48
* Instructions have variable gxgg
. X
lengths: e.qg., 1, 3, or 5 bytes 0x5b
- Code starts at memory address Oxc3

0x0400595

Instruction Processing Sequence

Assembly Gr Register Addresses Memory
P;ogrammer’s PC File 4 Data %(;(tjae

erspective Condition| | I
of a Computer ALU Codes __Instructions

Fetch Instruction
(According to PC)

31

Instruction Processing Sequence

Assembly Gr Register Addresses Memory
P;ogrammer’s PC File 4 Data %(;(tjae

erspective Condition| | I
of a Computer ALU Codes __Instructions

Fetch Instruction
(According to PC)

0x4801d8

31

Instruction Processing Sequence

Assembly Gr Register Addresses Memory
! PC File 1 Code
Programmer S | Data ‘ 20k
Perspective 1 [Condition e Stack
of a Computer Codes __Instructions

Fetch Instruction __ Decode
(According to PC) Instruction

addqg %rax, (%rbx)

31

Instruction Processing Sequence

Assembly
Programmer’s
Perspective
of a Computer

Fetch Instruction ___
(According to PC)

CPU

PC

ALU

Register Addresses
File
Data
Condition Instructions
Codes “
Fetch

Decode
Instruction

Operands

Memory

Code
Data
Stack

31

Instruction Processing Sequence

Assembly
Programmer’s
Perspective
of a Computer

Fetch Instruction ___
(According to PC)

CPU

PC

ALU

Register Addresses
File
Data
Condition Instructions
Codes “
Fetch

Decode
Instruction

Operands

Memory

Code
Data
Stack

Execu?e
Instruction

31

Instruction Processing Sequence

Assembly
Programmer’s
Perspective
of a Computer

Fetch Instruction ___
(According to PC)

CPU

PC

ALU

Instruction

Register Addresses Memory
File] Code
Data Data
Condition . Stack
Codes : Instructions
Decode __, Fetch __, Execute
Operands Instrqction
v
Update
Condition

Codes

31

Instruction Processing Sequence

Assembly Gr Register Addresses Memory
P;ogrammer’s PC File 4 Data %(;(tjae

erspective Condition| | I
of a Computer ALU Codes __Instructions

Fetch Instruction __ Decode __, Fetch __, Execute __, Store
(According to PC) Instruction Operands Instruction Results

v
Update
Condition
Codes

31

Instruction Processing Sequence

Assembly Gr Register Addresses Memory
P;ogrammer’s PC File 4 Data %(;(tjae

erspective Condition| | I
of a Computer ALU Codes __Instructions

Fetch Instruction __ Decode __, Fetch __, Execute __, Store

(According to PC) Instruction Operands Instruction Results
v
Update
Condition
Codes Adjust

PC

31

Instruction Processing Sequence

Assembly
Programmer’s
Perspective
of a Computer

CPU

PC

ALU

Fetch Instruction ___

(Accordirg to PC)

Register Addresses
File
Data
Condition Instructions
Codes “
Fetch

Decode
Instruction

Operands

Memory

Code
Data
Stack

__, Execute __, Store

Instruction Results
v
Update
Condition
Codes Adijust

PC

31

Today: Assembly Programming |: Basics

* Move operations (and addressing modes)

32

Data Movement Instruction Example

movq srdx, (%rdi)

®* Semantics:

e Move (really, copy) data in register $rdx to memory location
whose address is the value stored in $rdi

¢ Pointer dereferencing

34

Data Movement Instruction Example

1
movq srdx, ($rdil)
address

®* Semantics:

e Move (really, copy) data in register $rdx to memory location
whose address is the value stored in $rdi

¢ Pointer dereferencing

34

Data Movement Instruction Example

data at the address
|

+ .
movq srdx, | ({%rdi)l
address

®* Semantics:

e Move (really, copy) data in register $rdx to memory location
whose address is the value stored in $rdi

¢ Pointer dereferencing

34

Data Movement Instruction Example

data at the address

] * = >
v P = a
‘] assuming:
| _ p isin %$rdi
movq 3rdx, | ($rdi) ; a isin %rdx
address

®* Semantics:

e Move (really, copy) data in register $rdx to memory location
whose address is the value stored in $rdi

¢ Pointer dereferencing

34

Data Movement Instructions

movq Source, Dest

35

Data Movement Instructions

movq Source, Dest

RS G e

0perafor 0perands

35

Data Movement Instructions

movq Source, Dest

Operafor 0perands

- Memory:
e Simplest example: ($rax)

« How to obtain the address is called “addressing mode”

35

Data Movement Instructions

movq Source, Dest

Operafor 0perands

- Memory:
e Simplest example: ($rax)

« How to obtain the address is called “addressing mode”

- Register:
« Example: $rax, %rl3
« But $rsp reserved for special use

35

Data Movement Instructions

movq Source Dest

PARERS £ AT\

Operator 0perands

- Memory:
e Simplest example: ($rax)

« How to obtain the address is called “addressing mode”
- Register:

« Example: $rax, %rl3

« But $rsp reserved for special use

- Immediate: Constant integer data

« Example: $0x400, $-533; like C constant, but prefixed with “$’

e Encoded with 1, 2, or 4 bytes; can only be source

35

movqg Operand Combinations

Source Dest Example C Analog
" Mem Reg
Reg
movq < Reg Mem

{Reg
_Imm

Cannot do memory-memory transfer
with a single instruction in x86.

36

movqg Operand Combinations

movq <

Source Dest Example C Analog

(Mem Reg movg (%rax),%rdx

Reg
Mem

Reg

{Reg
_Imm

Cannot do memory-memory transfer
with a single instruction in x86.

36

movqg Operand Combinations

movq <

Source Dest Example C Analog

(Mem Reg movqg (%rax),%rdx temp = *p;

Reg
Mem

Reg

{Reg
_Imm

Cannot do memory-memory transfer
with a single instruction in x86.

36

movqg Operand Combinations

movq <

Source Dest Example C Analog

(Mem Reg movqg (%rax),%rdx temp = *p;

movqg %rax,srdx
Reg Reg q

Mem

{Reg
_Imm

Cannot do memory-memory transfer
with a single instruction in x86.

36

movqg Operand Combinations

Source Dest Example C Analog

(Mem Reg movqg (%rax),%rdx temp = *p;

movqg %rax, $rdx temp2 = templ;
. < Reg Reg q P p
1 Mem

{Reg
_Imm

Cannot do memory-memory transfer
with a single instruction in x86.

36

movqg Operand Combinations

Source Dest Example C Analog
(Mem Reg movqg (%rax),%rdx temp = *p;

movqg %rax,srdx temp2 = templ;
. < Reg Reg q P p
q Mem movg $%$rax, (%$rdx)

{Reg
_Imm

Cannot do memory-memory transfer
with a single instruction in x86.

36

movqg Operand Combinations

Source Dest Example C Analog

(Mem Reg movqg (%rax),%rdx temp = *p;

movqg %rax, $rdx temp2 = templ;
Reg Reg q P p

movq < Mem movqg %$rax, (%rdx) *p = temp;

{Reg
_Imm

Cannot do memory-memory transfer
with a single instruction in x86.

36

movqg Operand Combinations

Source Dest Example C Analog

(Mem Reg movqg (%rax),%rdx temp = *p;

movqg %rax, $rdx temp2 = templ;
Reg Reg q P p

movq < Mem movqg %$rax, (%rdx) *p = temp;

Reg movqg $0x4,%rax
_Imm

Cannot do memory-memory transfer
with a single instruction in x86.

36

movqg Operand Combinations

Source Dest Example C Analog
(Mem Reg movqg (%$rax) , $rdx temp = *p;
movqg %rax, $rdx temp2 = templ;
. < Reg Reg q P p
9 Mem movg $%$rax, (%$rdx) *p = temp;
Reg movqg $0x4,%rax temp = 0x4;
_Imm

Cannot do memory-memory transfer
with a single instruction in x86.

36

movqg Operand Combinations

Source Dest Example C Analog
(Mem Reg movqg (%$rax) , $rdx temp = *p;
movqg %rax, $rdx temp2 = templ;
. < Reg Reg q P p
9 Mem movg $%$rax, (%$rdx) *p = temp;
Reg movqg $0x4,%rax temp = 0x4;
Imm
\ movg $-147, (%$rax)

Cannot do memory-memory transfer
with a single instruction in x86.

36

movqg Operand Combinations

Source Dest Example C Analog
(Mem Reg movg (%rax),%rdx temp = *p;
movqg %rax, $rdx temp2 = templ;
. < Reg Reg q P p
9 Mem movg $%$rax, (%$rdx) *p = temp;
Reg movqg $0x4,%rax temp = 0x4;
Imm
\ movg $-147, (%rax) *p = -147;

Cannot do memory-memory transfer
with a single instruction in x86.

36

