CSC 252/452: Computer Organization
Fall 2024: Lecture 9

Instructor: Yanan Guo

Department of Computer Science
University of Rochester

Announcement

* Programming Assignment 2 is out

 Details: https://www.cs.rochester.edu/courses/252/
fall2024/labs/assignment?2.html

e Due on Sep. 30th, 11:59 PM
e You (may still) have 3 slip days
e TA Office hours
e Grace Hopper Conference

https://www.cs.rochester.edu/courses/252/spring2021/labs/assignment2.html
https://www.cs.rochester.edu/courses/252/spring2021/labs/assignment2.html
https://www.cs.rochester.edu/courses/252/spring2021/labs/assignment2.html

Getting a bomb

CS:APP Binary Bomb Request
Fill in the form and then click the Submit button.
Hit the Reset button to get a clean form.

Legal characters are spaces, letters, numbers, underscores ('_'),
hyphens ('-'), at signs ('@'), and dots ('.').

Submit

Stack Frame: Putting It Together

Caller <
Frame

srsp—»r

Callee {
Frame

(

Saved
Registers

Local
Variables

Arguments
7,8, ...

Return Addr

Passing Function Arguments

e Two choices: memory or registers
* Registers are faster, but have limited amount

Passing Function Arguments

e Two choices: memory or registers
* Registers are faster, but have limited amount
* x86-64 convention (Part of the Calling
Conventions):

e First 6 arguments in registers, in specific order
e The rest are pushed to stack
» Return value is always in $rax

Registers

$rdi

$rsi

$rdx

$rcx

Arg n

Arg 8

Arg 7

Passing Function Arguments

e Two choices: memory or registers
* Registers are faster, but have limited amount
* x86-64 convention (Part of the Calling
Conventions):

e First 6 arguments in registers, in specific order
e The rest are pushed to stack
e Return value is always in $rax

e Just conventions, not laws

e Not necessary if you write both caller and callee as
long as the caller and callee agree

e But is necessary to interface with others’ code

Registers

$rdi

$rsi

$rdx

$rcx

Arg n

Arg 8

Arg 7

Stack Frame: Putting It Together

Caller <
Frame

srsp—»r

Callee {
Frame

(

Saved
Registers

Local
Variables

Arguments
7,8, ...

Return Addr

Managing Function Local Variables

e Two ways: registers and 1°n91c1>2;r)il°ngp*Pr long val) ({
memory (stack) long y = x + val;
. * — .
* Registers are faster, but P =Y

return x;

limited. Memory is slower, }
but large. Smart compilers
will optimize the usage.

Stack Frame: Putting It Together

Caller <
Frame

srsp—»r

Callee {
Frame

(

Saved
Registers

Local
Variables

Arguments
7,8, ...

Return Addr

Register Saving Conventions

Register Saving Conventions

* Any issue with using registers for temporary storage?

Caller Callee

Register Saving Conventions

* Any issue with using registers for temporary storage?
- Contents of register $rdx overwritten by who ()

Caller Callee

Register Saving Conventions

* Any issue with using registers for temporary storage?
- Contents of register $rdx overwritten by who ()
- This could be trouble = Need some coordination

Caller Callee

Register Saving Conventions

- Conventions used in x86-64 (Part of the Calling Conventions)
- Some registers are saved by caller, some are by callee.
- Caller saved: $rdi, $rsi, $rdx, $rcx, $r8, %r9, %$r10, %rll
- Callee saved: $rbx, $rbp, $rl12, %rl13,%14,%rl5
- $rax holds return value, so implicitly caller saved
- $rsp IS the stack pointer, so implicitly callee saved

10

Register Saving Conventions

e Common conventions
- “Caller Saved”

- Caller saves temporary values in its frame (on the stack) before
the call

- Callee is then free to modify their values

- “Callee Saved”
- Callee saves temporary values in its frame before using
- Callee restores them before returning to caller

- Caller can safely assume that register values won’t change after
the function call

11

Example
Stack

long call incr2(long x) {

long vl = 15213;
long v2 = incr (&vl, 3000);
return x+v2;

<

3rsp

12

Example
Stack

long call incr2(long x) {
long vl = 15213;
long v2 = incr(&vl, 3000);
return x+v2;

<

3rsp

Example
Stack

long call incr2(long x) {
long vl = 15213;
long v2 = incr(&vl, 3000);
return x+v2;

<

3rsp

Example

long call incr2(long x) {
long vl = 15213;
long v2 = incr(&vl, 3000);
return x+v2;

Stack

Saved $rbx

<

3rsp

12

Example

long call incr2(long x) {
long vl = 15213;
long v2 = incr(&vl, 3000);
return x+v2;

Stack

Saved $rbx

15213

<

3rsp

12

Example

long call incr2(long x) {
long vl = 15213;
long v2 = incr(&vl, 3000);
return x+v2;

Stack

Saved $rbx

15213

<

3rsp

12

Example

long call incr2(long x) {
long vl = 15213;
long v2 = incr(&vl, 3000);
return x+v2;

Stack

Saved $rbx

15213

<

3rsp

12

Example

long call incr2(long x) {
long vl =
long v2 =
return x+v2;

call incr2:

pushg
pushqg
movq
mov 1l

leaqg
call

addqg
addg
popdg
ret

1521
incr

35
(&v1l, 3000);

Trbox

$15213

$rdi, %rbx
$3000, %esi
(%rsp), %Srdi
incr

$rbx, %rax

$8, Srsp

$rbox 4&0—’

Stack

<

3rsp

Saved $rbx

15213

e call incr2 needs to save
$rbx (callee-saved) because it
will modify its value

e |t can safely use $rbx after call
incr because incr will have to
save $rbx if it needs to use it
(again, $rbx is callee saved)

12

Stack Frame: Putting It Together

Caller <
Frame

srsp—»r

Callee {
Frame

(

Saved
Registers

Local
Variables

Arguments
7,8, ...

Return Addr

13

Today: Data Structures and Buffer Overflow

e Arrays
- One-dimensional
- Multi-dimensional (nested)

14

Array Allocation: Basic Principle

T A[L];
- Array of data type T and length L
- Contiguously allocated region of L * sizeo£(T) bytes in memory

char string[12];

X x+12

int val[5]; }

X xX+4 X+ 8 x+12 x+16 x+ 20
double a[3];
X X+8 X+ 16 X+ 24
char* p[3]; 1 1
I I

X X+ 8 X+16 X+ 24

15

Byte Ordering

Byte Ordering

* How are the bytes of a multi-byte variable ordered in memory?

16

Byte Ordering

* How are the bytes of a multi-byte variable ordered in memory?

* Example
- Variable x has 4-byte value of 0x01234567
- Address given by &x is 0x100

0x100 0x101 0x102 0x103

16

Byte Ordering

* How are the bytes of a multi-byte variable ordered in memory?

* Example
- Variable x has 4-byte value of 0x01234567
- Address given by &x is 0x100

e Conventions
- Big Endian: Sun, PPC Mac, IBM z, Internet
- Most significant byte has lowest address (MSB first)
- Little Endian: x86, ARM
- Least significant byte has lowest address (LSB first)

0x100 0x101 0x102 0x103

16

Byte Ordering

* How are the bytes of a multi-byte variable ordered in memory?

* Example
- Variable x has 4-byte value of 0x01234567
- Address given by &x is 0x100
e Conventions
- Big Endian: Sun, PPC Mac, IBM z, Internet
- Most significant byte has lowest address (MSB first)
- Little Endian: x86, ARM
- Least significant byte has lowest address (LSB first)

Big Endian 0x100 0x101 0x102 0x103
01 23 45 67

16

Byte Ordering

* How are the bytes of a multi-byte variable ordered in memory?

* Example
- Variable x has 4-byte value of 0x01234567
- Address given by &x is 0x100

e Conventions
- Big Endian: Sun, PPC Mac, IBM z, Internet
- Most significant byte has lowest address (MSB first)
- Little Endian: x86, ARM
- Least significant byte has lowest address (LSB first)

Big Endian 0x100 0x101 0x102 0x103

01 23 45 67

Little Endian 0x100 0x101 0x102 0x103

16

Byte Ordering

* How are the bytes of a multi-byte variable ordered in memory?

* Example
- Variable x has 4-byte value of 0x01234567
- Address given by &x is 0x100

e Conventions
- Big Endian: Sun, PPC Mac, IBM z, Internet
- Most significant byte has lowest address (MSB first)
- Little Endian: x86, ARM
- Least significant byte has lowest address (LSB first)

Big Endian 0x100 0x101 0x102 0x103

01 23 45 67

Little Endian 0x100 0x101 0x102 0x103

67 45 23 01

16

Representing Integers

Address Increase

Hex: 00003B6D
int A = 15213;
Little-E Big-E
6D 00
3B 00
00 3B
00 6D

Hex: FFFFC493
int B = -15213;
Little-E Big-E
93 FF
C4 FF
FF C4
FF 93

17

Representing Integers

Address Increase

Hex: 00003B6D
int A = 15213;
Little-E Big-E
6D 00
3B |« » 00
00 |« »[3B
00 6D

Hex: FFFFC493
int B = -15213;
Little-E Big-E
93 FF
C4 FF
FF C4
FF 93

17

Representing Integers

Address Increase

Hex: 00003B6D
int A = 15213;
Little-E Big-E
6D 00
3B |« » 00
00 |« »[3B
00 6D

Hex: FFFFC493
int B = -15213;
Little-E Big-E

17

Array Access: Basic Principle

T A[L]l;
- Array of data type T and length L
- Identifier A can be used as a pointer to array element 0: Type T*

intval[5];} 1 [5 | 2 T 1] 3

|
address X X+4 X+8 x+12 x+16 x+20

Reference Type Value
vall[4] int 3
val int * X
val+l int * x+4
val + i int * x+4i
&val[2] int * X+8
val[5] int 27

*(val+l) int 5

Multidimensional (Nested) Arrays

Multidimensional (Nested) Arrays

e Declaration
I A[R] [C];
- 2D array of data type T
- Rrows, C columns
- Type T element requires K bytes

A[0][O]

A[R-1]1[0]

° A[O0] [C-1]

e o o A[R-1][C-1]

19

Multidimensional (Nested) Arrays

e Declaration
I A[R] [C];
- 2D array of data type T
- Rrows, C columns
- Type T element requires K bytes

e Array Size
- R* C* K bytes

A[0][O]

A[R-1]1[0]

° A[O0] [C-1]

e o o A[R-1][C-1]

19

Multidimensional (Nested) Arrays

e Declaration A[0][0] ¢ ¢ ¢ AJO][C-1]
I A[R] [C]; . o
- 2D array of data type T * .

- R rows, C columns
- Type T element requires K bytes A[R-1][0] e ¢ ¢ A[R-1][C-1]

e Array Size
- R* C* K bytes

* Arrangement

- Row-Major Ordering in most languages, including C
int A[R][C];

A A A A A A
[0] | « = « | [01[([11] « « | [1] « o+« |IR-11] - ¢ ¢ |[R-1]
[0] [C-1]| [O] [C-1] [0] [C-1]

A

4*R*C Bytes

\ 4

19

Nested Array Row Access

eT A[R]I[C];

e A[i] is array of C elements

- Each element of type T requires K bytes

- Starting address A + 1 * (C * K)

int A[R][C];

)

A[O]

—

[0]
[0]

A

[0]
[C-1]

<

Ali]

—

A
[i]
[0]

[1]
[C-1]

A+ (i*C*4)

r A[R-1] _ﬁ
A A
[R-1] [R-1]
[0] [C-1]

A+ ((R-1) *C*4)

20

Nested Array Element Access

* Array Elements
- A[i] [3j] is element of type T, which requires K bytes

» Address A + i*(C*K)+ j*K=A+(i*C+ j)*K

int A[R][C];

)

A[O]

—

[0]
[0]

A

[0]
[C-1]

< Afi]

[]]

A+ (i*C*4)

A+ (i*C*4) + (j*4)

« A[R-1] ——
A A
[R-1] [R-1]
[0] [C-1]

A+ ((R-1) *C*4)

21

Today: Data Structures and Buffer Overflow

e Structures
- Allocation
- Access
- Alignment

22

Structures

r
struct rec {
int a[4]; v
double 1i; a next
struct rec *next;
}; 0 16 24 32

e Characteristics
- Contiguously-allocated region of memory
- Refer to members within struct by names
- Members may be of different types

23

Access Struct Members

r
struct rec {
int a[4]; v
double 1i; a next
struct rec *next;
}; 0 16 24 32

e Given a struct, we can use the . operator:

- struct rec rl; rl.i = val;

Access Struct Members

r
struct rec {
int a[4]; v
double 1i; a next
struct rec *next;
}; 0 16 24 32

e Given a struct, we can use the . operator:

- struct rec rl; rl.i = val;

- SUpPPOse we have a pointer r pointing to struct res.

How to access res’s member using r?

Access Struct Members

r
struct rec {
int a[4]; v
double 1i; a i next
struct rec *next;
}; 0 16 24 32

e Given a struct, we can use the . operator:

- struct rec rl; rl.i = val;
- SUpPPOse we have a pointer r pointing to struct res.
How to access res’s member using r?
- Using * and . operators: (*r) .1 = val;

24

Access Struct Members

r
struct rec {
int a[4]; v
double 1i; a i next
struct rec *next;
}; 0 16 24 32

e Given a struct, we can use the . operator:
- struct rec rl; rl.i = val;
- SUpPPOse we have a pointer r pointing to struct res.
How to access res’s member using r?
- Using * and . operators: (*r) .1 = val;
- Or simply, the -> operator for short: r->1 = val;

24

Generating Pointer to Structure Member

r r+4*idx
struct rec { |
int a[4]; v \
double 1i; a i next
struct rec *next;

Generating Pointer to Structure Member

r r+4*idx
struct rec { |
int a[4]; v \
double 1i; a i next
struct rec *next;
}; 0 16 24 32

int *get ap

(struct rec *r, size t idx)
{

return & (r->a[idx]) ;

}

Generating Pointer to Structure Member

r r+4*idx
struct rec { |
int a[4]; v \
double 1i; a i next
struct rec *next;
}; 0 16 24 32

int *get ap
(struct rec *r, size t idx)

{

return & (r->a[idx]) ;

| !

& ((*r) .a[idx])

Generating Pointer to Structure Member

struct rec {
int a[4];
double 1i;
struct rec *next;

};

int *get ap
(struct rec *r, size t idx)

{

return & (r->a[idx]) ;

| !

& ((*r) .a[idx])

r+4*idx

v

i next

16 24 32

r in %rdi, idx in %rsi
leag (%rdi,%rsi,4), Srax
ret

25

Alignment

struct S1 {
char c;
int i[2];
double v;
} *ps

26

Alignment

e Unaligned Data

Cc

i[0]

i[1]

p ptl

p+5

p+9

p+17

struct S1 {
char c;
int i[2];
double v;
} *p;

26

Alignment

e Unaligned Data

Cc

i[0]

i[1]

p ptl

* Aligned Data

p+5

p+9

p+17

- If the data type requires K bytes, address must
be multiple of K

struct S1 {
char c;
int i[2];
double v;
} *p;

26

Alignment

e Unaligned Data

Cc

i[0]

i[1]

p ptl

* Aligned Data

p+5

p+9

p+17

- If the data type requires K bytes, address must
be multiple of K

Multiple of 8

struct S1 {
char c;
int i[2];
double v;
} *p;

26

Alignment

e Unaligned Data

Cc

i[0]

i[1]

p ptl

* Aligned Data

p+5

p+9

p+17

- If the data type requires K bytes, address must
be multiple of K

Multiple

A

Multiple of 4

of 8

struct S1 {
char c;
int i[2];
double v;
} *p;

26

Alignment

e Unaligned Data

Cc

i[0]

i[1]

p ptl

p+5

* Aligned Data

- If the data type requires K bytes, address must
be multiple of K

p+9

i[0]

Multiple

A

Multiple of 4

of 8

p+17

struct S1 {
char c;
int i[2];
double v;
} *p;

26

Alignment

e Unaligned Data

Cc

i[0]

i[1]

p ptl

p+5

* Aligned Data

- If the data type requires K bytes, address must
be multiple of K

p+9

o] i[0] 1i[1]
p+0 pt+4 p+8
Multiple of 4
Multiple of 8

p+17

struct S1 {
char c;
int i[2];
double v;
} *p;

26

Alignment

e Unaligned Data

Cc

i[0]

i[1]

p ptl

p+5

* Aligned Data

- If the data type requires K bytes, address must
be multiple of K

p+9

p+17

c i[0] i[1]
p+0 pt+4 p+8 p+16
Multiple of 4 Multiple of 8
Multiple of 8

struct S1 {
char c;
int i[2];
double v;
} *p;

26

Alignment

e Unaligned Data

struct S1 {

char c;
int i[2];
c 1[0] i[1] v double v;
p ptl p+5 p+9 p+1l7 L
* Aligned Data
- If the data type requires K bytes, address must
be multiple of K
c i[O0] i[1] Y
p+0 pt+4 p+8 p+16 pt+24
Multiple of 4 Multiple of 8
Multiple of 8 Multiple of 8

26

Alignment Principles

* Aligned Data

- If the data type requires K bytes, address must be multiple of K
- Required on some machines; advised on x86-64
* Motivation for Aligning Data: Performance

- Inefficient to load or store data that is unaligned
- Some machines don’t event support unaligned memory access

e Compiler
- Inserts gaps in structure to ensure correct alignment of fields
- sizeof () returns the actual size of structs (i.e., including padding)

27

Specific Cases of Alignment (x86-64)

e 1 byte: char, ...
* NO restrictions on address

e 2 bytes: short, ...
- lowest 1 bit of address must be Oz
e 4 pytes: int, float, ...
- lowest 2 bits of address must be 002

e 8 bytes: double, long, char *, ...
- lowest 3 bits of address must be 0002

28

Satisfying Alignment with Structures

Satisfying Alignment with Structures

e Within structure:
- Must satisfy each element’s alignment requirement

29

Satisfying Alignment with Structures

e Within structure:

- Must satisfy each element’s alignment requirement
e Overall structure placement

- Structure length must be multiples of K, where:

- K = Largest alignment of any element
- WHY?!

29

Satisfying Alignment with Structures

e \Within structure:

- Must satisfy each element’s alignment requirement

struct S2 {

double v;
e Overall structure placement int i[2];
+ Structure length must be multiples of K, where:) fg?r i
- K = Largest alignment of any element
- WHY?!
v i[o0] if[1] c
p+0 p+8 ptl6 pt24

t

Multiple of K=8

29

Saving Space

e Put large data types first in a Struct

* This is not something that a C compiler would always do

* But knowing low-level details empower a C programmer to write
more efficient code

struct S4 {
char c;

int i; C i d

char d;

} *ps

struct S5 {
int 1;
char c; i cld
char d;

} *ps

30

Arrays of Structures

struct S2 {

e Qverall structure length multiple of K double v;
. : : int i[2];
e Satisfy alignment requirement char c:
for every element } a[10];
alo0] a[l] al[2] e o o
a+0 a+24 a+48 a;'7
i[0] i[1] c
a+32 a+40

a+24

a+48

31

Return Struct Values

Return Struct Values

struct S{
int a, b;

};

struct S foo(int ¢, int d) {
struct S retval;
retval.a = c¢;
retval.b = d4d;
return retval;

}

void bar () {

struct S test = foo (3, 4);

fprintf (stdout, “%d, %d\n”,
test.a, test.b);

// you will get “3, 4” from
the terminal

}

32

Return Struct Values

struct S{
int a, b;

};

struct S foo(int ¢, int d) {
struct S retval;
retval.a = c¢;
retval.b = d4d;
return retval;

}

void bar () {

struct S test = foo (3, 4);

fprintf (stdout, “%d, %d\n”,
test.a, test.b);

// you will get “3, 4” from
the terminal

}

* This is perfectly fine.

32

Return Struct Values

struct S{
int a, b;

};

struct S foo(int ¢, int d) {
struct S retval;
retval.a = c¢;
retval.b = d4d;
return retval;

}

void bar () {

struct S test = foo (3, 4);

fprintf (stdout, “%d, %d\n”,
test.a, test.b);

// you will get “3, 4” from
the terminal

}

* This is perfectly fine.

* A struct could contain many
members, how would this work if
the return value has to be in
$rax??

32

Return Struct Values

struct S{
int a, b;

};

struct S foo(int ¢, int d) {
struct S retval;
retval.a = c¢;
retval.b = d4d;
return retval;

}

void bar () {

struct S test = foo (3, 4);

fprintf (stdout, “%d, %d\n”,
test.a, test.b);

// you will get “3, 4” from
the terminal

}

* This is perfectly fine.

* A struct could contain many
members, how would this work if
the return value has to be in
$rax??

 We don’t have to follow that
convention...

32

Return Struct Values

struct S{
int a, b;

};

struct S foo(int ¢, int d) {
struct S retval;
retval.a = c¢;
retval.b = d4d;
return retval;

}

void bar () {

struct S test = foo (3, 4);

fprintf (stdout, “%d, %d\n”,
test.a, test.b);

// you will get “3, 4” from
the terminal

}

This is perfectly fine.

A struct could contain many
members, how would this work if
the return value has to be in
$rax??

We don’t have to follow that
convention...

If there are only a few members in
a struct, we could return through
a few reqisters.

32

Return Struct Values

struct S{
int a, b;

};

struct S foo(int ¢, int d) {
struct S retval;
retval.a = c¢;
retval.b = d4d;
return retval;

}

void bar () {

struct S test = foo (3, 4);

fprintf (stdout, “%d, %d\n”,
test.a, test.b);

// you will get “3, 4” from
the terminal

}

This is perfectly fine.

A struct could contain many
members, how would this work if
the return value has to be in
$rax??

We don’t have to follow that
convention...

If there are only a few members in
a struct, we could return through
a few reqisters.

If there are lots of members, we
could return through memory, i.e.,
requires memaory copy.

32

Return Struct Values

struct S{
int a, b;

};

struct S foo(int ¢, int d) {
struct S retval;
retval.a = c¢;
retval.b = d4d;
return retval;

}

void bar () {

struct S test = foo (3, 4);

fprintf (stdout, “%d, %d\n”,
test.a, test.b);

// you will get “3, 4” from
the terminal

}

This is perfectly fine.

A struct could contain many
members, how would this work if
the return value has to be in
$rax??

We don’t have to follow that
convention...

If there are only a few members in
a struct, we could return through
a few reqisters.

If there are lots of members, we
could return through memory, i.e.,
requires memaory copy.

But either way, there needs to be
some sort convention for
returning struct.

32

Return Struct Values

struct S{
int a, b;

};

struct S foo(int ¢, int d) {
struct S retval;
retval.a = c¢;
retval.b = d4d;
return retval;

}

void bar () {

struct S test = foo (3, 4);

fprintf (stdout, “%d, %d\n”,
test.a, test.b);

// you will get “3, 4” from
the terminal

}

33

Return Struct Values

struct S{
int a, b;

};

struct S foo(int ¢, int d) {
struct S retval;
retval.a = c¢;
retval.b = d4d;
return retval;

}

void bar () {

struct S test = foo (3, 4);

fprintf (stdout, “%d, %d\n”,
test.a, test.b);

// you will get “3, 4” from
the terminal

}

The entire calling convention is
part of what’s called Application
Binary Interface (ABI), which
specifies how two binaries
should interact.

ABl includes: ISA, data type
size, calling convention, etc.

API defines the interface as the
source code (e.g., C) level.

The OS and compiler have to
agree on the ABI.

Linux x86-64 ABI specifies that
returning a struct with two
scalar (e.g. pointers, or long)
values is done via $rax & $rdx

33

Today: Data Structures and Buffer Overflow

e Buffer Overflow

34

String Library Code

e Implementation of Unix function gets ()
- No way to specify limit on number of characters to read

/* Get string from stdin */
char *gets (char *dest)

{

int ¢ = getchar()

char *p = dest;

while (c !'= EOF && c !'= '\n') {
*p++ = c;
c = getchar();

}

*p = '\0';

return dest;

35

Vulnerable Buffer Code

/* Echo Line */

void echo()

{
char buf[4]; /* Way too small! */
gets (buf) ;
puts (buf) ;

}

void call echo() {
echo () ;

}

36

String Library Code

e Implementation of Unix function gets ()
- No way to specify limit on number of characters to read

/* Get string from stdin */
char *gets (char *dest)

{

int ¢ = getchar()

char *p = dest;

while (c !'= EOF && c !'= '\n') {
*p++ = c;
c = getchar();

}

*p = '\0';

return dest;

37

String Library Code

e Implementation of Unix function gets ()

- No way to specify limit on number of characters to read

Char buf[4]; | A l B l C l D

address X x+1 X+2 X+3 X+ 4

/* Get string from stdin */
char *gets (char *dest)
{
int ¢ = getchar()
char *p = dest;
while (c '= EOF && c '= '\n') {
*p++ = c;
c = getchar();
}
*p = '\0';
return dest;

37

String Library Code

e Implementation of Unix function gets ()

- No way to specify limit on number of characters to read

Char buf[4]; [A } B } C } D F
|
address X x+1 X+2 X+3 X+4

/* Get string from stdin */
char *gets (char *dest)
{
int ¢ = getchar()
char *p = dest;
while (c '= EOF && c '= '\n') {
*p++ = c;
c = getchar();
}
*p = '\0';
return dest;

37

String Library Code

e Implementation of Unix function gets ()

- No way to specify limit on number of characters to read

Char buf[4]; [A } B } C } D E F
|
address X x+1 X+2 X+3 X+4

/* Get string from stdin */
char *gets (char *dest)
{
int ¢ = getchar()
char *p = dest;
while (c '= EOF && c '= '\n') {
*p++ = c;
c = getchar();
}
*p = '\0';
return dest;

37

Vulnerable Buffer Code

/* Echo Line */

void echo()

{
char buf[4]; /* Way too small! */
gets (buf) ;
puts (buf) ;

}

void call echo() {
echo () ;

}

38

Vulnerable Buffer Code

/* Echo Line */

void echo()

{
char buf[4]; /* Way too small! */
gets (buf) ;
puts (buf) ;

}

void call echo() {
echo () ;

}

unix>. /bufdemo-nsp
Type a string:0123
0123

38

Vulnerable Buffer Code

/* Echo Line */

void echo()

{
char buf[4]; /* Way too small! */
gets (buf) ;
puts (buf) ;

void call echo() {
echo () ;

}

unix>. /bufdemo-nsp
Type a string:0123
0123

unix>. /bufdemo-nsp
Type a string:01234
Segmentation Fault

38

Buffer Overflow Stack Example

Before call to gets

Stack Frame
for call echo

00|00
00] 40

00

06| £6

00

Stack Frame
for echo

20 bytes unused

[3]1][2]

[11][0]

void echo() echo:
{ subg $24, %rsp
char buf[4]; movq 5%rsp, 3%rdi

gets (buf) ; call gets

buf <«

call_echo :

4006f1: callg 4006cf <echo>
N\ 4006f6: add $0x8,%rsp

Irsp

39

Buffer Overflow Stack Example #1

After call to gets

Stack Frame
forcall_echo

00
00

00
40

00
06

00
)

00

32

31

30

39

38

37

36

35

34

33

32

31

30

39

38

37

36

35

34

33

32

31

30

void echo() echo:
{ subg $24, %rsp
char buf[4]; movq 5%rsp, 3%rdi
call gets

gets (buf) ;

call_echo :

4006f1: callg 4006cf <echo>
4006f6: add $0x8,%rsp

buf <«

Irsp

unix>. /bufdemo-nsp
Type a string:01234567890123456789012
01234567890123456789012

Overflowed buffer, but did not corrupt state

40

Buffer Overflow Stack Example #2

After call to gets

Stack Frame
forcall_echo

00

00

00

00

00

40

00

34

33

32

31

30

39

38

37

36

35

34

33

32

31

30

39

38

37

36

35

34

33

32

31

30

void echo() echo:
{ subg $24, %rsp
char buf[4]; movq 5%rsp, 3%rdi
call gets

gets (buf) ;

call_echo :

4006f1: callg 4006cf <echo>
4006f6: add $0x8,%rsp

buf <«

Irsp

unix>. /bufdemo-nsp
Type a string:0123456789012345678901234
Segmentation Fault

Overflowed buffer, and corrupt return address

41

Buffer Overflow Stack Example #3

After call to gets

void echo() echo:

Stack Frame { subq $24, $rsp

forcall echo char buf[4]; movqg 3%rsp, %rdi
gets (buf) ; call gets

oo[oooo0][00 }
00140 06|00
33[32]31]30 call echo:
39|38|37]|36 .
351343332 4006f1: callg 4006cf <echo>
3113013938 4006f6: add $0x8,%rsp
371363534
33|132|31|30 |buf «—%rsp

unix>. /bufdemo-nsp
Type a string:012345678901234567890123
012345678901234567890123

Overflowed buffer, corrupt return address, but
program appears to still work!

Buffer Overflow Stack Example #4

After call to gets

Stack Frame register tm clones:
forcall echo ——

400600: mov %rsp, %rbp
400603: mov $rax, $rdx
400606: shr SO0x3f, $rdx

00|00]|00]0O0

00|40]|06]|00 40060a: add $rdx, $rax
3332|3130 40060d: sar $rax
39138|37]|36 400610: IJjne 400614
3534|3332 400612: pop $rbp

31130139138 400613: retq

37]|136|35]|34
33|132|31|30 |buf <«

Irsp

“Returns” to unrelated code
Could be code controlled by attackers!

