
Final Exam

CSC 252

7 May 2011

Directions; PLEASE READ

This exam has 16 questions, many of which have subparts. Each question indicates its point
value. The total is 154 points. Questions 16(c) and 16(d) are for extra credit only, and not
included in the 154. They won’t factor into your exam score, but may help to raise your
end-of-semester letter grade.

This is a closed-book exam. You must put away all books and notes. Please confine your
answers to the space provided.

In the interest of fairness, the proctor has been instructed not to answer questions during
the exam. If you are unsure what a question is asking, make a reasonable assumption and
state it as part of your answer.

You will have a maximum of three hours to complete the exam. The proctor will collect
any remaining exams promptly at 11:30 am. Good luck!

1. (3 points) Put your name on every page (so if I lose a staple I won’t lose your answers).

2. (5 points) Calculate 0xfa35 − 0x90d2 as a 16-bit 2’s complement difference.

Answer: 0xfa35 − 0x90d2 = 0xfa35 + (−0x90d2) = 0xfa35 + 0x6f2e = 0x6963

with a discarded carry of 1.

3. (5 points) When writing a floating-point program in C, how does one decide whether
to use single-precision (float) or double-precision (double) values?

Answer: Single-precision numbers occupy less space. They also support faster arith-
metic on many, though not all, machines. They have only 23 bits of significant and 8
bits of exponent, however. Double-precision numbers have 52 bits of significant and 11
bits of exponent, allowing them to represent a much wider range of numbers with much
higher precision. So use single precision if it suffices; otherwise, use double precision.

4. (5 points) What is the purpose of dynamic linking?

Answer: To avoid wasted space in executable files and physical memory, and to allow
already-compiled programs to obtain the benefits of library upgrades.

5. The origins of the 32-bit x86 instruction set architecture (ISA) date back to the early
1970s.

1

(a) (5 points) Modern instruction sets usually use 3-address instructions, in which the
source and destination registers of arithmetic operations are independent. Why
does the x86 ISA use 2-address instructions, in which the result overwrites one of
the operands?

Answer: Two address instructions take less space to encode, and code space
was at a premium in the 1970s.

(b) (5 points) Modern 32-bit instruction sets typically have 32 general-purpose integer
registers. Why does the x86 have only 8?

Answer: With only 8 registers one can encode a register name in 3 bits. With
32 registers, one needs 5 bits per register. Again, code space was at a premium
in the 1970s.

(c) (5 points) The x86 ISA allows one operand of an arithmetic operation to be in
memory. Modern instruction sets typically require the operand to be moved into
a register first, with a special load instruction. Why?

Answer: If all operands are in registers, then an arithmetic operation has pre-
dictable timing, and can easily be pipelined. Memory access introduces the need
for an interlock mechanism to stall the pipeline on a cache miss. Limiting mem-
ory access to loads and stores avoids the need for interlocks on all the arithmetic
operations, simplifying the pipeline.

(d) (5 points) Why do modern compilers refrain from using many of the instructions
in the x86 ISA?

Answer: Because they’re difficult to pipeline. Modern implementations of the
x86 sustain high throughput only when executing a RISC-like subset of the ISA.

Questions 6 and 7 ask you to consider the caching and VM architecture of a hypothetical
future machine. The questions build on one another: you should assume all the specifications
of the earlier questions when answering the later ones. Show your work if you want to have
a chance at partial credit.

6. Suppose our machine has 128-byte cache blocks, that the L1-D cache is 2-way associa-
tive and 64KB in size, and that physical addresses are 56 bits long.

(a) (4 points) Within a physical address, how many bits will be used to indicate the
offset of a byte within a block?

Answer: log2(128) = 7.

(b) (4 points) How many lines will the L1-D cache contain?

Answer: 64KB/128 bytes = 216/27 = 29 = 512.

(c) (4 points) How many sets will it contain?

Answer: 512/2 = 256.

(d) (4 points) Within a physical address, how many bits will be used to index into
the cache?

2

Answer: log2(256) = 8.

(e) (4 points) How many bits will be used for the tag in each line?

Answer: 56− 8− 7 = 41.

(f) (4 points) What will be the maximum amount of physical memory the hardware
can address?

Answer: 256 bytes = 64 PB.

7. Suppose our machine has 16-kilobyte pages and that a virtual address is a full 64 bits
long. Suppose further that we use a 5-level tree-based page table in which each node
is guaranteed to be half-page (8KB) aligned and each entry in the node is 8 bytes in
size.

(a) (4 points) How many cache blocks will compose each page?

Answer: 16KB/128B = 214/27 = 27 = 128.

(b) (4 points) How many bits will be used to indicate the offset of a byte within a
page?

Answer: log2(16KB) = 14.

(c) (4 points) How many bits will compose the page number portion of a virtual
address?

Answer: 64− 14 = 50.

(d) (4 points) How many bits will be required (on average) to index into the node at
each level of the page table tree?

Answer: 50/5 = exactly 10.

(e) (4 points) How many potential page table entries (on average) will each node
contain?

Answer: 210 = 1024.

(f) (4 points) How many bits will be required within each page table entry to indicate
the (physical) base address of a node at the next lower level of the tree?

Answer: 56− 14 = 42.

(g) (4 points) How big will each tree node be?

Answer: 1024× 8 = 8192 bytes = 1/2 page, which is good, because it matches
the tree node alignment.

8. (6 points) Consider a machine with three levels of on-chip cache. Suppose that for a
certain program the miss rates in the three levels are 3.0%, 2.0%, and 1.33%. What is
the average miss rate across all three? Explain your answer. (Remember that the L2
miss rate is the fraction of L1 misses that also miss in the L2, and the L3 miss rate is
the fraction of L1 and L2 misses that also miss in the L3.)

3

Answer: What we’re looking for is the rate which, if it were the same at all three
levels, would result in the same number of misses going all the way to memory. For
this we want the geometric mean:(

3

100
× 2

100
× 1.33

100

)(1/3)

=
3
√

8

100
= 2%

.

9. (6 points) Copy on Write is a kernel-supported mechanism that allows separate, log-
ically writable virtual pages (usually in the address spaces of separate processes) to
map to the same physical page frame if their content happens to be the same. Both
pages are mapped read-only, regardless of the owner processes’ logical access rights. If
a process tries to write the page, the page fault handler creates a physical copy, patches
the page tables to map the virtual pages to the now-separate (and writable) copies,
and restarts the faulting instruction.

Explain the value of copy-on-write for the implementation of fork() in Unix.

Answer: The typical fork is followed immediately by some variant of exec(). By
using copy-on-write for the pages that the parent and child are supposed to have
identical copies of, we avoid actually allocating new frames and copying data in pages
that aren’t modified prior to the exec.

10. (8 points) Consider the following program in C:

#include <setjmp.h>
#include <stdio.h>

jmp_buf jb;

int f(int x) {
if (x == 37) longjmp(jb, 3);
return x;

}

unsigned int best = 0;
int main() {

unsigned int i;
if (!setjmp(jb)) {

for (i = 0; i < 100; i++) {
int b = f(i);
if (b > best) best = b;

}
} else {

printf("Exception caught; i == %d, best == %d\n", i, best);
}

}

When compiled with optimization turned on, this program prints “Exception caught;

i == 0, best == 36.” How can this be? How can best be 36 when i is 0?

4

Answer: The compiler can cache i in a register, but is likely to leave best (a global
variable) in main memory across iterations of the loop. When longjmp() restores the
register values saved at the time of the setjmp(), i will be overwritten but best will
remain intact. In general, the programmer cannot make any assumptions about the
values of (non-volatile) variables in an exception handler.

11. (5 points) In Windows, the foreground process gets to run for a larger share of each
second than any background process does. Explain why this policy might make sense.

Answer: It’s likely to provide better performance—and interactive responsiveness—
for the application that the human user is paying attention to at the moment.

12. (5 points) Explain the basic tradeoff between hardware and software handling of TLB
misses.

Answer: Hardware handling is somewhat faster, but software handling gives the OS
designer complete freedom regarding the format of page tables.

13. (5 points) The Unix “standard I/O” (stream) library is built on top of the system-level
I/O library. What is its most important added functionality?

Answer: Buffering, to reduce the number of individual system calls.

14. (5 points) Why is the open operation considered fundamental to every I/O library
package? That is, why not simply specify the file name in each individual call to read
and write?

Answer: Translating a file name to a location on disk requires a very large amount
of work, to traverse the file system naming hierarchy and to check permissions at every
level of that hierarchy. The open operation allows that work to be amortized over all
the reads and writes.

15. (8 points) The semaphore post and wait operations manipulate a data structure that
contains both a counter and a list of waiting threads. Because this data structure can
potentially be accessed in parallel by threads on separate cores, it is typically protected
(inside the semaphore library) by a busy-wait (spin-based) mutual exclusion lock. In
other works, semaphores are built on top of spin locks. What extra functionality do
semaphores provide? Why not just let programs use the underlying spin locks?

Answer: Because spin locks waste processor cycles when the lock doesn’t become
available very quickly. Semaphores give the core to a different thread when the current
thread must wait. Also, (general) semaphores can be used for purposes other than
mutual exclusion.

16. Consider the following x86 subroutine:

.text
.globl _foo
_foo:

movl 4(%esp), %eax

5

movl 8(%esp), %ecx
movl 12(%esp), %edx
jmp L2

L3:
movb (%eax), %dl ; %dl is the least sig. byte of %edx
movb %dl, (%ecx)
incl %eax
incl %ecx

L2:
decl %edx
cmpl $-1, %edx
jne L3
ret

(a) (6 points) Explain what this subroutine does.

Answer: It takes 3 arguments—call them p, q, and n. It copies an n-byte block
of data from location p to location q.

(b) (5 points) Explain why the subroutine doesn’t need to save, update, or use %ebp.

Answer: Since it doesn’t call anything else, it can use the stack pointer to access
arguments, and leave the caller’s frame pointer intact.

(c) (5 points) Explain why the subroutine doesn’t need to save and restore %eax,
%ecx, and %edx.

Answer: Those are caller-saves registers. If the caller needs them across the call
to foo, it (the caller) will save and restore them.

(d) (Extra Credit: up to 10 points) Explain why subroutine foo might be considered
to have a bug. (Hint: think about overlapping buffers.) Explain how you might
modify it to correct the bug. (You don’t have to write code; just explain the
modification in English.)

Answer: If the “to” buffer has a larger address than the “from” buffer, but the
two buffers overlap, then the end of the “from” buffer will be overwritten before
it has been read. The fix in this situation is to start at the end of the “from”
buffer and work backward.

(e) (Extra Credit: up to 10 points) Explain why subroutine foo might be slower
than necessary. Explain how you might modify it to make it faster. (Again, just
explain the change in English.)

Answer: The code copies a single byte at a time. With a little care we can copy
a full word at a time, but the code gets messy. We may need to copy a few bytes
individually before or after the main (full-word) loop in order for our main-loop
loads and stores to be aligned. Worse, if the two buffers have different alignment,
we may need to shift and mask values in registers within the loop (this may still
be faster than loading and storing smaller quantities).

6

