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Outline: Class Introduction
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• Introduction

– What Are You Supposed to Learn in this Class? 

• What Is Computer Systems? 
– Instructor & TAs 
– What Do I Expect From You? 
– How am I Going to Teach? 
– Grading, Policies 

• Action items:

– Get a CSUG account.


– cycle1.csug.rochester.edu (or cycle2, cycle3) 
– Talk to Brynn Wilkins (bwilkins@cs.rochester.edu) if you don’t 

already have one 
– Sign up for Blackboard (https://learn.rochester.edu/)

http://cycle1.csug.rochester.edu


Where to Find Stuff
• http://cs.rochester.edu/courses/252/spring2018/ 

– General info 
– Programming assignments details 
– Various course materials 
– Opportunities and “ads” 

• Blackboard for all communication 
– Only place for all announcements (e.g., when an assignment is out) 
– Only place for digitized Q&A 
– Except personal issues 
– Don’t waste time: check/search previous posts before 

posting 
• CSUG machines for programming assignments submissions
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The (multi-stage) Compilation Process 
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• The assembly language’s 

view of the computer is 
called the “instruction set 
architecture” (ISA)

• No need to care how the 
instructions are implemented 
as long as they are 
somehow implemented

• Implementation of an ISA is 
called microarchitecture

• ISAs abstract away details 
of microarchitecture
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Abstraction

• Think of car versus engine, 
transmission, brakes, …

• Bridges of Konigsberg 
• Is there a walk that crosses 

each bridge exactly once?
• Solution by Euler 
• Key insight: connectivity 

between land masses is 
what is important, not the 
actual distances or the 
orientations of the bridges
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Abstraction

• Create an abstraction

• One node for each land 

mass 
• Edge between two nodes if 

there is a bridge connecting 
the two land masses 

• Graph has nodes of odd 
degree, so there is no walk 
with desired property. 

• Led to field we now call 
topology.
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• The act or process of leaving out of consideration one 

or more properties of a complex object so as to focus 
on others

• Euler left out distances and orientations 
• ISA leaves out how “ADD” is implemented 
• ISA also leaves our how long an “ADD” instruction takes
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or more properties of a complex object so as to focus 
on others

• Euler left out distances and orientations 
• ISA leaves out how “ADD” is implemented 
• ISA also leaves our how long an “ADD” instruction takes

• Bad abstractions throw away essential features of problem

• Topologist is someone who does not know the difference 

between a doughnut and coffee-cup 
• Bad ISAs don’t tell you the hardware can do multiplication
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Who scores the 
highest on the exam?Problem

Algorithm

Program

Instruction Set

Architecture

Microarchitecture

Circuit

Quicksort

Human-readable 
language (Java, C)

Machine Language

Hardware Design

Electrons, Resistors, 
Capacitors, etc.

• Depend on which 
layer you want to 
live at, you have 
different views of 
the computer

• This course 
expands your 
layers of 
abstractions
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Instruction Set Architecture
• There used to be many ISAs


– x86, ARM, Power/PowerPC, Sparc, MIPS, IA64, z 
– Very consolidated today: ARM for mobile, x86 for others

• There are even more microarchitectures

– Apple/Samsung/Qualcomm have their own microarchitecture 

(implementation) of the ARM ISA 
– Intel and AMD have different microarchitectures for x86

• ISA is lucrative business: ARM’s Business Model

– Patent the ISA, and then license the ISA 
– Every implementer pays a royalty to ARM 
– Apple/Samsung pays ARM whenever they sell a smartphone
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Instruction Set Architecture
• Little research on ISA, much more microarch. research 


– ISA is stable now. “One ISA rules them all.” 
– Free, open ISA: RISC V (UC Berkeley, https://riscv.org/) 

– Instead, focus on optimizing the implementation.
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• Interesting question: can we have one microarchitecture 
(implementation) for different ISAs?
– Can a microarchitecture designed for ISA X execute ISA Y?
– Yes but you need something that translates programs written in 

ISA Y to ISA X while you are executing it: dynamic binary 
translator 

– E.g., Transmeta executes x86 ISA programs on their in-house ISA
– Think opportunities, not overhead

https://riscv.org/
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The Role of a Computer System Designer
• Look Up (Nature of the 

problems)
• Look Down (Nature of 

the circuit technology 
and physics)

• Look Backward 
(Evaluating old ideas in 
light of new 
technologies)

• Look Forward (Listen 
to dreamers and 
predict the future)

23
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Why This Course Matters to You
• It’s just a lot of fun. You get to look up and down, 

forward and backward. 

• Without understanding Computer Systems you may 
write grossly inefficient code and have no idea why (this 
could easily cost you a job OR, in contrast, if you know 
why - get you a promotion). 

• Could be your favorite subject in CS, or the area you 
want to do research in.



24

Why This Course Matters to You
• It’s just a lot of fun. You get to look up and down, 

forward and backward. 
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could easily cost you a job OR, in contrast, if you know 
why - get you a promotion). 
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want to do research in.

Questions?



Who Are We?

25
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• Myself: Yuhao Zhu 

– WH 3501, yzhu@rochester.edu 
– Office hours TBD (soon) or by appointment 
– Got a good education 
– Got some industry experience 
– Researching computer systems, especially mobile systems, 

for emerging visual applications: Augmented/Virtual Reality, 
Computational Imaging, etc.
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Who Are We?
• Myself: Yuhao Zhu 

– WH 3501, yzhu@rochester.edu 
– Office hours TBD (soon) or by appointment 
– Got a good education 
– Got some industry experience 
– Researching computer systems, especially mobile systems, 

for emerging visual applications: Augmented/Virtual Reality, 
Computational Imaging, etc.

• TAs: 3 Grads + 5 UGs 
– Alan, Sayak, Michael, Alan, Akshay, Benjamin, Eric, Jie 
– Really care about you learning the material and succeeding

• Coming to office hours does NOT mean you are 
weak!
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What Do I Expect From You?
• Learn the material
• Do the work
• If you’re going to come to class, come on time 

• I do not take attendance and you will not be graded on it 
• However, all of the top students from previous years regularly 

attended class 
• Big believer in communicating  

• Probably the most important thing to know 
• Speak up, ask questions, participate in class 

• You can eat, but please by quiet 
• There will be a minimum standard to pass the class 
• This class will definitely be tough
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What Should You Expect From Me?
• Think of me as your tutor

• Be your guide in inducing you to explore concepts 
• Create situations and post problems that set the scene for 

your exploration 
• Answer your questions 

• Not spend lecture reading the textbook to you with 
slightly different words
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A Word about Lectures and Medieval Times

• Lecture: It’s a large part of what you pay for 

• But why do we have the “lecture” format? 
– Why does someone stand at the front and tell you things? 
– Why do you take “notes” on what they say?
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Modern Times

• You don’t have to trust the monk!

– The printing press: a revolutionizing development 
– The web: order your knowledge up for yourself on Amazon! 

• Read books and analyze for YOURSELF!

– If I rephrase it for you, what purpose does that serve?

30



FAQ: "But professor, wouldn't it be more efficient if you 
just taught us with the right answer to begin with?"
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• To learn, you 
must do the work 
with your own 
muscle (brain)!
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How Will You Be Evaluated?
• Programming Assignments: 54%


– 6 assignments, 9% each 
– This is where you really learn 
– Each assignment has two deadlines 
– One for the “pre-assignment” (a.k.a. trivia), whose point is to get you 

start thinking about the assignment (1.5%) 
– The other for the main assignment (7.5%) 
– By just thinking about the lab, you get 1/6 of the points! So do the trivia!
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How Will You Be Evaluated?
• Programming Assignments: 54%


– 6 assignments, 9% each 
– This is where you really learn 
– Each assignment has two deadlines 
– One for the “pre-assignment” (a.k.a. trivia), whose point is to get you 

start thinking about the assignment (1.5%) 
– The other for the main assignment (7.5%) 
– By just thinking about the lab, you get 1/6 of the points! So do the trivia!

• 1 midterm exam, 16%
• 1 comprehensive final exam, 30%
• Observations: 

– Programming assignments have the most weight because that’s 
where you really learn and will benefit the most 

– Final is almost twice as important as the midterm because we 
care about what you know in the end 

– All three parts are important. You can’t pass the class while 
focusing only on one part.
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• Check syllabus and labs to figure out when they are due 

(there is a date and a time specified) 
• Days you have for each lab: 10, 15, 15, 13, 13, 13
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Programming Assignments
• Check syllabus and labs to figure out when they are due 

(there is a date and a time specified) 
• Days you have for each lab: 10, 15, 15, 13, 13, 13

• They take time, so start early! 
– Thinking/design time 
– Programming time 
– Test design + debug (and repeat)

• 3 slip days. Use it wisely! 
• Other than slip days, late submission counts 0 point

• You could work in pairs 
– Only 1 submission per pair

• Share ideas but not artifacts (e.g., code, sketch)
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Programming Environment
• Develop code (or at least test it) on the CSUG Linux 

boxes (csug.rochester.edu) 
– Microsoft Visual Studio could be nice, but it’s not what we use 
– The lack of Unix knowledge is a major problem according to our 

industry contacts 

• Projects will be mostly in C and x86 assembler. 

• We only accept ANSI-C that can be compiled by the 
default GCC on the CSUG Linux boxes

34



Exams

35



Exams
• Two exams: one in-class midterm and one final
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Exams
• Two exams: one in-class midterm and one final


– Midterm covers everything up until the second last lecture 
– Finally will cover everything, including materials before midterm

• “I don’t know” is given 15% partial credit

– You need to decide if guessing is worthwhile 
– Saves grading time 
– You have to write “I don’t know” and cross out /erase anything 

else to get credit: A blank answer doesn’t count
• All exams are open book (means your book won’t help)


– They will in fact probably hurt
• No collaboration on exams
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Textbook
• Required textbook 

• Bryant and O'Hallaron's Computer Systems: A Programmer's 
Perspective (3rd edition)  

• Some recommended (but not required) textbooks 
– Introduction to Computing Systems: From Bits and Gates to C 

and Beyond, 2/e. This is where I learnt Computer Systems. 

– Structured Computer Organization, 6/e. More emphasis on SW. 

– Computer Organization and Design: The Hardware Software 
Interface, ARM Edition. More emphasis on hardware.
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Where to Find Stuff
• http://cs.rochester.edu/courses/252/spring2018/ 

– General info 
– Programming assignments details 
– Various course materials 
– Opportunities and “ads” 

• Blackboard for all communication 
– Only place for all announcements (e.g., when an assignment is out) 
– Only place for digitized Q&A 
– Except personal issues 
– Don’t waste time: check/search previous posts before 

posting 
• CSUG machines for programming assignments submissions
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Lab 0 (get CSUG account) 
Sign up for blackboard


