
CSC 252: Computer Organization 
 Spring 2018: Lecture 1 

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Action Items:
• Get CSUG account
• Sign up for Blackboard

Slide credits: Leo Porter, Mattan Erez, Derek Chiou, Keshav Pingali

Outline: Class Introduction

2

• Introduction

– What Are You Supposed to Learn in this Class?

• What Is Computer Systems?
– Instructor & TAs
– What Do I Expect From You?
– How am I Going to Teach?
– Grading, Policies

• Action items:

– Get a CSUG account.

– cycle1.csug.rochester.edu (or cycle2, cycle3)
– Talk to Brynn Wilkins (bwilkins@cs.rochester.edu) if you don’t

already have one
– Sign up for Blackboard (https://learn.rochester.edu/)

http://cycle1.csug.rochester.edu

Where to Find Stuff
• http://cs.rochester.edu/courses/252/spring2018/

– General info
– Programming assignments details
– Various course materials
– Opportunities and “ads”

• Blackboard for all communication
– Only place for all announcements (e.g., when an assignment is out)
– Only place for digitized Q&A
– Except personal issues
– Don’t waste time: check/search previous posts before

posting
• CSUG machines for programming assignments submissions

3

What is Computer Systems?

4

What is Computer Systems?

4

Who scores the
highest on the exam?Problem

What is Computer Systems?

4

Who scores the
highest on the exam?Problem

Circuit
Electrons, Resistors,

Capacitors, etc.

What is Computer Systems?

4

Who scores the
highest on the exam?Problem

Circuit
Electrons, Resistors,

Capacitors, etc.

What is Computer Systems?

4

Who scores the
highest on the exam?Problem

Circuit

Quicksort

Electrons, Resistors,
Capacitors, etc.

What is Computer Systems?

4

Who scores the
highest on the exam?Problem

Algorithm

Circuit

Quicksort

Electrons, Resistors,
Capacitors, etc.

What is Computer Systems?

4

Who scores the
highest on the exam?Problem

Algorithm

Circuit

Quicksort

Human-readable
language (Java, C)

Electrons, Resistors,
Capacitors, etc.

What is Computer Systems?

4

Who scores the
highest on the exam?Problem

Algorithm

Program

Circuit

Quicksort

Human-readable
language (Java, C)

Electrons, Resistors,
Capacitors, etc.

What is Computer Systems?

4

Who scores the
highest on the exam?Problem

Algorithm

Program

Circuit

Quicksort

Human-readable
language (Java, C)

Machine Language

Electrons, Resistors,
Capacitors, etc.

What is Computer Systems?

4

Who scores the
highest on the exam?Problem

Algorithm

Program

Instruction Set

Architecture

Circuit

Quicksort

Human-readable
language (Java, C)

Machine Language

Electrons, Resistors,
Capacitors, etc.

What is Computer Systems?

4

Who scores the
highest on the exam?Problem

Algorithm

Program

Instruction Set

Architecture

Circuit

Quicksort

Human-readable
language (Java, C)

Machine Language

Hardware Design

Electrons, Resistors,
Capacitors, etc.

What is Computer Systems?

4

Who scores the
highest on the exam?Problem

Algorithm

Program

Instruction Set

Architecture

Microarchitecture

Circuit

Quicksort

Human-readable
language (Java, C)

Machine Language

Hardware Design

Electrons, Resistors,
Capacitors, etc.

What is Computer Systems?

4

Who scores the
highest on the exam?Problem

Algorithm

Program

Instruction Set

Architecture

Microarchitecture

Circuit

Quicksort

Human-readable
language (Java, C)

Machine Language

Hardware Design

Electrons, Resistors,
Capacitors, etc.

What is Computer Systems?

4

Who scores the
highest on the exam?Problem

Algorithm

Program

Instruction Set

Architecture

Microarchitecture

Circuit

Quicksort

Human-readable
language (Java, C)

Machine Language

Hardware Design

Electrons, Resistors,
Capacitors, etc.

Computer Systems Match User
Requirements to Hardware Technologies

Two Fundamental Aspects of Computer Systems

5

Who scores the
highest on the exam?Problem

Algorithm

Program

Instruction Set

Architecture

Microarchitecture

Circuit

Quicksort

Human-readable
language (Java, C)

Machine Language

Hardware Design

Electrons, Resistors,
Capacitors, etc.

Two Fundamental Aspects of Computer Systems

5

Who scores the
highest on the exam?Problem

Algorithm

Program

Instruction Set

Architecture

Microarchitecture

Circuit

Quicksort

Human-readable
language (Java, C)

Machine Language

Hardware Design

Electrons, Resistors,
Capacitors, etc.

• How is a human-
readable program
translated to a
representation that
computers can
understand?

Two Fundamental Aspects of Computer Systems

5

Who scores the
highest on the exam?Problem

Algorithm

Program

Instruction Set

Architecture

Microarchitecture

Circuit

Quicksort

Human-readable
language (Java, C)

Machine Language

Hardware Design

Electrons, Resistors,
Capacitors, etc.

• How is a human-
readable program
translated to a
representation that
computers can
understand?

• How does a
modern computer
execute that
program?

The “Translation” Process, a.k.a., Compilation
• It translates a text file to an executable binary file (a.k.a.,

executable) consisting of a sequence of instructions
• Why binary? Computers understand only 0s and 1s
• The subject of next lecture

6

The “Translation” Process, a.k.a., Compilation
• It translates a text file to an executable binary file (a.k.a.,

executable) consisting of a sequence of instructions
• Why binary? Computers understand only 0s and 1s
• The subject of next lecture

6

Example: add.c
(Human-readable)
#include <stdio.h>
int main() {
 int a = 1;
 int b = 2;
 int c = a + b;
 printf(“%d\n”, c);
}

The “Translation” Process, a.k.a., Compilation
• It translates a text file to an executable binary file (a.k.a.,

executable) consisting of a sequence of instructions
• Why binary? Computers understand only 0s and 1s
• The subject of next lecture

6

Example: add.c
(Human-readable)
#include <stdio.h>
int main() {
 int a = 1;
 int b = 2;
 int c = a + b;
 printf(“%d\n”, c);
}

Executable Binary
(Machine-readable)

00011001 …
01101010 …
11010101 …
10100100 …

7

The (multi-stage) Compilation Process
(gcc)

addadd.c

Source
program
(text)

Executable
object
program
(binary)

The “Translation” Process

Example: add.c

#include <stdio.h>
int main() {
 int a = 1;
 int b = 2;
 int c = a + b;
 printf(“%d\n”, c);
}

Executable Binary

00011001 …
01101010 …
11010101 …
10100100 …

The “Translation” Process

8

Pre-
processor
(cpp)

add.i Compiler
(cc1)

add.s Assembler
(as)

add.o Linker
(ld)

addadd.c

Source
program
(text)

Modified
source
program
(text)

Assembly
program
(text)

Relocatable
object
programs
(binary)

Executable
object
program
(binary)

printf.o

Example: add.c

#include <stdio.h>
int main() {
 int a = 1;
 int b = 2;
 int c = a + b;
 printf(“%d\n”, c);
}

Executable Binary

00011001 …
01101010 …
11010101 …
10100100 …

The “Translation” Process

8

Pre-
processor
(cpp)

add.i Compiler
(cc1)

add.s Assembler
(as)

add.o Linker
(ld)

addadd.c

Source
program
(text)

Modified
source
program
(text)

Assembly
program
(text)

Relocatable
object
programs
(binary)

Executable
object
program
(binary)

printf.o

Example: add.c

#include <stdio.h>
int main() {
 int a = 1;
 int b = 2;
 int c = a + b;
 printf(“%d\n”, c);
}

The “Translation” Process

8

Pre-
processor
(cpp)

add.i Compiler
(cc1)

add.s Assembler
(as)

add.o Linker
(ld)

addadd.c

Source
program
(text)

Modified
source
program
(text)

Assembly
program
(text)

Relocatable
object
programs
(binary)

Executable
object
program
(binary)

printf.o

Example: add.c

#include <stdio.h>
int main() {
 int a = 1;
 int b = 2;
 int c = a + b;
 printf(“%d\n”, c);
}

The “Translation” Process

9

Assembly program: add.s

movl $1, -4(%rbp)
movl $2, -8(%rbp)
movl -4(%rbp), %eax
addl -8(%rbp), %eax
…
callq _printf

Pre-
processor
(cpp)

add.i Compiler
(cc1)

add.s Assembler
(as)

add.o Linker
(ld)

addadd.c

Source
program
(text)

Modified
source
program
(text)

Assembly
program
(text)

Relocatable
object
programs
(binary)

Executable
object
program
(binary)

printf.o

Example: add.c

#include <stdio.h>
int main() {
 int a = 1;
 int b = 2;
 int c = a + b;
 printf(“%d\n”, c);
}

The “Translation” Process

10

Pre-
processor
(cpp)

add.i Compiler
(cc1)

add.s Assembler
(as)

add.o Linker
(ld)

addadd.c

Source
program
(text)

Modified
source
program
(text)

Assembly
program
(text)

Relocatable
object
programs
(binary)

Executable
object
program
(binary)

Assembly program: add.s

movl $1, -4(%rbp)
movl $2, -8(%rbp)
movl -4(%rbp), %eax
addl -8(%rbp), %eax
…
callq _printf

printf.o

The “Translation” Process

10

Pre-
processor
(cpp)

add.i Compiler
(cc1)

add.s Assembler
(as)

add.o Linker
(ld)

addadd.c

Source
program
(text)

Modified
source
program
(text)

Assembly
program
(text)

Relocatable
object
programs
(binary)

Executable
object
program
(binary)

Assembly program: add.s

movl $1, -4(%rbp)
movl $2, -8(%rbp)
movl -4(%rbp), %eax
addl -8(%rbp), %eax
…
callq _printf

printf.o

The “Translation” Process

10

Relocatable Binary

00011001 …
01101010 …
11010101 …
stub _printf
10100100 …

Pre-
processor
(cpp)

add.i Compiler
(cc1)

add.s Assembler
(as)

add.o Linker
(ld)

addadd.c

Source
program
(text)

Modified
source
program
(text)

Assembly
program
(text)

Relocatable
object
programs
(binary)

Executable
object
program
(binary)

Assembly program: add.s

movl $1, -4(%rbp)
movl $2, -8(%rbp)
movl -4(%rbp), %eax
addl -8(%rbp), %eax
…
callq _printf

printf.o

The “Translation” Process

10

Relocatable Binary

00011001 …
01101010 …
11010101 …
stub _printf
10100100 …

Pre-
processor
(cpp)

add.i Compiler
(cc1)

add.s Assembler
(as)

add.o Linker
(ld)

addadd.c

Source
program
(text)

Modified
source
program
(text)

Assembly
program
(text)

Relocatable
object
programs
(binary)

Executable
object
program
(binary)

Assembly program: add.s

movl $1, -4(%rbp)
movl $2, -8(%rbp)
movl -4(%rbp), %eax
addl -8(%rbp), %eax
…
callq _printf

printf.o

The “Translation” Process

10

Relocatable Binary

00011001 …
01101010 …
11010101 …
stub _printf
10100100 …

Pre-
processor
(cpp)

add.i Compiler
(cc1)

add.s Assembler
(as)

add.o Linker
(ld)

addadd.c

Source
program
(text)

Modified
source
program
(text)

Assembly
program
(text)

Relocatable
object
programs
(binary)

Executable
object
program
(binary)

Assembly program: add.s

movl $1, -4(%rbp)
movl $2, -8(%rbp)
movl -4(%rbp), %eax
addl -8(%rbp), %eax
…
callq _printf

printf.o

The “Translation” Process

11

Relocatable Binary

00011001 …
01101010 …
11010101 …
stub _printf
10100100 …

Pre-
processor
(cpp)

add.i Compiler
(cc1)

add.s Assembler
(as)

add.o Linker
(ld)

addadd.c

Source
program
(text)

Modified
source
program
(text)

Assembly
program
(text)

Relocatable
object
programs
(binary)

Executable
object
program
(binary)

printf.o

The “Translation” Process

11

Relocatable Binary

00011001 …
01101010 …
11010101 …
stub _printf
10100100 …

Pre-
processor
(cpp)

add.i Compiler
(cc1)

add.s Assembler
(as)

add.o Linker
(ld)

addadd.c

Source
program
(text)

Modified
source
program
(text)

Assembly
program
(text)

Relocatable
object
programs
(binary)

Executable
object
program
(binary)

printf.o

The “Translation” Process

11

Relocatable Binary
for printf.o

Relocatable Binary

00011001 …
01101010 …
11010101 …
stub _printf
10100100 …

Pre-
processor
(cpp)

add.i Compiler
(cc1)

add.s Assembler
(as)

add.o Linker
(ld)

addadd.c

Source
program
(text)

Modified
source
program
(text)

Assembly
program
(text)

Relocatable
object
programs
(binary)

Executable
object
program
(binary)

printf.o

The “Translation” Process

11

Relocatable Binary
for printf.o

Relocatable Binary

00011001 …
01101010 …
11010101 …
stub _printf
10100100 …

Pre-
processor
(cpp)

add.i Compiler
(cc1)

add.s Assembler
(as)

add.o Linker
(ld)

addadd.c

Source
program
(text)

Modified
source
program
(text)

Assembly
program
(text)

Relocatable
object
programs
(binary)

Executable
object
program
(binary)

printf.o

The “Translation” Process

11

Relocatable Binary
for printf.o

Relocatable Binary

00011001 …
01101010 …
11010101 …
stub _printf
10100100 …

Pre-
processor
(cpp)

add.i Compiler
(cc1)

add.s Assembler
(as)

add.o Linker
(ld)

addadd.c

Source
program
(text)

Modified
source
program
(text)

Assembly
program
(text)

Relocatable
object
programs
(binary)

Executable
object
program
(binary)

printf.o

The “Translation” Process

11

Executable Binary

00011001 …
01101010 …
11010101 …
01110001 …
01101010 …
10100100 …

Relocatable Binary
for printf.o

Relocatable Binary

00011001 …
01101010 …
11010101 …
stub _printf
10100100 …

Pre-
processor
(cpp)

add.i Compiler
(cc1)

add.s Assembler
(as)

add.o Linker
(ld)

addadd.c

Source
program
(text)

Modified
source
program
(text)

Assembly
program
(text)

Relocatable
object
programs
(binary)

Executable
object
program
(binary)

printf.o

The “Translation” Process

11

Executable Binary

00011001 …
01101010 …
11010101 …
01110001 …
01101010 …
10100100 …

Relocatable Binary
for printf.o

Relocatable Binary

00011001 …
01101010 …
11010101 …
stub _printf
10100100 …

Pre-
processor
(cpp)

add.i Compiler
(cc1)

add.s Assembler
(as)

add.o Linker
(ld)

addadd.c

Source
program
(text)

Modified
source
program
(text)

Assembly
program
(text)

Relocatable
object
programs
(binary)

Executable
object
program
(binary)

printf.o

Questions?

Back to Layers of Transformation…

12

Who scores the
highest on the exam?Problem

Algorithm

Program

Instruction Set

Architecture

Microarchitecture

Circuit

Quicksort

Human-readable
language (Java, C)

Machine Language

Hardware Design

Electrons, Resistors,
Capacitors, etc.

How is a human-
readable program
translated to a
representation
that computers
can understand?

How does a
modern computer
execute that
program?

Back to Layers of Transformation…

12

Who scores the
highest on the exam?Problem

Algorithm

Program

Instruction Set

Architecture

Microarchitecture

Circuit

Quicksort

Human-readable
language (Java, C)

Machine Language

Hardware Design

Electrons, Resistors,
Capacitors, etc.

How is a human-
readable program
translated to a
representation
that computers
can understand?

How does a
modern computer
execute that
program?

The Fundamental Idea of Computers
• Executables (i.e., instructions) are stored in “memory”
• Processors read instructions from memory and execute

instructions one after another

13

Assembly program: add.s

movl $1, -4(%rbp)
movl $2, -8(%rbp)
movl -4(%rbp), %eax
addl -8(%rbp), %eax
…
callq _printf

The Fundamental Idea of Computers

13

Assembly program: add.s

movl $1, -4(%rbp)
movl $2, -8(%rbp)
movl -4(%rbp), %eax
addl -8(%rbp), %eax
…
callq _printf

Memory

Instruction

The Fundamental Idea of Computers

13

Assembly program: add.s movl $1, -4(%rbp) movl $2, -8(%rbp) movl -4(%rbp), %eax addl -8(%rbp), %eax … callq _printf

Memory

Instruction

The Fundamental Idea of Computers

13

Assembly program: add.s movl $1, -4(%rbp) movl $2, -8(%rbp) movl -4(%rbp), %eax addl -8(%rbp), %eax … callq _printf

Processor Memory

Instruction

The Fundamental Idea of Computers

13

Assembly program: add.s movl $1, -4(%rbp) movl $2, -8(%rbp) movl -4(%rbp), %eax addl -8(%rbp), %eax … callq _printf

Processor Memory

Instruction

Program
counter

(PC)

High-level Organization of Computer Hardware 
a.k.a., The Von Neumann Model

14

Processor Memory

Program
counter

(PC) Instruction

High-level Organization of Computer Hardware 
a.k.a., The Von Neumann Model

14

Processor Memory

Program
counter

(PC) Instruction

Arithmetic
logic unit

(ALU)

High-level Organization of Computer Hardware 
a.k.a., The Von Neumann Model

14

Processor Memory

Program
counter

(PC) Instruction

Arithmetic
logic unit

(ALU)

Control Path

High-level Organization of Computer Hardware 
a.k.a., The Von Neumann Model

14

Processor Memory

Program
counter

(PC) Instruction Data

Arithmetic
logic unit

(ALU)

Control Path

High-level Organization of Computer Hardware 
a.k.a., The Von Neumann Model

14

Processor Memory

Program
counter

(PC)

Input / Output Device

Instruction Data

Arithmetic
logic unit

(ALU)

Control Path

Bus

Touchscreen Sensor CameraDisk Ethernet

High-level Organization of Computer Hardware 
a.k.a., The Von Neumann Model

14

Processor Memory

Program
counter

(PC)

Input / Output Device

Instruction Data

Arithmetic
logic unit

(ALU)

Control Path

Bus

Touchscreen Sensor CameraDisk Ethernet

High-level Organization of Computer Hardware 
a.k.a., The Von Neumann Model

14

Processor Memory

Program
counter

(PC)

Input / Output Device

Instruction Data

Arithmetic
logic unit

(ALU)

Control Path

Touchscreen Sensor CameraDisk Ethernet

I/O Bus

High-level Organization of Computer Hardware 
a.k.a., The Von Neumann Model

14

Processor Memory

Program
counter

(PC)

Input / Output Device

Instruction Data

Arithmetic
logic unit

(ALU)

Control Path

Touchscreen Sensor CameraDisk Ethernet

I/O Bus

High-level Organization of Computer Hardware 
a.k.a., The Von Neumann Model

14

Processor Memory

Program
counter

(PC)

Input / Output Device

Instruction Data

Arithmetic
logic unit

(ALU)

Control Path

Touchscreen Sensor CameraDisk Ethernet

I/O Bus

I/O
Bridge

High-level Organization of Computer Hardware 
a.k.a., The Von Neumann Model

14

Processor Memory

Program
counter

(PC)

Input / Output Device

Instruction Data

Arithmetic
logic unit

(ALU)

Control Path

Touchscreen Sensor CameraDisk Ethernet

I/O Bus

I/O
Bridge

High-level Organization of Computer Hardware 
a.k.a., The Von Neumann Model

14

Processor Memory

Program
counter

(PC)

Input / Output Device

Instruction Data

Arithmetic
logic unit

(ALU)

Control Path

Touchscreen Sensor CameraDisk Ethernet

I/O Bus

I/O
Bridge

High-level Organization of Computer Hardware 
a.k.a., The Von Neumann Model

14

Processor Memory

Program
counter

(PC)

Input / Output Device

Instruction Data

Arithmetic
logic unit

(ALU)

Control Path

Touchscreen Sensor CameraDisk Ethernet

I/O Bus

I/O
Bridge

Back to Layers of Transformation…

15

Who scores the
highest on the exam?Problem

Algorithm

Program

Instruction Set

Architecture

Microarchitecture

Circuit

Quicksort

Human-readable
language (Java, C)

Machine Language

Hardware Design

Electrons, Resistors,
Capacitors, etc.

How is a human-
readable program
translated to a
representation
that computers
can understand?

How does a
modern computer
execute that
program?

Instruction Set Architecture

16

Instruction Set Architecture
• The assembly language’s

view of the computer is
called the “instruction set
architecture” (ISA)

16

Assembly program: add.s

movl $1, -4(%rbp)
movl $2, -8(%rbp)
movl -4(%rbp), %eax
addl -8(%rbp), %eax
…
callq _printf

Instruction Set Architecture
• The assembly language’s

view of the computer is
called the “instruction set
architecture” (ISA)

• No need to care how the
instructions are implemented
as long as they are
somehow implemented

16

Assembly program: add.s

movl $1, -4(%rbp)
movl $2, -8(%rbp)
movl -4(%rbp), %eax
addl -8(%rbp), %eax
…
callq _printf

Instruction Set Architecture
• The assembly language’s

view of the computer is
called the “instruction set
architecture” (ISA)

• No need to care how the
instructions are implemented
as long as they are
somehow implemented

• Implementation of an ISA is
called microarchitecture

16

Assembly program: add.s

movl $1, -4(%rbp)
movl $2, -8(%rbp)
movl -4(%rbp), %eax
addl -8(%rbp), %eax
…
callq _printf

Instruction Set Architecture
• The assembly language’s

view of the computer is
called the “instruction set
architecture” (ISA)

• No need to care how the
instructions are implemented
as long as they are
somehow implemented

• Implementation of an ISA is
called microarchitecture

• ISAs abstract away details
of microarchitecture

16

Assembly program: add.s

movl $1, -4(%rbp)
movl $2, -8(%rbp)
movl -4(%rbp), %eax
addl -8(%rbp), %eax
…
callq _printf

Abstraction

17

Abstraction

• Think of car versus engine,
transmission, brakes, …

17

Abstraction

• Think of car versus engine,
transmission, brakes, …

• Bridges of Konigsberg
• Is there a walk that crosses

each bridge exactly once?

17

Abstraction

• Think of car versus engine,
transmission, brakes, …

• Bridges of Konigsberg
• Is there a walk that crosses

each bridge exactly once?
• Solution by Euler
• Key insight: connectivity

between land masses is
what is important, not the
actual distances or the
orientations of the bridges

17

Abstraction

• Create an abstraction

• One node for each land

mass
• Edge between two nodes if

there is a bridge connecting
the two land masses

• Graph has nodes of odd
degree, so there is no walk
with desired property.

• Led to field we now call
topology.

18

Abstraction

19

Abstraction
• The act or process of leaving out of consideration one

or more properties of a complex object so as to focus
on others

• Euler left out distances and orientations
• ISA leaves out how “ADD” is implemented
• ISA also leaves our how long an “ADD” instruction takes

19

Abstraction
• The act or process of leaving out of consideration one

or more properties of a complex object so as to focus
on others

• Euler left out distances and orientations
• ISA leaves out how “ADD” is implemented
• ISA also leaves our how long an “ADD” instruction takes

• Bad abstractions throw away essential features of problem

• Topologist is someone who does not know the difference

between a doughnut and coffee-cup
• Bad ISAs don’t tell you the hardware can do multiplication

19

Every Layer in CS is an Abstraction

20

Who scores the
highest on the exam?Problem

Algorithm

Program

Instruction Set

Architecture

Microarchitecture

Circuit

Quicksort

Human-readable
language (Java, C)

Machine Language

Hardware Design

Electrons, Resistors,
Capacitors, etc.

Every Layer in CS is an Abstraction

20

Who scores the
highest on the exam?Problem

Algorithm

Program

Instruction Set

Architecture

Microarchitecture

Circuit

Quicksort

Human-readable
language (Java, C)

Machine Language

Hardware Design

Electrons, Resistors,
Capacitors, etc.

• Depend on which
layer you want to
live at, you have
different views of
the computer

Every Layer in CS is an Abstraction

20

Who scores the
highest on the exam?Problem

Algorithm

Program

Instruction Set

Architecture

Microarchitecture

Circuit

Quicksort

Human-readable
language (Java, C)

Machine Language

Hardware Design

Electrons, Resistors,
Capacitors, etc.

• Depend on which
layer you want to
live at, you have
different views of
the computer

• This course
expands your
layers of
abstractions

Instruction Set Architecture

21

Instruction Set Architecture
• There used to be many ISAs

– x86, ARM, Power/PowerPC, Sparc, MIPS, IA64, z
– Very consolidated today: ARM for mobile, x86 for others

21

Instruction Set Architecture
• There used to be many ISAs

– x86, ARM, Power/PowerPC, Sparc, MIPS, IA64, z
– Very consolidated today: ARM for mobile, x86 for others

• There are even more microarchitectures

– Apple/Samsung/Qualcomm have their own microarchitecture

(implementation) of the ARM ISA
– Intel and AMD have different microarchitectures for x86

21

Instruction Set Architecture
• There used to be many ISAs

– x86, ARM, Power/PowerPC, Sparc, MIPS, IA64, z
– Very consolidated today: ARM for mobile, x86 for others

• There are even more microarchitectures

– Apple/Samsung/Qualcomm have their own microarchitecture

(implementation) of the ARM ISA
– Intel and AMD have different microarchitectures for x86

21

Instruction Set Architecture
• There used to be many ISAs

– x86, ARM, Power/PowerPC, Sparc, MIPS, IA64, z
– Very consolidated today: ARM for mobile, x86 for others

• There are even more microarchitectures

– Apple/Samsung/Qualcomm have their own microarchitecture

(implementation) of the ARM ISA
– Intel and AMD have different microarchitectures for x86

• ISA is lucrative business: ARM’s Business Model

– Patent the ISA, and then license the ISA
– Every implementer pays a royalty to ARM
– Apple/Samsung pays ARM whenever they sell a smartphone

21

Instruction Set Architecture
• Little research on ISA, much more microarch. research

– ISA is stable now. “One ISA rules them all.”
– Free, open ISA: RISC V (UC Berkeley, https://riscv.org/)

– Instead, focus on optimizing the implementation.

22

https://riscv.org/

Instruction Set Architecture
• Little research on ISA, much more microarch. research

– ISA is stable now. “One ISA rules them all.”
– Free, open ISA: RISC V (UC Berkeley, https://riscv.org/)

– Instead, focus on optimizing the implementation.

22

• Interesting question: can we have one microarchitecture
(implementation) for different ISAs?

https://riscv.org/

Instruction Set Architecture
• Little research on ISA, much more microarch. research

– ISA is stable now. “One ISA rules them all.”
– Free, open ISA: RISC V (UC Berkeley, https://riscv.org/)

– Instead, focus on optimizing the implementation.

22

• Interesting question: can we have one microarchitecture
(implementation) for different ISAs?
– Can a microarchitecture designed for ISA X execute ISA Y?

https://riscv.org/

Instruction Set Architecture
• Little research on ISA, much more microarch. research

– ISA is stable now. “One ISA rules them all.”
– Free, open ISA: RISC V (UC Berkeley, https://riscv.org/)

– Instead, focus on optimizing the implementation.

22

• Interesting question: can we have one microarchitecture
(implementation) for different ISAs?
– Can a microarchitecture designed for ISA X execute ISA Y?
– Yes but you need something that translates programs written in

ISA Y to ISA X while you are executing it: dynamic binary
translator

https://riscv.org/

Instruction Set Architecture
• Little research on ISA, much more microarch. research

– ISA is stable now. “One ISA rules them all.”
– Free, open ISA: RISC V (UC Berkeley, https://riscv.org/)

– Instead, focus on optimizing the implementation.

22

• Interesting question: can we have one microarchitecture
(implementation) for different ISAs?
– Can a microarchitecture designed for ISA X execute ISA Y?
– Yes but you need something that translates programs written in

ISA Y to ISA X while you are executing it: dynamic binary
translator

– E.g., Transmeta executes x86 ISA programs on their in-house ISA

https://riscv.org/

Instruction Set Architecture
• Little research on ISA, much more microarch. research

– ISA is stable now. “One ISA rules them all.”
– Free, open ISA: RISC V (UC Berkeley, https://riscv.org/)

– Instead, focus on optimizing the implementation.

22

• Interesting question: can we have one microarchitecture
(implementation) for different ISAs?
– Can a microarchitecture designed for ISA X execute ISA Y?
– Yes but you need something that translates programs written in

ISA Y to ISA X while you are executing it: dynamic binary
translator

– E.g., Transmeta executes x86 ISA programs on their in-house ISA
– Think opportunities, not overhead

https://riscv.org/

The Role of a Computer System Designer

23

Problem

Algorithm

Program

Instruction Set

Architecture

Microarchitecture

Circuit

The Role of a Computer System Designer
• Look Up (Nature of the

problems)

23

Problem

Algorithm

Program

Instruction Set

Architecture

Microarchitecture

Circuit

The Role of a Computer System Designer
• Look Up (Nature of the

problems)
• Look Down (Nature of

the circuit technology
and physics)

23

Problem

Algorithm

Program

Instruction Set

Architecture

Microarchitecture

Circuit

The Role of a Computer System Designer
• Look Up (Nature of the

problems)
• Look Down (Nature of

the circuit technology
and physics)

• Look Backward
(Evaluating old ideas in
light of new
technologies)

23

Problem

Algorithm

Program

Instruction Set

Architecture

Microarchitecture

Circuit

The Role of a Computer System Designer
• Look Up (Nature of the

problems)
• Look Down (Nature of

the circuit technology
and physics)

• Look Backward
(Evaluating old ideas in
light of new
technologies)

• Look Forward (Listen
to dreamers and
predict the future)

23

Problem

Algorithm

Program

Instruction Set

Architecture

Microarchitecture

Circuit

24

Why This Course Matters to You
• It’s just a lot of fun. You get to look up and down,

forward and backward.

• Without understanding Computer Systems you may
write grossly inefficient code and have no idea why (this
could easily cost you a job OR, in contrast, if you know
why - get you a promotion).

• Could be your favorite subject in CS, or the area you
want to do research in.

24

Why This Course Matters to You
• It’s just a lot of fun. You get to look up and down,

forward and backward.

• Without understanding Computer Systems you may
write grossly inefficient code and have no idea why (this
could easily cost you a job OR, in contrast, if you know
why - get you a promotion).

• Could be your favorite subject in CS, or the area you
want to do research in.

Questions?

Who Are We?

25

Who Are We?
• Myself: Yuhao Zhu

– WH 3501, yzhu@rochester.edu
– Office hours TBD (soon) or by appointment
– Got a good education
– Got some industry experience
– Researching computer systems, especially mobile systems,

for emerging visual applications: Augmented/Virtual Reality,
Computational Imaging, etc.

25

Who Are We?
• Myself: Yuhao Zhu

– WH 3501, yzhu@rochester.edu
– Office hours TBD (soon) or by appointment
– Got a good education
– Got some industry experience
– Researching computer systems, especially mobile systems,

for emerging visual applications: Augmented/Virtual Reality,
Computational Imaging, etc.

• TAs: 3 Grads + 5 UGs
– Alan, Sayak, Michael, Alan, Akshay, Benjamin, Eric, Jie
– Really care about you learning the material and succeeding

25

Who Are We?
• Myself: Yuhao Zhu

– WH 3501, yzhu@rochester.edu
– Office hours TBD (soon) or by appointment
– Got a good education
– Got some industry experience
– Researching computer systems, especially mobile systems,

for emerging visual applications: Augmented/Virtual Reality,
Computational Imaging, etc.

• TAs: 3 Grads + 5 UGs
– Alan, Sayak, Michael, Alan, Akshay, Benjamin, Eric, Jie
– Really care about you learning the material and succeeding

• Coming to office hours does NOT mean you are
weak!

25

What Do I Expect From You?
• Learn the material
• Do the work
• If you’re going to come to class, come on time

• I do not take attendance and you will not be graded on it
• However, all of the top students from previous years regularly

attended class
• Big believer in communicating

• Probably the most important thing to know
• Speak up, ask questions, participate in class

• You can eat, but please by quiet
• There will be a minimum standard to pass the class
• This class will definitely be tough

26

What Should You Expect From Me?
• Think of me as your tutor

• Be your guide in inducing you to explore concepts
• Create situations and post problems that set the scene for

your exploration
• Answer your questions

• Not spend lecture reading the textbook to you with
slightly different words

27

A Word about Lectures and Medieval Times

• Lecture: It’s a large part of what you pay for

• But why do we have the “lecture” format?
– Why does someone stand at the front and tell you things?
– Why do you take “notes” on what they say?

28

A Word about Lectures and Medieval Times

• Lecture: It’s a large part of what you pay for

• But why do we have the “lecture” format?
– Why does someone stand at the front and tell you things?
– Why do you take “notes” on what they say?

28

Because	
 that’s	
 how	
 the	
 teacher	
 learned,	
 and	
 they	
 learned	
 that	
 way
Because	
 that’s	
 how	
 their	
 teacher	
 learned,	
 and	
 they	
 learned	
 that	
 way…

All The Way Back to Medieval Times..

29

All The Way Back to Medieval Times..

29

people

All The Way Back to Medieval Times..

29

people

Lecture	
 Halls

Modern Times

• You don’t have to trust the monk!

– The printing press: a revolutionizing development
– The web: order your knowledge up for yourself on Amazon!

• Read books and analyze for YOURSELF!

– If I rephrase it for you, what purpose does that serve?

30

FAQ: "But professor, wouldn't it be more efficient if you
just taught us with the right answer to begin with?"

31

FAQ: "But professor, wouldn't it be more efficient if you
just taught us with the right answer to begin with?"
• Have you ever heard of a workout class where the

instructor did all the exercises while everyone else just
watched attentively?

31

FAQ: "But professor, wouldn't it be more efficient if you
just taught us with the right answer to begin with?"
• Have you ever heard of a workout class where the

instructor did all the exercises while everyone else just
watched attentively?

31

• To learn, you
must do the work
with your own
muscle (brain)!

How Will You Be Evaluated?

32

How Will You Be Evaluated?
• Programming Assignments: 54%

– 6 assignments, 9% each
– This is where you really learn
– Each assignment has two deadlines
– One for the “pre-assignment” (a.k.a. trivia), whose point is to get you

start thinking about the assignment (1.5%)
– The other for the main assignment (7.5%)
– By just thinking about the lab, you get 1/6 of the points! So do the trivia!

32

How Will You Be Evaluated?
• Programming Assignments: 54%

– 6 assignments, 9% each
– This is where you really learn
– Each assignment has two deadlines
– One for the “pre-assignment” (a.k.a. trivia), whose point is to get you

start thinking about the assignment (1.5%)
– The other for the main assignment (7.5%)
– By just thinking about the lab, you get 1/6 of the points! So do the trivia!

• 1 midterm exam, 16%

32

How Will You Be Evaluated?
• Programming Assignments: 54%

– 6 assignments, 9% each
– This is where you really learn
– Each assignment has two deadlines
– One for the “pre-assignment” (a.k.a. trivia), whose point is to get you

start thinking about the assignment (1.5%)
– The other for the main assignment (7.5%)
– By just thinking about the lab, you get 1/6 of the points! So do the trivia!

• 1 midterm exam, 16%
• 1 comprehensive final exam, 30%

32

How Will You Be Evaluated?
• Programming Assignments: 54%

– 6 assignments, 9% each
– This is where you really learn
– Each assignment has two deadlines
– One for the “pre-assignment” (a.k.a. trivia), whose point is to get you

start thinking about the assignment (1.5%)
– The other for the main assignment (7.5%)
– By just thinking about the lab, you get 1/6 of the points! So do the trivia!

• 1 midterm exam, 16%
• 1 comprehensive final exam, 30%
• Observations:

– Programming assignments have the most weight because that’s
where you really learn and will benefit the most

– Final is almost twice as important as the midterm because we
care about what you know in the end

– All three parts are important. You can’t pass the class while
focusing only on one part.

32

Programming Assignments

33

Programming Assignments
• Check syllabus and labs to figure out when they are due

(there is a date and a time specified)
• Days you have for each lab: 10, 15, 15, 13, 13, 13

33

Programming Assignments
• Check syllabus and labs to figure out when they are due

(there is a date and a time specified)
• Days you have for each lab: 10, 15, 15, 13, 13, 13

• They take time, so start early!
– Thinking/design time
– Programming time
– Test design + debug (and repeat)

33

Programming Assignments
• Check syllabus and labs to figure out when they are due

(there is a date and a time specified)
• Days you have for each lab: 10, 15, 15, 13, 13, 13

• They take time, so start early!
– Thinking/design time
– Programming time
– Test design + debug (and repeat)

• 3 slip days. Use it wisely!
• Other than slip days, late submission counts 0 point

33

Programming Assignments
• Check syllabus and labs to figure out when they are due

(there is a date and a time specified)
• Days you have for each lab: 10, 15, 15, 13, 13, 13

• They take time, so start early!
– Thinking/design time
– Programming time
– Test design + debug (and repeat)

• 3 slip days. Use it wisely!
• Other than slip days, late submission counts 0 point

• You could work in pairs
– Only 1 submission per pair

33

Programming Assignments
• Check syllabus and labs to figure out when they are due

(there is a date and a time specified)
• Days you have for each lab: 10, 15, 15, 13, 13, 13

• They take time, so start early!
– Thinking/design time
– Programming time
– Test design + debug (and repeat)

• 3 slip days. Use it wisely!
• Other than slip days, late submission counts 0 point

• You could work in pairs
– Only 1 submission per pair

• Share ideas but not artifacts (e.g., code, sketch)

33

Programming Environment
• Develop code (or at least test it) on the CSUG Linux

boxes (csug.rochester.edu)
– Microsoft Visual Studio could be nice, but it’s not what we use
– The lack of Unix knowledge is a major problem according to our

industry contacts

• Projects will be mostly in C and x86 assembler.

• We only accept ANSI-C that can be compiled by the
default GCC on the CSUG Linux boxes

34

Exams

35

Exams
• Two exams: one in-class midterm and one final

– Midterm covers everything up until the second last lecture
– Finally will cover everything, including materials before midterm

35

Exams
• Two exams: one in-class midterm and one final

– Midterm covers everything up until the second last lecture
– Finally will cover everything, including materials before midterm

• “I don’t know” is given 15% partial credit

– You need to decide if guessing is worthwhile
– Saves grading time
– You have to write “I don’t know” and cross out /erase anything

else to get credit: A blank answer doesn’t count

35

Exams
• Two exams: one in-class midterm and one final

– Midterm covers everything up until the second last lecture
– Finally will cover everything, including materials before midterm

• “I don’t know” is given 15% partial credit

– You need to decide if guessing is worthwhile
– Saves grading time
– You have to write “I don’t know” and cross out /erase anything

else to get credit: A blank answer doesn’t count
• All exams are open book (means your book won’t help)

– They will in fact probably hurt

35

Exams
• Two exams: one in-class midterm and one final

– Midterm covers everything up until the second last lecture
– Finally will cover everything, including materials before midterm

• “I don’t know” is given 15% partial credit

– You need to decide if guessing is worthwhile
– Saves grading time
– You have to write “I don’t know” and cross out /erase anything

else to get credit: A blank answer doesn’t count
• All exams are open book (means your book won’t help)

– They will in fact probably hurt
• No collaboration on exams

35

Textbook
• Required textbook

• Bryant and O'Hallaron's Computer Systems: A Programmer's
Perspective (3rd edition)

• Some recommended (but not required) textbooks
– Introduction to Computing Systems: From Bits and Gates to C

and Beyond, 2/e. This is where I learnt Computer Systems.

– Structured Computer Organization, 6/e. More emphasis on SW.

– Computer Organization and Design: The Hardware Software
Interface, ARM Edition. More emphasis on hardware.

36

Where to Find Stuff
• http://cs.rochester.edu/courses/252/spring2018/

– General info
– Programming assignments details
– Various course materials
– Opportunities and “ads”

• Blackboard for all communication
– Only place for all announcements (e.g., when an assignment is out)
– Only place for digitized Q&A
– Except personal issues
– Don’t waste time: check/search previous posts before

posting
• CSUG machines for programming assignments submissions

37

Lab 0 (get CSUG account)
Sign up for blackboard

