CSC 252: Computer Organization
Spring 2018: Lecture 10

Instructor: Yuhao Zhu

Department of Computer Science
University of Rochester

Action Items:
e Trivia 3 was just due
 Assighment 3 is due March 2, midnight

Announcement

* Programming Assignment 3 is out
* Due on March 2, midnight

18 19 (20} 21

25 26 27 28

22

23

due

24

So far in 252...

C Program

l

Assembly
Program

l

Instruction Set Architecture

i

Processor
Microarchitecture

l

Circuits

So far in 252...

C Program

l

Assembly
Program

l

Instruction Set Architecture

i

Processor
Microarchitecture

l

Circuits

ret, call
movq, addqg

Jmp, jne

So far in 252...

C Program

l

Assembly
Program

l

Instruction Set Architecture

i

Processor
Microarchitecture

l

Circuits

movqg $rsi, %Srax
imulg %rdx, %Srax
Jmp .done

ret, call
movq, addqg
jmp, jne

So far in 252...

C Program

l

Assembly
Program

l

Instruction Set Architecture

i

Processor
Microarchitecture

l

Circuits

int, float
if, else
+, -, >>

J)

movqg $rsi, %Srax
imulg %rdx, %Srax
Jmp .done

ret, call
movq, addqg

Jmp, jne

So far in 252...

C Program

l

Assembly
Program

l

Instruction Set Architecture

i

Processor
Microarchitecture

l

Circuits

int, float
if, else
+, -, >>

J)

movqg $rsi, %Srax
imulg %rdx, %Srax
Jmp .done

ret, call
movq, addqg

Jmp, jne

So far in 252...

C Program

i

Assembly
Program

i

Instruction Set Architecture

Processor

Microarchitecture

i

K Circuits

int, float
if, else
+, -, >>

))

movqg $rsi, %Srax
imulg %rdx, %Srax
Jmp .done

ret, call
movq, addqg

Jmp, jne

Today: Circuits Basics

e Transistors

Overview of Circuit-Level Design

 Fundamental Hardware Requirements

« Communication: How to get values from one place to another. Mainly
three electrical wires.

e Computation: transistors. Combinational logic.
* Storage: transistors. Sequential logic.
* Bits are Our Friends: Everything expressed in Os and 1s
* Communication: Low or high voltage on wire
* Computation: Compute Boolean functions
e Storage: Store bits of information
e Circuit design is often abstracted as logic design

Digital Signals

— 0 — I 1 1 f— 0 —

Voltage

Time
e Extract discrete values from continuous voltage signal
e Simplest version: 1-bit signal
¢ Either high range (1) or low range (0)
¢ \With guard range between them

e Not strongly affected by noise or low quality circuit elements
e Can make circuits simple, small, and fast

Basic Building Block: Transistors

Basic Building Block: Transistors

MQOS = Metal Oxide Semiconductor
e twoO types: n-type and p-type

Basic Building Block: Transistors

MQOS = Metal Oxide Semiconductor
e twoO types: n-type and p-type

n-type (NMOS)

Terminal #2 must be
connected to GND (0V).

Basic Building Block: Transistors

MQOS = Metal Oxide Semiconductor
e twoO types: n-type and p-type

n-type (NMOS)
* when Gate has positive voltage,
short circuit between #1 and #2

(switch closed)

Gate=1

Terminal #2 must be
connected to GND (0V).

Basic Building Block: Transistors

MQOS = Metal Oxide Semiconductor
e twoO types: n-type and p-type

n-type (NMOS)

* when Gate has positive voltage,
short circuit between #1 and #2
(switch closed)

» when Gate has zero voltage,

open circuit between #1 and #2
(switch open)

Gate=1

Terminal #2 must be
connected to GND (0V).

Gate =0

#1

#2

Basic Building Block: Transistors

p-type is complementary to n-type (PMOS)
« when Gate has positive voltage,

open circuit between #1 and #2 #1
(switch open) 1

« when Gate has zero voltage,
short circuit between #1 and #2 (
(switch closed)

#2

Gate=1

Gate =0

Terminal #1 must be
connected to +1.2V

CMOS Circuit

e Complementary MOS

e Uses both n-type and p-type MOS transistors

* p-type
« Attached to + voltage
« Pulls output voltage UP when input is zero
* n-type
« Attached to GND
« Pulls output voltage DOWN when input is one

Inverter (NOT Gate)
- +1.2V

7 +0.0V

10

Inverter (NOT Gate)

’ +12v
J—dg | PMOS
LI:J,,—OUt

+0.0V

10

Inverter (NOT Gate)

{{ﬂ

10

Inverter (NOT Gate)

- +1.2V

10

Inverter (NOT Gate)
- +1.2V

10

Inverter (NOT Gate)
- +1.2V

10

NOR Gate (NOT + OR) T
A=0 |:p
T B=1- S P
.- c{ _ ——2c=0
— v — N
B _"_q 4 v
R &
A B| cC
0 o 1
_I _I o 1| o
<V \v4 1 0| o
1 1] o

Note: Serial structure on top, parallel on bottom.

11

Basic Logic Gates

A—[><>—K

NOT

A|B ~(A|B)

w >
w >

OR NOR

g:}A& B g:}—~(A& B)

AND NAND

12

Today: Circuits Basics

* Circuits for computations

13

Computing with Logic Gates

And Or Not
a — d
T Drow 8 Dot a oo ou
out=a s«s&b out=a || b out='a

e Outputs are Boolean functions of inputs
e Respond continuously to changes in inputs with some small delay

Voltage

14

Computing with Logic Gates

And Or Not
a — d
T Drow 8 Dot a oo ou
out=a s«s&b out=a || b out='a

e Outputs are Boolean functions of inputs
e Respond continuously to changes in inputs with some small delay

as&ss&hb

Voltage

Time

14

Computing with Logic Gates

And Or Not
a — d
T Drow 8 Dot a oo ou
out=a s«s&b out=a || b out='a

e Outputs are Boolean functions of inputs
e Respond continuously to changes in inputs with some small delay

Rising Delay

as&ss&hb

Voltage

Time

14

Computing with Logic Gates

And Or Not
a — d
T Drow 8 Dot a oo ou
out=a s«s&b out=a || b out='a

e Outputs are Boolean functions of inputs
e Respond continuously to changes in inputs with some small delay

Rising Delay Falling Delay

— as&ssh
/ b

Voltage

Time

14

Combinational Circuits

N s D
F;rimatry _ D :—3 gri:na:y
nputs , utputs
— e
SE— i
| -

* A Network of Logic Gates
* Continuously responds to changes on primary inputs

* Primary outputs become (after some delay) Boolean functions of
primary inputs

15

Bit Equality

bool eq =

(a&&b) | | ('a&&!b)

16

Bit Equality

bool eq =

)

(a&&b) | | ('a&&!b)

16

Bit Equality

bool eq =

)

(a&&b) | | ('a&&!b)

16

Bit Equality

bool eq =

)
)

(a&&b) | | ('a&&!b)

16

Bit Equality

bool eq =

)
)

(a&&b) | | ('a&&!b)

16

Bit Equality

bool eq =

)
)

(a&&b) | | ('a&&!b)

) >

16

Bit Equality

bool eq = (a&é&b) || ('a&&!'b)

)

-
-

16

Bit Equality

bool eq = (a&é&b) || ('a&&!'b)

) D=

-
-

16

Bit Equality

bool eq = (a&é&b) || ('a&&!'b)

Bit equal

b_lggi}_eq

Bit Equality

HCL Expression bool eq = (a&é&b) || ('a&&!b)

Bit equal

a

-
o XLD—

« Hardware Control Language (HCL)

» \ery simple hardware description language
« Boolean operations have syntax similar to C logical operations

« We’'ll use it to describe control logic for processors

Word Equality

Word-Level Representation

Des ™1 €Js3
Bit equal B — Eq
a63 _— e
b eq —
” Bit equal = A
g2 ™|

HCL Representation

o o
— Eq bool Eq = (A == B)
o o

b, _ edq;
Bit equal

a;

by = _ edq,
Bit equal

do

17

Bit-Level Multiplexor (MUX)

e Control signal s
e Data signalsaand b
e Output a when s=1, b when s=0

18

Bit-Level Multiplexor (MUX)

e Control signal s
e Data signalsaand b
e Output a when s=1, b when s=0

HCL Expression

bool out = (s&&a) || (!'s&é&b)

18

Bit-Level Multiplexor (MUX)

e Control signal s
e Data signalsaand b
e Output a when s=1, b when s=0

HCL Expression

bool out = (s&&a) || (!'s&é&b)

ki

Bit MUX

— out

18

Word Multiplexor

Y

-

out,

Word-Level Representation

MUX Out

HCL Representation
int Out = [
s : A;
1 : B;
17

e Select input word A or B

depending on control signal s

e HCL representation
« Case expression

» Series of test : value pairs

e Output value for first
successful test

19

Full (1-bit) Adder

Add two bits and carry-in,
produce one-bit sum and carry-out.

A BC.|Ss c,

t
0 0 0[]0 O
00 1(1 o
01 01 o
01 1|0 1
10 0|1 0
1.0 1[0 1
11 00 1
11 1(1 1

20

Full (1-bit) Adder

Add two bits and carry-in,

produce one-bit sum and carry-out.

S = ("'A&"'B &Cin)

A BC.ls c,

t
0 0 0[]0 o0
00 1|10
jU'IU'IO
01 1|0 1
10 01 o
10 1]0 1
11 0|0 1
11 11 1

20

Full (1-bit) Adder

Add two bits and carry-in,

produce one-bit sum and carry-out.

S = ("'A & ~B & Cin)
| (~A & B & "'Cin)

A BC.|s c,

t
00 0[O0 O
00 1]1 0
01 0|1]0
01 1[0 1
10 0|1 o0
10 1[0 1
11 0|0 1
11 1|1 1

20

Full (1-bit) Adder

Add two bits and carry-in,

produce one-bit sum and carry-out.

S = ("'A & ~B & Cin)
| (~A & B & "'Cin)
| (A & ~B & ~Cin)

A BC.ls c,

t
0 0 0[O0 O
00 1]/1 0
01 0|1 0
01 1|0 1
10 0|10
10 1[0 1
11 00 1
11 1|1 1

20

Full (1-bit) Adder

Add two bits and carry-in,

produce one-bit sum and carry-out.

S =(~A&~B &Ci)
| (~A & B & ~Cin)
| (A & ~B & ~Cin)

| (A& B & Cin)

A BC.|Ss c,

t
0 0 0[]0 O
00 1(1 o
01 01 o
01 1|0 1
10 0|1 0
1.0 1[0 1
11 00 1
11 1 [1]1

20

Full (1-bit) Adder

Add two bits and carry-in,
produce one-bit sum and carry-out.

S =(~A&~B &Ci)
| (~A & B & ~Cin)
| (A & ~B & ~Cin)

| (A& B & Cin)

Cou = (~A & B & Cin)
(A & ~B & Cin)
(A & B & ~Cip)
(A& B& Ci)

A BC.|Ss c,

t
0 0 0[]0 O
00 1(1 o
01 01 o
01 1|0 1
10 0|1 0
1.0 1[0 1
11 00 1
11 1(1 1

20

Full (1-bit) Adder

Add two bits and carry-in,
produce one-bit sum and carry-out.

Cou=(~A & B & Cin)
(A & ~B & Cin)
(A & B & ~Ci)
(A& B& Cin)

21

Full (1-bit) Adder Cou = (~A&B&Ci

(A & ~B & Gin)

Add two bits and carry-in, (A & B & ~Ci)
produce one-bit sum and carry-out.

A 5 (A& B & GCin)

FEBEE .

+—— (OR Gates

out S

Full (1-bit) Adder Cos={~A&B&C))

(A & ~B & Gin)
Add two bits and carry-in, (A & B & ~Ci)
produce one-bit sum and carry-out.

(A& B & GCin)

A

+ . 4 . 4 -5

(HPIITG ==

+—— (OR Gates

-

out

21

Four-bit Adder

A, B, A, B, A, B, A, B,
||] || ||
A B A B A B A B

Full € Full €. Full € Full

Adder Adder Adder Adder

> - S C S C S G S

Cot Ss S, S, S,

Four-bit Adder

* Ripple-carry Adder
e Simple, but performance linear to bit width

A, B, A, B, A, B,
||] ||

A B A B A B
Full ¢ Full © Full ©C.

Adder Adder Adder

K S (=19 S C S

Four-bit Adder

* Ripple-carry Adder

e Simple, but performance linear to bit width
* Carry look-ahead adder (CLA)

* Generate all carriers simultaneously

A, B, A, B, A, B,
||] ||

A B A B A B
Full €. Full C. Full ¢C.

Adder Adder Adder

K S (7 S G S

Cout S3 S2 Sl

Arithmetic Logic Unit

e Combinational logic
» Continuously responding to inputs

e Control signal selects function computed
* add, subtract, and, or

e Also computes values for condition codes

23

Arithmetic Logic Unit Questions?

e Combinational logic
» Continuously responding to inputs

e Control signal selects function computed
* add, subtract, and, or

e Also computes values for condition codes

23

Today: Circuits Basics

* Circuits for storing data

24

Storing 1 Bit

25

Storing 1 Bit

25

Storing 1 Bit

Bistable Element

25

Storing and Accessing 1 Bit

Bistable Element

26

Storing and Accessing 1 Bit

R-S Latch

Bistable Element
q
Q+ R
|
9 0o-
Q S

Q+

26

Storing and Accessing 1 Bit

R-S Latch

Bistable Element
q
Q+ R
|
9 0o-
Q S
qg=0or1

Setting

R ° —0 1

.,

— =T *

Q+

26

Storing and Accessing 1 Bit

Bistable Element R-S Latch
q R
g: . %: X
9 Q- Q-
S
qg =0or1
Setting Resetting
0 0 1 1
" : » ! Q+ R } >—:‘ 0 Q+
s—) D - s—) D -

26

Storing and Accessing 1 Bit

Bistable Element R-S Latch
q
Q+ R Q+
|
q — —
Q S Q
qg =0or1
Setting Resetting Storing
= 0 0 1 . 1 1 0 . 0 g g
) O Q+) O Q+ A Q+

26

1-Bit D Latch

D Latch

Data

Clock

D

a_[>o_

27

1-Bit D Latch

Data

D Latch

Clock

Latching

d

{>C . _\ .
.
1 [)
=

Q+

27

1-Bit D Latch

D Latch
Latching
d 1d
o

Data ~——¢ >o—

Clock

'd 'd d

Storing

Q+

27

D-Latch is Transparent (Level-Triggered)

Latching Changing D
d ~_'d 'd 1d d
o C
—~ | Q+ \
5 %i éyl

1 Y\ ‘ Q-

——— 4 d 1d Q+ I\ (

Time

¢ \When in latching mode, combinational propagation from D to Q+ and Q-
e \/alue latched depends on value of D as C falls

28

Edge-Triggered Latch (Flip-Flop)

29

Edge-Triggered Latch (Flip-Flop)

D

Data

¢ [

U

Clock

29

Edge-Triggered Latch (Flip-Flop)

D

Data

¢ [

U

Clock 0

29

Edge-Triggered Latch (Flip-Flop)

29

Edge-Triggered Latch (Flip-Flop)

29

Edge-Triggered Latch (Flip-Flop)

29

Edge-Triggered Latch (Flip-Flop)

5 o—| >0— R
ata | Q+
1
oo e 05 a-
C) i S

29

Edge-Triggered Latch (Flip-Flop)

D

-

Data

1->0

I—[>o—-‘>o—‘>o—_\ 0 ->1
C . T

Clock 1

29

Edge-Triggered Latch (Flip-Flop)

D

-

Data

1->0

I—[>o—-‘>o—‘>o—_\ 0->1->0
C . -

Clock 1

29

Edge-Triggered Latch (Flip-Flop)

> >
Data i
1->0
(oo 021200
& g
ock
Trigger
C_
"—)
- (
Q+ .

Time

29

Edge-Triggered Latch (Flip-Flop)

- >o— R

Data

= Q+
1->0 Q
I—[>O—-‘>o—‘>o—_\ 0->1 ->0’_ —
& T
ock 1 .
Trigger

e Flip-flop: Only in latching mode

for brief period

¢ Value latched depends on data

as clock rises
e Qutput remains stable at all

o
|
4]

Time

other times

29

Registers

Structure

Q+

Q+

Q+

Q+

Q+

Q+

O—

Q+

OO0 |I0O0 00|00 |00 |00 |00

Q+

Clock

e Stores word of data

0,

O3
0,4
O3

0,
Op

=P O

Clock

e Collection of edge-triggered latches (D Flip-flops)

e |oads input on rising edge of clock

30

Register Operation

State = x

Input =y| | Output = x

=DIX=D

31

Register Operation

State = x

_ Rising
Input =y| | Output = x clock

—Dix—=> _J

Register Operation

State = x
Input =y| | Output = x
—DIX—>

Rising
clock

State =y

Output =y

31

Register Operation

State = x
Input =y| | Output = x
DX

e Stores data bits

Rising
clock

State =y

Output =y

* For most of time acts as barrier between input and output

* As clock rises, loads input

Decoder

(A1 A0 D3| D2 D1 D0
0 0 0 0 0 1
0 1 0 0 1 0

1 0 0 1 0 0
1 1 1 0 0 0

DO = A1 & |AQ
D1=1A1 & AQ
D2 = A1 & !AQ
D3 =A1 & A2

32

Decoder

A1 A0 D3| D2 D1 DO
0 0 0 0 0 1

0
1

1

1 0 0 1
0 0 1 0
1 1 0 0

DO = A1 & |AQ
D1=1A1 & AQ
D2 = A1 & !AQ
D3 =A1 & A2

0
0
0

Ao
A,

miS

*

[2

A o
. A 4

A N N N

32

Register File

Register File

Clock

33

Register File

Register File
1| 2z
X
W
Clock

e Stores multiple registers of data
e Address input specifies which register to read or write

33

Register File

Register File
valA 1 Z
srcA | A
Read ports X
w
Clock

e Stores multiple registers of data
e Address input specifies which register to read or write

33

Register File

Register File
valA 1 Z
2 srcA | A
Read ports 2] x
w

)

Clock

e Stores multiple registers of data
e Address input specifies which register to read or write

33

Register File

Register File
X valA 1 Z
2 srcA | A
Read ports 2] x
w

)

Clock

e Stores multiple registers of data
e Address input specifies which register to read or write

33

Register File

Register File

valA

X €<— . 1| 2z Write port
2 % valW
Read ports 2] x wW
dstwW
W

)

Clock

e Stores multiple registers of data
e Address input specifies which register to read or write

33

Register File

Register File
X &IA 1 y4 Write port
2 % A valW
Read ports 2] x W | getw y
w < 2

)

Clock

e Stores multiple registers of data
e Address input specifies which register to read or write

33

Register File

Register File

X valA 1

SrcA
2 é 2 X valW y

Read ports W | getw

< 2

y 4 Write port

0 "~ Rising
Clock ___| edge
e Stores multiple registers of data

e Address input specifies which register to read or write

33

Register File

Register File

X valA 1

SrcA
2 é 2 y valW y

Read ports W | getw

< 2

y 4 Write port

0 "~ Rising
Clock ___| edge
e Stores multiple registers of data

e Address input specifies which register to read or write

33

Register File

Register File
X &IA 1 y4 Write port
2 ﬂ A valW
Read ports 2| ¥ W | astw y
0 ~ Rising
Clock ___| edge

e Stores multiple registers of data
e Address input specifies which register to read or write

e Register file is a form of Random-Access Memory (RAM)

33

Register File

Register File
X &IA 1 y4 Write port
2 SréCA A valW
Read ports 2| ¥ W | astw y
0 ~ Rising
Clock ___| edge

e Stores multiple registers of data
e Address input specifies which register to read or write

e Register file is a form of Random-Access Memory (RAM)

e Multiple Ports: Can read and/or write multiple words in one
cycle. Each port has separate address and data input/output

33

Register File

Register File
X &IA 1 y4 Write port
2 SréCA A valW
Read ports 2| ¥ W | astw y
2 <vaIB 3 w < 2
1 STCE B
0 ~ Rising
Clock ___| edge

e Stores multiple registers of data
e Address input specifies which register to read or write

e Register file is a form of Random-Access Memory (RAM)

e Multiple Ports: Can read and/or write multiple words in one
cycle. Each port has separate address and data input/output

33

Register File Implementation

Register 0

Register 1

Register 2

O 00 0|0 0|0 O

Register 3

34

Register File Implementation

Data

Register 0

Register 1

Register 2

O 00 0|0 0|0 O

Register 3

34

Register File Implementation

Clock

Data

Register 0

Register 1

Register 2

O nlo nolo nlo n

Register 3

34

Register File Implementation

Clock

Write Reg.

Data

l

|

2:4
Decoder

Register 0

Register 1

Register 2

O 00 0|0 0|0 O

Register 3

34

Register File Implementation

Clock

Write Reg.

Data

— r—ic
. Register 0
— -
—> C
9.4 g Register 1
Decoder ._:)__» c
—> 5 Register 2
— ¢
5 Register 3

Read Reg.

4:1
MUX

Out

34

Putting It Together: Accumulator Example

Comb. Logic
: o Accumulator circuit
A e Load or accumulate on
L CHR each cycle
Out
U MUX
In .

Putting It Together: Accumulator Example

Comb. Logic
: o Accumulator circuit
A e Load or accumulate on
L CHR each cycle
Out
U MUX
In .
;E_/
Clock
Clock _|
Load '
Out X Xo+Xy | Xo+Xq+Xs X3 XXy | Xg+X+Xs

35

