
CSC 252: Computer Organization 
 Spring 2018: Lecture 11 

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Action Items:
• Assignment 3 is due March 2, midnight

Carnegie Mellon

Announcement
• Programming Assignment 3 is out

• Due on March 2, midnight

2

due

Carnegie Mellon

Announcement
• There is another faculty candidate talk

• Monday, noon, this room, with food

3

Carnegie Mellon

4

So far in 252…
• ISA is the interface between

assembly programs and
microarchitecture

• Assembly view:

• How to program the machine,

based on instructions and
processor states (registers,
memory, condition codes, etc.)?

• Instructions are executed
sequentially

• Microarchitecture view:

• What hardware needs to be built to

run assembly programs?
• How to run programs as fast

(energy-efficient) as possible?

C Program

Assembly
Program

Processor

Microarchitecture

Circuits

Instruction Set Architecture

Carnegie Mellon

5

Today: Processor Microarchitecture
• The Y86-64 ISA: Simplified version of x86-64

• How an assembler works

• Sequential, single-cycle microarchitecture implementation

• Basic idea

• Hardware implementation

Carnegie Mellon

How are Instructions Encoded in Binary?
• Remember that in a stored program computer, instructions are

stored in memory as bits (just like data)

• Each instruction is fetched (according to the address specified

in the PC), decoded, and executed by the CPU

• The ISA defines the format of an instruction (syntax) and its

meaning (semantics)

• Each instruction has two major fields: opcode and operand

• The OPCODE field says what the instruction does (e.g. ADD)
• The OPERAND field(s) say where to find inputs and outputs

6

Carnegie Mellon

Y86-64 Instruction Set

7

Byte

pushq rA A 0 rA F

jXX Dest 7 fn Dest

popq rA B 0 rA F

call Dest 8 0 Dest

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB V

rmmovq rA, D(rB) 4 0 rA rB D

mrmovq D(rB), rA 5 0 rA rB D

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

0 1 2 3 4 5 6 7 8 9

Carnegie Mellon

Y86-64 Instruction Set

8

Byte

pushq rA A 0 rA F

jXX Dest 7 fn Dest

popq rA B 0 rA F

call Dest 8 0 Dest

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB V

rmmovq rA, D(rB) 4 0 rA rB D

mrmovq D(rB), rA 5 0 rA rB D

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

0 1 2 3 4 5 6 7 8 9

addq 6 0

subq 6 1

andq 6 2

xorq 6 3

Carnegie Mellon

Y86-64 Instruction Set

9

Byte

pushq rA A 0 rA F

jXX Dest 7 fn Dest

popq rA B 0 rA F

call Dest 8 0 Dest

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB V

rmmovq rA, D(rB) 4 0 rA rB D

mrmovq D(rB), rA 5 0 rA rB D

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

0 1 2 3 4 5 6 7 8 9jmp 7 0

jle 7 1

jl 7 2

je 7 3

jne 7 4

jge 7 5

jg 7 6

Carnegie Mellon

Encoding Registers
Each register has 4-bit ID

• Same encoding as in x86-64
• Register ID 15 (0xF) indicates “no register”
• Will use this in our hardware design in multiple places

10

%rax
%rcx
%rdx
%rbx

0
1
2
3

%rsp
%rbp
%rsi
%rdi

4
5
6
7

%r8
%r9
%r10
%r11

8
9
A
B

%r12
%r13
%r14

No Register

C
D
E
F

Carnegie Mellon

Instruction Example
Addition Instruction

• Add value in register rA to that in register rB
• Store result in register rB
• Note that Y86-64 only allows addition to be applied to register data

• Set condition codes based on result
• e.g., addq %rax,%rsi Encoding: 60 06
• Two-byte encoding

• First indicates instruction type
• Second gives source and destination registers

11

addq rA, rB 6 0 rA rB

Carnegie Mellon

Instruction Example
Addition Instruction

• Add value in register rA to that in register rB
• Store result in register rB
• Note that Y86-64 only allows addition to be applied to register data

• Set condition codes based on result
• e.g., addq %rax,%rsi Encoding: 60 06
• Two-byte encoding

• First indicates instruction type
• Second gives source and destination registers

11

addq rA, rB 6 0 rA rB

Assembly Form

Carnegie Mellon

Instruction Example
Addition Instruction

• Add value in register rA to that in register rB
• Store result in register rB
• Note that Y86-64 only allows addition to be applied to register data

• Set condition codes based on result
• e.g., addq %rax,%rsi Encoding: 60 06
• Two-byte encoding

• First indicates instruction type
• Second gives source and destination registers

11

addq rA, rB 6 0 rA rB

Encoded Representation

Assembly Form

Carnegie Mellon

Arithmetic and Logical Operations
• Refer to generically as “OPq”
• Encodings differ only by “function

code”
• Low-order 4 bytes in first instruction

word
• Set condition codes as side effect

12

addq rA, rB 6 0 rA rB

subq rA, rB 6 1 rA rB

andq rA, rB 6 2 rA rB

xorq rA, rB 6 3 rA rB

Add

Subtract (rA from rB)

And

Exclusive-Or

Carnegie Mellon

Arithmetic and Logical Operations
• Refer to generically as “OPq”
• Encodings differ only by “function

code”
• Low-order 4 bytes in first instruction

word
• Set condition codes as side effect

12

addq rA, rB 6 0 rA rB

subq rA, rB 6 1 rA rB

andq rA, rB 6 2 rA rB

xorq rA, rB 6 3 rA rB

Add

Subtract (rA from rB)

And

Exclusive-Or

Function Code

Carnegie Mellon

Arithmetic and Logical Operations
• Refer to generically as “OPq”
• Encodings differ only by “function

code”
• Low-order 4 bytes in first instruction

word
• Set condition codes as side effect

12

addq rA, rB 6 0 rA rB

subq rA, rB 6 1 rA rB

andq rA, rB 6 2 rA rB

xorq rA, rB 6 3 rA rB

Add

Subtract (rA from rB)

And

Exclusive-Or

Instruction Code Function Code

Carnegie Mellon

Move Operations

• Like the x86-64 movq instruction
• Simpler format for memory addresses
• Give different names to keep them distinct

13

rrmovq rA, rB

Register ➔ Register

Immediate ➔ Register

irmovq V, rB F rB3 0 V

Register ➔ Memory

rmmovq rA, D(rB) 4 0 rA rB D

Memory ➔ Register

mrmovq D(rB), rA 5 0 rA rB D

2 0 rA rB

Carnegie Mellon

Jump Instructions

14

jmp Dest 7 0

Jump Unconditionally
Dest

jle Dest 7 1

Jump When Less or Equal
Dest

jl Dest 7 2

Jump When Less
Dest

je Dest 7 3

Jump When Equal
Dest

jne Dest 7 4

Jump When Not Equal
Dest

jge Dest 7 5

Jump When Greater or Equal
Dest

jg Dest 7 6

Jump When Greater
Dest

Carnegie Mellon

Stack Operations

• Decrement %rsp by 8
• Store word from rA to memory at %rsp
• Like x86-64

• Read word from memory at %rsp
• Save in rA
• Increment %rsp by 8
• Like x86-64

15

pushq rA A 0 rA F

popq rA B 0 rA F

Carnegie Mellon

Subroutine Call and Return

• Push address of next instruction onto stack
• Start executing instructions at Dest
• Like x86-64

• Pop value from stack
• Use as address for next instruction
• Like x86-64

16

call Dest 8 0 Dest

ret 9 0

Carnegie Mellon

Miscellaneous Instructions

• Don’t do anything

• Stop executing instructions
• x86-64 has comparable instruction, but can’t execute it in user mode
• We will use it to stop the simulator
• Encoding ensures that program hitting memory initialized to zero will halt

17

nop 1 0

halt 0 0

Carnegie Mellon

Status Conditions

Mnemonic Code
ADR 3

Mnemonic Code
INS 4

Mnemonic Code
HLT 2

Mnemonic Code
AOK 1

• Desired Behavior

• If AOK, keep going
• Otherwise, stop program execution

18

• Halt instruction encountered

• Bad address (either instruction
or data) encountered

• Normal operation

• Invalid instruction encountered

Carnegie Mellon

How Does An Assemble Work?
• Translates assembly code to binary-encode

• Reads assembly program line by line, and translates according

to the instruction format defined by an ISA

19

addq rA, rB 6 0 rA rB

Add

• It sometimes needs to make two passes on the assembly
program to resolve forward references

• E.g., forward branch target address

jmp Dest 7 0

Jump Unconditionally
Dest

Carnegie Mellon

20

Today: Processor Microarchitecture
• The Y86-64 ISA: Simplified version of x86-64

• How an assembler works

• Sequential, single-cycle microarchitecture implementation

• Basic idea

• Hardware implementation

Carnegie Mellon

Principles:

• Execute each instruction one at a time, one after another
• Express every instruction as series of simple steps
• Dedicated hardware structure for completing each step
• Follow same general flow for each instruction type

Fetch: Read instruction from instruction memory
Decode: Read program registers
Execute: Compute value or address
Memory: Read or write data
Write Back: Write program registers
PC: Update program counter

21

Basic Principles for a Sequential Implementation

Carnegie Mellon

Executing Arith./Logical Operation

Fetch
■ Read 2 bytes
Decode
■ Read operand registers
Execute
■ Perform operation
■ Set condition codes

22

Memory
■ Do nothing
Write back
■ Update register
PC Update
■ Increment PC by 2

OPq rA, rB 6 fn rA rB

Carnegie Mellon

Stage Computation: Arith/Log. Ops

23

OPq rA, rB

OPq rA, rB 6 fn rA rB

Carnegie Mellon

Stage Computation: Arith/Log. Ops

23

OPq rA, rB
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]

valP ← PC+2

Fetch

Read instruction byte
Read register byte

Compute next PC

OPq rA, rB 6 fn rA rB

Carnegie Mellon

Stage Computation: Arith/Log. Ops

23

OPq rA, rB
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]

valP ← PC+2

Fetch

Read instruction byte
Read register byte

Compute next PC

valA ← R[rA]
valB ← R[rB]

Decode Read operand A
Read operand B

OPq rA, rB 6 fn rA rB

Carnegie Mellon

Stage Computation: Arith/Log. Ops

23

OPq rA, rB
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]

valP ← PC+2

Fetch

Read instruction byte
Read register byte

Compute next PC

valA ← R[rA]
valB ← R[rB]

Decode Read operand A
Read operand B

valE ← valB OP valA
Set CC

Execute Perform ALU operation
Set condition code register

OPq rA, rB 6 fn rA rB

Carnegie Mellon

Stage Computation: Arith/Log. Ops

23

OPq rA, rB
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]

valP ← PC+2

Fetch

Read instruction byte
Read register byte

Compute next PC

valA ← R[rA]
valB ← R[rB]

Decode Read operand A
Read operand B

valE ← valB OP valA
Set CC

Execute Perform ALU operation
Set condition code register

 Memory

OPq rA, rB 6 fn rA rB

Carnegie Mellon

Stage Computation: Arith/Log. Ops

23

OPq rA, rB
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]

valP ← PC+2

Fetch

Read instruction byte
Read register byte

Compute next PC

valA ← R[rA]
valB ← R[rB]

Decode Read operand A
Read operand B

valE ← valB OP valA
Set CC

Execute Perform ALU operation
Set condition code register

 Memory
R[rB] ← valE

Write
back

Write back result

OPq rA, rB 6 fn rA rB

Carnegie Mellon

Stage Computation: Arith/Log. Ops

23

OPq rA, rB
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]

valP ← PC+2

Fetch

Read instruction byte
Read register byte

Compute next PC

valA ← R[rA]
valB ← R[rB]

Decode Read operand A
Read operand B

valE ← valB OP valA
Set CC

Execute Perform ALU operation
Set condition code register

 Memory
R[rB] ← valE

Write
back

Write back result

PC ← valPPC update Update PC

OPq rA, rB 6 fn rA rB

Carnegie Mellon

Executing rmmovq

Fetch
■ Read 10 bytes
Decode
■ Read operand registers
Execute
■ Compute effective address:

R[rB] + D

24

Memory
■ Write R[rA] to to memory at address

R[rB] + D
Write back
■ Do nothing
PC Update
■ Increment PC by 10

rmmovq rA, D(rB) 4 0 rA rB D

Carnegie Mellon

Stage Computation: rmmovq

25

rmmovq rA, D(rB)

rmmovq rA, D(rB) 4 0 rA rB D

Carnegie Mellon

Stage Computation: rmmovq

25

rmmovq rA, D(rB)
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]
valC ← M8[PC+2]
valP ← PC+10

Fetch

Read instruction byte
Read register byte
Read displacement D
Compute next PC

rmmovq rA, D(rB) 4 0 rA rB D

Carnegie Mellon

Stage Computation: rmmovq

25

rmmovq rA, D(rB)
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]
valC ← M8[PC+2]
valP ← PC+10

Fetch

Read instruction byte
Read register byte
Read displacement D
Compute next PC

valA ← R[rA]
valB ← R[rB]

Decode Read operand A
Read operand B

rmmovq rA, D(rB) 4 0 rA rB D

Carnegie Mellon

Stage Computation: rmmovq

25

rmmovq rA, D(rB)
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]
valC ← M8[PC+2]
valP ← PC+10

Fetch

Read instruction byte
Read register byte
Read displacement D
Compute next PC

valA ← R[rA]
valB ← R[rB]

Decode Read operand A
Read operand B

valE ← valB + valCExecute Compute effective address

rmmovq rA, D(rB) 4 0 rA rB D

Carnegie Mellon

Stage Computation: rmmovq

25

rmmovq rA, D(rB)
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]
valC ← M8[PC+2]
valP ← PC+10

Fetch

Read instruction byte
Read register byte
Read displacement D
Compute next PC

valA ← R[rA]
valB ← R[rB]

Decode Read operand A
Read operand B

valE ← valB + valCExecute Compute effective address

 M8[valE] ← valAMemory Write value to memory

rmmovq rA, D(rB) 4 0 rA rB D

Carnegie Mellon

Stage Computation: rmmovq

25

rmmovq rA, D(rB)
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]
valC ← M8[PC+2]
valP ← PC+10

Fetch

Read instruction byte
Read register byte
Read displacement D
Compute next PC

valA ← R[rA]
valB ← R[rB]

Decode Read operand A
Read operand B

valE ← valB + valCExecute Compute effective address

 M8[valE] ← valAMemory Write value to memory

Write
back

rmmovq rA, D(rB) 4 0 rA rB D

Carnegie Mellon

Stage Computation: rmmovq

25

rmmovq rA, D(rB)
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]
valC ← M8[PC+2]
valP ← PC+10

Fetch

Read instruction byte
Read register byte
Read displacement D
Compute next PC

valA ← R[rA]
valB ← R[rB]

Decode Read operand A
Read operand B

valE ← valB + valCExecute Compute effective address

 M8[valE] ← valAMemory Write value to memory

Write
back

PC ← valPPC update Update PC

rmmovq rA, D(rB) 4 0 rA rB D

Carnegie Mellon

Executing popq

Fetch
■ Read 2 bytes
Decode
■ Read stack pointer (%rsp)
Execute
■ Increment stack pointer by 8

26

Memory
■ Read from the top of the stack from

memory
Write back
■ Update stack pointer
■ Write result to register
PC Update
■ Increment PC by 2

popq rA b 0 rA 8

Carnegie Mellon

Stage Computation: popq

27

popq rA

popq rA b 0 rA 8

Carnegie Mellon

Stage Computation: popq

27

popq rA
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]

valP ← PC+2

Fetch

Read instruction byte
Read register byte

Compute next PC

popq rA b 0 rA 8

Carnegie Mellon

Stage Computation: popq

27

popq rA
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]

valP ← PC+2

Fetch

Read instruction byte
Read register byte

Compute next PC

valA ← R[%rsp]
valB ← R[%rsp]

Decode Read stack pointer
Read stack pointer

popq rA b 0 rA 8

Carnegie Mellon

Stage Computation: popq

27

popq rA
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]

valP ← PC+2

Fetch

Read instruction byte
Read register byte

Compute next PC

valA ← R[%rsp]
valB ← R[%rsp]

Decode Read stack pointer
Read stack pointer

valE ← valB + 8Execute Increment stack pointer

popq rA b 0 rA 8

Carnegie Mellon

Stage Computation: popq

27

popq rA
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]

valP ← PC+2

Fetch

Read instruction byte
Read register byte

Compute next PC

valA ← R[%rsp]
valB ← R[%rsp]

Decode Read stack pointer
Read stack pointer

valE ← valB + 8Execute Increment stack pointer

valM ← M8[valA]Memory Read from stack

popq rA b 0 rA 8

Carnegie Mellon

Stage Computation: popq

27

popq rA
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]

valP ← PC+2

Fetch

Read instruction byte
Read register byte

Compute next PC

valA ← R[%rsp]
valB ← R[%rsp]

Decode Read stack pointer
Read stack pointer

valE ← valB + 8Execute Increment stack pointer

valM ← M8[valA]Memory Read from stack
R[%rsp] ← valE
R[rA] ← valM

Write
back

Update stack pointer
Write back result

popq rA b 0 rA 8

Carnegie Mellon

Stage Computation: popq

27

popq rA
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]

valP ← PC+2

Fetch

Read instruction byte
Read register byte

Compute next PC

valA ← R[%rsp]
valB ← R[%rsp]

Decode Read stack pointer
Read stack pointer

valE ← valB + 8Execute Increment stack pointer

valM ← M8[valA]Memory Read from stack
R[%rsp] ← valE
R[rA] ← valM

Write
back

Update stack pointer
Write back result

PC ← valPPC update Update PC

popq rA b 0 rA 8

Carnegie Mellon

Stage Computation: popq

• Must update two registers (Register file must have two write ports)

• Popped value and New stack pointer

27

popq rA
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]

valP ← PC+2

Fetch

Read instruction byte
Read register byte

Compute next PC

valA ← R[%rsp]
valB ← R[%rsp]

Decode Read stack pointer
Read stack pointer

valE ← valB + 8Execute Increment stack pointer

valM ← M8[valA]Memory Read from stack
R[%rsp] ← valE
R[rA] ← valM

Write
back

Update stack pointer
Write back result

PC ← valPPC update Update PC

popq rA b 0 rA 8

Carnegie Mellon

Executing Jumps

Fetch
■ Read 9 bytes
■ Increment PC by 9

Decode
■ Do nothing
Execute
■ Determine whether to take branch

based on jump condition and
condition codes

28

Memory
■ Do nothing
Write back
■ Do nothing
PC Update
■ Set PC to Dest if branch taken or to

incremented PC if not branch

jXX Dest 7 fn Dest

XX XXfall thru:

XX XXtarget:

Not taken

Taken

Carnegie Mellon

Stage Computation: Jumps

• Compute both addresses

• Choose based on setting of condition codes and branch condition

29

jXX Dest

Carnegie Mellon

Stage Computation: Jumps

• Compute both addresses

• Choose based on setting of condition codes and branch condition

29

jXX Dest
icode:ifun ← M1[PC]

valC ← M8[PC+1]
valP ← PC+9

Fetch

Read instruction byte

Read destination address
Fall through address

Carnegie Mellon

Stage Computation: Jumps

• Compute both addresses

• Choose based on setting of condition codes and branch condition

29

jXX Dest
icode:ifun ← M1[PC]

valC ← M8[PC+1]
valP ← PC+9

Fetch

Read instruction byte

Read destination address
Fall through address

Decode

Carnegie Mellon

Stage Computation: Jumps

• Compute both addresses

• Choose based on setting of condition codes and branch condition

29

jXX Dest
icode:ifun ← M1[PC]

valC ← M8[PC+1]
valP ← PC+9

Fetch

Read instruction byte

Read destination address
Fall through address

Decode

Cnd ← Cond(CC,ifun)
Execute

Take branch?

Carnegie Mellon

Stage Computation: Jumps

• Compute both addresses

• Choose based on setting of condition codes and branch condition

29

jXX Dest
icode:ifun ← M1[PC]

valC ← M8[PC+1]
valP ← PC+9

Fetch

Read instruction byte

Read destination address
Fall through address

Decode

Cnd ← Cond(CC,ifun)
Execute

Take branch?
 Memory

Carnegie Mellon

Stage Computation: Jumps

• Compute both addresses

• Choose based on setting of condition codes and branch condition

29

jXX Dest
icode:ifun ← M1[PC]

valC ← M8[PC+1]
valP ← PC+9

Fetch

Read instruction byte

Read destination address
Fall through address

Decode

Cnd ← Cond(CC,ifun)
Execute

Take branch?
 Memory

Write
back

Carnegie Mellon

Stage Computation: Jumps

• Compute both addresses

• Choose based on setting of condition codes and branch condition

29

jXX Dest
icode:ifun ← M1[PC]

valC ← M8[PC+1]
valP ← PC+9

Fetch

Read instruction byte

Read destination address
Fall through address

Decode

Cnd ← Cond(CC,ifun)
Execute

Take branch?
 Memory

Write
back

PC ← Cnd ? valC : valPPC update Update PC

Carnegie Mellon

Executing call

Fetch
■ Read 9 bytes
■ Increment PC by 9 (return address)

Decode
■ Read stack pointer (%rsp)
Execute
■ Decrement stack pointer by 8

30

Memory
■ Write incremented PC (i.e., return

address) to top of the stack in the
memory

Write back
■ Update stack pointer
PC Update
■ Set PC to Dest

call Dest 8 0 Dest

XX XXreturn:

XX XXtarget:

Carnegie Mellon

Stage Computation: call

31

call Dest

Carnegie Mellon

Stage Computation: call

31

call Dest
icode:ifun ← M1[PC]

valC ← M8[PC+1]
valP ← PC+9

Fetch

Read instruction byte

Read destination address
Compute return point

Carnegie Mellon

Stage Computation: call

31

call Dest
icode:ifun ← M1[PC]

valC ← M8[PC+1]
valP ← PC+9

Fetch

Read instruction byte

Read destination address
Compute return point

valB ← R[%rsp]
Decode

Read stack pointer

Carnegie Mellon

Stage Computation: call

31

call Dest
icode:ifun ← M1[PC]

valC ← M8[PC+1]
valP ← PC+9

Fetch

Read instruction byte

Read destination address
Compute return point

valB ← R[%rsp]
Decode

Read stack pointer
valE ← valB + –8Execute Decrement stack pointer

Carnegie Mellon

Stage Computation: call

31

call Dest
icode:ifun ← M1[PC]

valC ← M8[PC+1]
valP ← PC+9

Fetch

Read instruction byte

Read destination address
Compute return point

valB ← R[%rsp]
Decode

Read stack pointer
valE ← valB + –8Execute Decrement stack pointer

M8[valE] ← valP Memory Write return value on stack

Carnegie Mellon

Stage Computation: call

31

call Dest
icode:ifun ← M1[PC]

valC ← M8[PC+1]
valP ← PC+9

Fetch

Read instruction byte

Read destination address
Compute return point

valB ← R[%rsp]
Decode

Read stack pointer
valE ← valB + –8Execute Decrement stack pointer

M8[valE] ← valP Memory Write return value on stack
R[%rsp] ← valE

Write
back

Update stack pointer

Carnegie Mellon

Stage Computation: call

31

call Dest
icode:ifun ← M1[PC]

valC ← M8[PC+1]
valP ← PC+9

Fetch

Read instruction byte

Read destination address
Compute return point

valB ← R[%rsp]
Decode

Read stack pointer
valE ← valB + –8Execute Decrement stack pointer

M8[valE] ← valP Memory Write return value on stack
R[%rsp] ← valE

Write
back

Update stack pointer

PC ← valCPC update Set PC to destination

Carnegie Mellon

32

Today: Processor Microarchitecture
• The Y86-64 ISA: Simplified version of x86-64

• How an assembler works

• Sequential, single-cycle microarchitecture implementation

• Basic idea

• Hardware implementation

Carnegie Mellon

Building Blocks
Combinational Logic

• Compute Boolean functions of inputs
• Continuously respond to input changes
• Operate on data and implement control

Storage Elements

• Store bits
• Addressable memories
• Non-addressable registers
• Loaded only as clock rises

33

Register
file

A

B

W dstW

srcA

valA

srcB

valB

valW

Clock

A
L
U

fun

A

B
MUX
0

1

=

Clock

Carnegie Mellon

Microarchitecture Overview
Storage (All updated as clock rises)

■ PC register
■ Cond. Code register
■ Data memory
■ Register file

Combinational Logic

■ ALU
■ Control logic
■ Memory reads

● Instruction memory
● Register file
● Data memory

34

Combinational
logic

Data
memory

Register
file

%rbx = 0x100

PC
0x014

CC
100

Read
ports

Write
ports

Read Write

