CSC 252: Computer Organization
Spring 2018: Lecture 11

Instructor: Yuhao Zhu

Department of Computer Science
University of Rochester

Action Items:
 Assignment 3 is due March 2, midnight

Announcement

* Programming Assignment 3 is out
* Due on March 2, midnight

18 19 20 21

25 26 27 28

Mar 1

23

due

24

Announcement

* There is another faculty candidate talk
* Monday, noon, this room, with food

Monday, February 26, 2018
12:00 PM
1400 Wegmans Hall

Zhen Bai
Carnegie Mellon University

Augmenting Social Reality for Good

The profound transformation of the employment landscape requires advanced socio-
emotional skills for effective collaboration and communication in cross-disciplinary and
diverse cultural environments. People’s ability to cope with social situations and exert
influence on others is critically linked with their ability to understand and affect meanings
that others associate with their surroundings. This association is “meaning making”, the
transformation of reality “in the raw” to socially constructed reality, which fundamentally
affects how individuals act towards objects, people and situations. It remains challenging,
however, to help people navigate their social reality because it is situated in the immediate
surroundings, constantly changes through social interaction, and is only accessible through

communication.

So far in 252...

C Program

l

Assembly
Program

l

Instruction Set Architecture

i

Processor
Microarchitecture

i

Circuits

e |SA is the interface between
assembly programs and
microarchitecture

* Assembly view:

* How to program the machine,
based on instructions and
processor states (registers,
memory, condition codes, etc.)?

* |nstructions are executed
sequentially

e Microarchitecture view:

* \What hardware needs to be built to
run assembly programs?

* How to run programs as fast
(energy-efficient) as possible?

Today: Processor Microarchitecture

* The Y86-64 ISA: Simplified version of x86-64
« How an assembler works

How are Instructions Encoded in Binary?

e Remember that in a stored program computer, instructions are
stored in memory as bits (just like data)

e Each instruction is fetched (according to the address specified
in the PC), decoded, and executed by the CPU

e The ISA defines the format of an instruction (syntax) and its
meaning (semantics)

e Each instruction has two major fields: opcode and operand
 The OPCODE field says what the instruction does (e.g. ADD)
* The OPERAND field(s) say where to find inputs and outputs

Y86-64 Instruction Set

Byte 0 1 2 5
halt 010

nop 110

cmovXX rA, rB 2 | fn|rA | rB

irmovg V, rB 310]F |(rB

rmmovqg rA, D (rB) 410 |rA|rB

mrmovg D (rB), rA 510 |rA|rB

Opg rA, B 6 [fn|rA|rB

jXX Dest 7| fn Dest
call Dest 810 Dest
ret 910

pushg rA A|lOJrA|F

popqg rA B|OJ|rA|F

Y86-64 Instruct

Byte

halt

nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovg D (rB), rA
Opg rA, B

jXX Dest

call Dest

ret

pushg rA

popg rA

ion Set

0 1 2 5 7 8
00
1|10
2 |In|rA |rB
31/01F |rB
410 |rA|rB s

addg
510 |rA|rB

; subqg

6 |fn|rA |rB P <

andg
7 | fn Dest

Xorq
810 Dest ~
910
A|OJrA|F
B|OJrA| F

Y86-64 Instruction Set

Byte 0 1 2 5 6 7 [jmp
halt 00 ile
nop 1|0 i1
cmovXX rA, rB 2 | fn|rA | rB < Se
irmovg V, rB 3/0]1F |(rB V Sne
rmmovqg rA, D (rB) 410 |rA|rB / D 3ge
mrmovg D (rB), rA 510 rA|rB D K g
Opg rA, B 6 [fn|rA|rB

jXX Dest 7| fn Dest

call Dest 810 Dest

ret 910

pushg rA A|lOJrA|F

popqg rA B|OJ|rA|F

Encoding Registers

Each register has 4-bit ID
« Same encoding as in x86-64
« Register ID 15 (0xF) indicates “no register”

o Will use this in our hardware design in multiple places

Srax 0 %r8 8
srex 1 %r9 9
Srdx 2 %$rl0 A
$rbx 3 $rll B
3rsp 4 %rl2 Cc
%rbp 5 %$rl3 D
grsi 6 %rl4 E
$rdi 7 No Register| F

Instruction Example

Addition Instruction

addg rA, rB 6| 0|rA|rB

« Add value in register rA to that in register rB
 Store result in register rB
« Note that Y86-64 only allows addition to be applied to register data

« Set condition codes based on result
e €.0.,, addg %rax,%rsi Encoding: 60 06
« Two-byte encoding

 First indicates instruction type
« Second gives source and destination registers

Instruction Example

Addition Instruction

/ Assembly Form

7
addg rA, rB 6| 0|rA|rB

« Add value in register rA to that in register rB
 Store result in register rB
« Note that Y86-64 only allows addition to be applied to register data

« Set condition codes based on result
e €.0.,, addg %rax,%rsi Encoding: 60 06
« Two-byte encoding

 First indicates instruction type
« Second gives source and destination registers

Instruction Example

Addition Instruction

Assembly Form
/ / Encoded Representation

/ -~
addg rA, rB 6| 0|rA|rB

« Add value in register rA to that in register rB
 Store result in register rB
« Note that Y86-64 only allows addition to be applied to register data

« Set condition codes based on result
e €.0.,, addg %rax,%rsi Encoding: 60 06
« Two-byte encoding

 First indicates instruction type
« Second gives source and destination registers

Arithmetic and Logical Operations

Add

addqg rA, rB 6 rA\rB
Subtract (rA from rB)

subg rA, rB 6 rA\rB
And

andq rA, rB 6 rA(rB
Exclusive-Or

xorq rA, rB 6 rA(rB

« Refer to generically as “opg”

* Encodings differ only by “function
code”
« Low-order 4 bytes in first instruction
word

» Set condition codes as side effect

12

Arithmetic and Logical Operations

Function Code

Add /

addg rA, rB 6| 0|rA|rB
Subtract (rA from rB)

subg rA, rB 6| 1|rA|rB
And

andg rA, rB 6| 2|rA|rB
Exclusive-Or

xorq rA, rB 6| 3|rA|rB

« Refer to generically as “opg”

* Encodings differ only by “function
code”
« Low-order 4 bytes in first instruction
word

» Set condition codes as side effect

12

Arithmetic and Logical Operations

Instruction Code

Function Code

Add \ /

addg rA, rB 6| 0|rA|rB
Subtract (rA from rB)

subg rA, rB 6| 1|rA|rB
And

andg rA, rB 6| 2|rA|rB
Exclusive-Or

xorq rA, rB 6| 3|rA|rB

« Refer to generically as “opg”

* Encodings differ only by “function
code”
« Low-order 4 bytes in first instruction
word

» Set condition codes as side effect

12

Move Operations

Register = Register

rrmovqg A, rB 2 0|rA|rB

Immediate = Register

irmovgV, rB 3/0|F|rB Vv |
Register > Memory

rmmovg rA, D(rB) |4 | O |[rA|rB D |
Memory = Register

mrmovqg D (rB),rA |5 | 0 |rA|rB D |

 Like the x86-64 movg instruction

« Simpler format for memory addresses
« Give different names to keep them distinct

Jump Instructions

Jump Unconditionally

jmp Dest |7 |0 Dest
Jump When Less or Equal

jleDest |7 |1 Dest
Jump When Less

j1 Dest 7|2 Dest
Jump When Equal

je Dest 7|3 Dest
Jump When Not Equal

jne Dest |7 | 4 Dest
Jump When Greater or Equal

jgeDest |7 |5 Dest
Jump When Greater

jg Dest 7|6 Dest

14

Stack Operations

pushqg rA A|O|rA|F

« Decrement $rsp by 8
« Store word from rA to memory at $rsp
 Like x86-64

popq rA B/ O|rA F

« Read word from memory at $rsp

e Save in rA
e Increment $rsp by 8

o Like x86-64

Subroutine Call and Return

call Dest

Dest

e Push address of next instruction onto stack

e Start executing instructions at Dest
 Like x86-64

ret

e Pop value from stack
» Use as address for next instruction
e Like x86-64

16

Miscellaneous Instructions

nop 10

* Don’t do anything

halt 0|0

e Stop executing instructions

e X86-64 has comparable instruction, but can’t execute it in user mode

* We will use it to stop the simulator

» Encoding ensures that program hitting memory initialized to zero will halt

17

Status Conditions

nemonic| Code
AOK 1
nemonic| Code NSNS
« Halt instruction encountered
HLT 2
m « Bad address (either instruction
ADR 3 or data) encountered
nemonic | Code
INS 4

« Normal operation

e |Invalid instruction encountered

e Desired Behavior
o If AOK, keep going
« Otherwise, stop program execution

18

How Does An Assemble Work?

e Translates assembly code to binary-encode

* Reads assembly program line by line, and translates according
to the instruction format defined by an ISA

Add

addqg rA, rB 6| 0|rA|rB

* |t sometimes needs to make two passes on the assembly
program to resolve forward references

* E.g., forward branch target address

Jump Unconditionally

jmp Dest |7 | 0 Dest

Today: Processor Microarchitecture

* Sequential, single-cycle microarchitecture implementation
- Basic idea

20

Basic Principles for a Sequential Implementation

Principles:

* Execute each instruction one at a time, one after another
* EXpress every instruction as series of simple steps

* Dedicated hardware structure for completing each step

* Follow same general flow for each instruction type

Fetch: Read instruction from instruction memory
Decode: Read program registers

Execute: Compute value or address

Memory: Read or write data

Write Back: Write program registers

PC: Update program counter

21

Executing Arith./Logical Operation

OPq rA, rB 6 | fn|rA|rB
Fetch Memory
= Read 2 bytes = Do nothing
Decode Write back
= Read operand registers = Update register
Execute PC Update
= Perform operation = Increment PC by 2

= Set condition codes

22

Stage Computation: Arith/Log. Ops

OPq rA, rB

6

fn

rA

rB

OPqgrA, rB

23

Stage Computation: Arith/Log. Ops

OPq rA, rB

6

fn

rA(rB

OPqrA, rB

Fetch

icode:ifun < M,[PC]
rA:rB < M,[PC+1]

valP < PC+2

Read instruction byte
Read register byte

Compute next PC

23

Stage Computation: Arith/Log. Ops

OPq rA, rB

fn

rA(rB

OPqrA, rB

icode:ifun < M,[PC]
rA:rB < M,[PC+1]

Fetch
valP < PC+2
Decode valA < R[rA]
valB < R[rBl

Read instruction byte
Read register byte

Compute next PC
Read operand A
Read operand B

23

Stage Computation: Arith/Log. Ops

OPq rA, rB

fn

rA(rB

OPqgrA, rB

Fetch

icode:ifun < M,[PC]
rA:rB < M,[PC+1]

valP < PC+2

Decode

valA < R[rA]
valB < R[rB]

Execute

valE < valB OP valA
Set CC

Read instruction byte
Read register byte

Compute next PC

Read operand A

Read operand B

Perform ALU operation

Set condition code register

23

Stage Computation: Arith/Log. Ops

Read instruction byte
Read register byte

Compute next PC

Perform ALU operation
Set condition code register

OPq I‘A, rB fnlrAlrB
OPqgrA, rB
icode:ifun < M,[PC]
Fetch rA:rB < M,[PC+1]
valP < PC+2
Decode valA < R[rA] Read operand A
valB < R[rB] Read operand B
valE < valB OP valA
Execute
Set CC
Memory

23

Stage Computation: Arith/Log. Ops

Read instruction byte
Read register byte

Compute next PC

Perform ALU operation

Set condition code register

Write back result

OPq I‘A, rB fnlrAlrB
OPqgrA, rB
icode:ifun < M,[PC]
Fetch rA:rB < M,[PC+1]
valP < PC+2
Decode valA < R[rA] Read operand A
valB < R[rB] Read operand B
valE < valB OP valA
Execute
Set CC
Memory
Write R[rB] < valE
back

23

Stage Computation: Arith/Log. Ops

Read instruction byte
Read register byte

Compute next PC

Perform ALU operation

Set condition code register

Write back result

OPq rA, rB fn|rA|rB
OPqgrA, rB
icode:ifun < M,[PC]
Fetch rA:rB < M,[PC+1]
valP < PC+2
Decode valA < R[rA] Read operand A
valB < R[rB] Read operand B
valE < valB OP valA
Execute
Set CC
Memory
Write R[rB] < valE
back
PC update |PC < valP Update PC

23

Executing rmmovqg

rmmovg rA, D(rB) |4 | O |[rA|rB D
Fetch Memory
= Read 10 bytes = Write R[rA] to to memory at address
R[rB] + D
Decode 5]
» Read operand registers Write back
= Do nothin
Execute J
= Compute effective address: PC Update

R([rB] + D = |Increment PC by 10

Stage Computation: rmmovg

rmmovq rA, D(rB) |4 | O |[rA|rB

D

rmmovq rA, D(rB)

25

Stage Computation: rmmovg

rmmovq rA, D(rB) |4 | O |[rA|rB

D

rmmovq rA, D(rB)

Fetch

icode:ifun < M,[PC]
rA:rB < M,[PC+1]
valC < My[PC+2]
valP < PC+10

Read instruction byte
Read register byte
Read displacement D
Compute next PC

25

Stage Computation: rmmovg

rmmovq rA, D(rB) |4 | O |[rA|rB

D

rmmovq rA, D(rB)

icode:ifun < M,[PC]
rA:rB < M,[PC+1]

Fetch
valC < My[PC+2]
valP < PC+10
Decode valA < R[rA]
valB <— R[rB]

Read instruction byte
Read register byte
Read displacement D
Compute next PC
Read operand A
Read operand B

25

Stage Computation: rmmovg

rmmovq rA, D(rB) |4 | O |[rA|rB

D

rmmovq rA, D(rB)

Fetch

icode:ifun < M,[PC]
rA:rB < M,[PC+1]
valC < My[PC+2]
valP < PC+10

Decode

valA < R[rA]
valB < R[rB]

Execute

valE < valB + valC

Read instruction byte
Read register byte

Read displacement D
Compute next PC

Read operand A

Read operand B

Compute effective address

25

Stage Computation: rmmovg

rmmovq rA, D(rB) |4 | O |[rA|rB

D

rmmovq rA, D(rB)

icode:ifun < M,[PC]
Fetch rA:rB < M,[PC+1]

valC < My[PC+2]

valP < PC+10
Decode valA < R[rA]

valB <— R[rB]

valE < valB + valC
Execute
Memory M;[valE] < valA

Read instruction byte
Read register byte

Read displacement D
Compute next PC

Read operand A

Read operand B

Compute effective address

Write value to memory

25

Stage Computation: rmmovg

rmmovq rA, D(rB) |4 | O |[rA|rB

D

rmmovq rA, D(rB)

icode:ifun < M,[PC]
Fetch rA:rB < M,[PC+1]
valC < My[PC+2]
valP < PC+10
Decode valA < R[rA]
valB < R[rB]
valE < valB + valC
Execute
Memory M;[valE] < valA
Write
back

Read instruction byte
Read register byte

Read displacement D
Compute next PC

Read operand A

Read operand B

Compute effective address

Write value to memory

25

Stage Computation: rmmovg

rmmovq rA, D(rB) |4 | O |[rA|rB

D

rmmovq rA, D(rB)

icode:ifun < M,[PC]
Fetch rA:rB < M,[PC+1]
valC < My[PC+2]
valP < PC+10
Decode valA < R[rA]
valB <— R[rB]
valE < valB + valC
Execute
Memory M;[valE] < valA
Write
back
PC update |PC < valP

Read instruction byte
Read register byte

Read displacement D
Compute next PC

Read operand A

Read operand B

Compute effective address

Write value to memory

Update PC

25

Executing popg

popq rA

Fetch
= Read 2 bytes

Decode
= Read stack pointer (%rsp)

Execute
= |[ncrement stack pointer by 8

Memory

= Read from the top of the stack from
memory

Write back
= Update stack pointer
= \Write result to register

PC Update
= |ncrement PC by 2

26

Stage Computation: popqg

popq rA

b

0

rA

8

popq rA

27

Stage Computation: popqg

popq rA

b

0

rA| 8

popqg rA

Fetch

icode:ifun < M,[PC]
rA:rB < M,[PC+1]

valP < PC+2

Read instruction byte
Read register byte

Compute next PC

27

Stage Computation: popqg

popq rA

b

0

rA| 8

popqg rA

Fetch

icode:ifun < M,[PC]
rA:rB < M,[PC+1]

valP < PC+2

Decode

valA < R[%rsp]
valB < R[%rsp]

Read instruction byte
Read register byte

Compute next PC

Read stack pointer
Read stack pointer

27

Stage Computation: popqg

popq rA b|O0]|rA| 8

popq rA

icode:ifun < M,[PC] Read instruction byte
Fetch rA:rB < M,[PC+1] Read register byte

valP < PC+2 Compute next PC
Decode valA < R[%rsp] Read stack po!n er

valB < R[%rsp] Read stack pointer

valE <— valB + 8 Increment stack pointer
Execute

27

Stage Computation: popqg

popq rA b|O0|rA| 8
popq rA
icode:ifun < M,[PC] Read instruction byte
:rB < i t

Fetch rA:rB < M,[PC+1] Read register byte

valP < PC+2 Compute next PC
Decode valA < R[%rsp] Read stack po!n er

valB < R[%rsp] Read stack pointer

valE <— valB + 8 Increment stack pointer
Execute
Memory valM < Mg[valA] Read from stack

27

Stage Computation: popqg

popq rA b|0]|rA| 8

popq rA

icode:ifun < M,[PC]
Fetch rA:rB < M,[PC+1]

valP < PC+2
Decode valA < R[%rsp]

valB < R[%rsp]
Execute valE <— valB + 8
Memory valM < Mg[valA]
Write R[%rsp] < valE
back R[rA] < valM

Read instruction byte
Read register byte

Compute next PC

Read stack pointer
Read stack pointer
Increment stack pointer

Read from stack
Update stack pointer
Write back result

27

Stage Computation: popqg

popq rA b|O0]|rA| 8

popq rA

icode:ifun < M,[PC] Read instruction byte
Fetch rA:rB < M,[PC+1] Read register byte

valP < PC+2 Compute next PC

<~ R tack point

Decode valA < R[%rsp] ead stac po!n er

valB < R[%rsp] Read stack pointer

valE <— valB + 8 Increment stack pointer
Execute
Memory valM < Mg[valA] Read from stack
Write R[%rsp] < valE Update stack pointer
back R[rA] < valM Write back result
PC update |PC < valP Update PC

27

Stage Computation: popqg

popq rA b|O0]|rA| 8

popq rA

icode:ifun < M,[PC] Read instruction byte
Fetch rA:rB < M,[PC+1] Read register byte

valP < PC+2 Compute next PC
Decode valA < R[%rsp] Read stack po!nter

valB < R[%rsp] Read stack pointer

valE <— valB + 8 Increment stack pointer
Execute
Memory valM < Mg[valA] Read from stack
Write R[%rsp] < valE Update stack pointer
back R[rA] < valM Write back result
PC update |PC < valP Update PC

* Must update two registers (Register file must have two write ports)
* Popped value and New stack pointer

27

Executing Jumps

jXX Dest |7 |fn Dest
fall thru: |XX|XX Not taken
target: XX|XX Taken
Fetch Memory
= Read 9 bytes = Do nothing
= |ncrement PC by 9 Write back
Decode = Do nothing
= Do nothing PC Update
Execute = Set PC to Dest if branch taken or to

= Determine whether to take branch
based on jump condition and

condition codes

incremented PC if not branch

28

Stage Computation: Jumps

jXX Dest

e Compute both addresses
* Choose based on setting of condition codes and branch condition

29

Stage Computation: Jumps

jXX Dest

Fetch

icode:ifun < M,[PC]

valC < My[PC+1]
valP < PC+9

e Compute both addresses
* Choose based on setting of condition codes and branch condition

Read instruction byte

Read destination address
Fall through address

29

Stage Computation: Jumps

jXX Dest

Fetch

icode:ifun < M,[PC]

valC < My[PC+1]
valP < PC+9

Decode

e Compute both addresses
* Choose based on setting of condition codes and branch condition

Read instruction byte

Read destination address
Fall through address

29

Stage Computation: Jumps

jXX Dest
icode:ifun < M,[PC]
Fetch
valC < My[PC+1]
valP < PC+9
Decode
Execute)
Cnd < Cond(CC,ifun)

e Compute both addresses
* Choose based on setting of condition codes and branch condition

Read instruction byte

Read destination address
Fall through address

Take branch?

29

Stage Computation: Jumps

jXX Dest
icode:ifun < M,[PC]
Fetch
valC < My[PC+1]
valP < PC+9
Decode
Execute)
Cnd < Cond(CC,ifun)
Memory

e Compute both addresses
* Choose based on setting of condition codes and branch condition

Read instruction byte

Read destination address
Fall through address

Take branch?

29

Stage Computation: Jumps

jXX Dest
icode:ifun < M,[PC]
Fetch
valC < My[PC+1]
valP < PC+9
Decode
Execute)
Cnd < Cond(CC,ifun)
Memory
Write
back

e Compute both addresses

Read instruction byte

Read destination address
Fall through address

Take branch?

* Choose based on setting of condition codes and branch condition

29

Stage Computation: Jumps

jXX Dest
icode:ifun < M,[PC]
Fetch
valC < My[PC+1]
valP < PC+9
Decode
Execute i
Cnd < Cond(CC,ifun)
Memory
Write
back
PC update [PC <- Cnd ? valC : valP

e Compute both addresses

Read instruction byte

Read destination address
Fall through address

Take branch?

Update PC

* Choose based on setting of condition codes and branch condition

29

Executing call

call Dest 8|0 Dest
return: XX XX
target: XX|XX
Fetch Memory
= Read 9 bytes = Write incremented PC (i.e., return
= Increment PC by 9 (return address) address) to top of the stack in the
memory
Decode _
= Read stack pointer (%rsp) Write back
= Update stack pointer
Execute
PC Update

= Decrement stack pointer by 8
= Set PC to Dest

Stage Computation: call

call Dest

31

Stage Computation: call

call Dest

Fetch

icode:ifun < M,[PC]

valC < Mg[PC+1]
valP < PC+9

Read instruction byte

Read destination address
Compute return point

31

Stage Computation: call

call Dest

Fetch

icode:ifun < M,[PC]

valC < My[PC+1]
valP < PC+9

Decode

valB < R[%rsp_]

Read instruction byte

Read destination address
Compute return point

Read stack pointer

31

Stage Computation: call

call Dest

icode:ifun < M,[PC]
Fetch

valC < Mg[PC+1]

valP < PC+9
Decode

valB < R[%rsp_]

valE < valB + -8
Execute

Read instruction byte

Read destination address
Compute return point

Read stack pointer
Decrement stack pointer

31

Stage Computation: call

call Dest

icode:ifun < M,[PC]
Fetch

valC < Mg[PC+1]

valP < PC+9
Decode

valB < R[%rsp_]
Execute valE < valB + -8
Memory M;[valE] < valP

Read instruction byte

Read destination address
Compute return point

Read stack pointer
Decrement stack pointer

Write return value on stack

31

Stage Computation: call

call Dest

icode:ifun < M,[PC]
Fetch

valC < Mg[PC+1]

valP < PC+9
Decode

valB < R[%rsp_]
Execute valE < valB + -8
Memory M;[valE] < valP
Write R[$rsp] < valE
back

Read instruction byte

Read destination address
Compute return point

Read stack pointer
Decrement stack pointer

Write return value on stack
Update stack pointer

31

Stage Computation: call

call Dest

icode:ifun < M,[PC]
Fetch

valC < Mg[PC+1]

valP < PC+9
Decode

valB < R[%rsp_]
Execute valE < valB + -8
Memory M;[valE] < valP
Write R[$rsp] < valE
back
PC update |PC < valC

Read instruction byte

Read destination address
Compute return point

Read stack pointer
Decrement stack pointer

Write return value on stack
Update stack pointer

Set PC to destination

31

Today: Processor Microarchitecture

* Sequential, single-cycle microarchitecture implementation

- Hardware implementation

32

Building Blocks

Combinational Logic

« Compute Boolean functions of inputs

» Continuously respond to input changes
» Operate on data and implement control

Storage Elements Jain

«

e Store bits srcA_

e Addressable memories

valB
<«

* Non-addressable registers oroB

* Loaded only as clock rises

Register
file

W

MUX [

valw

dstW

— Clock

—
c
>

cr >»
v

Clock

33

Microarchitecture Overview

Storage (All updated as clock rises)

= PC register 4 Combinational
= Cond. Code register logic <R§" vie
Pt
= Data memory L m[e)r?]t;y <
= Register file f
cC
200 Read Write
ports ports
Combinational Logic T Regiter
= ALU file <
:> Srbx = 0x100 \‘_
= Control logic _ Y,
= Memory reads G
e Instruction memory Fe. <

e Reqister file
e Data memory

