
CSC 252: Computer Organization 
 Spring 2018: Lecture 15 

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Action Items:
• Grades for A2 are out
• Programming Assignment 4 is out

Carnegie Mellon

Announcement
• A2 grades are out. See TAs if you have doubts.

• Programming Assignment 4 is out

• Trivia due this Thursday, 12:00PM
• Main assignment due on 11:59pm, Monday, April 2.

2

Due

Trivia

3

CPU

So far in 252…

PC
Register

File
Memory

Code
Data
Stack

Addresses

Data

InstructionsCondition
CodesALU

• We have been discussing the CPU microarchitecture

• Single Cycle, sequential implementation
• Pipeline implementation
• Resolving data dependency and control dependency

• What about memory?

Carnegie Mellon

Memory in a Modern System

4

CORE 1

L2 C
A

C
H

E 0

SH
A

R
ED

 L3 C
A

C
H

E

D
R

A
M

 IN
TER

FA
C

E
CORE 0

CORE 2 CORE 3
L2 C

A
C

H
E 1

L2 C
A

C
H

E 2

L2 C
A

C
H

E 3

D
R

A
M

 M
odules

DRAM MEMORY
CONTROLLER

Carnegie Mellon

Ideal Memory
• Zero access time (latency)

• Infinite capacity

• Zero cost

• Infinite bandwidth (to support multiple accesses in parallel)

5

Carnegie Mellon

The Problem
• Ideal memory’s requirements oppose each other

6

Carnegie Mellon

The Problem
• Ideal memory’s requirements oppose each other

• Bigger is slower

6

Carnegie Mellon

The Problem
• Ideal memory’s requirements oppose each other

• Bigger is slower
• Bigger à Takes longer to determine the location

6

Carnegie Mellon

The Problem
• Ideal memory’s requirements oppose each other

• Bigger is slower
• Bigger à Takes longer to determine the location

• Faster is more expensive

6

Carnegie Mellon

The Problem
• Ideal memory’s requirements oppose each other

• Bigger is slower
• Bigger à Takes longer to determine the location

• Faster is more expensive
• Memory technology: Flip-flop vs. SRAM vs. DRAM vs.

Disk vs. Tape

6

Carnegie Mellon

The Problem
• Ideal memory’s requirements oppose each other

• Bigger is slower
• Bigger à Takes longer to determine the location

• Faster is more expensive
• Memory technology: Flip-flop vs. SRAM vs. DRAM vs.

Disk vs. Tape

• Higher bandwidth is more expensive

6

Carnegie Mellon

The Problem
• Ideal memory’s requirements oppose each other

• Bigger is slower
• Bigger à Takes longer to determine the location

• Faster is more expensive
• Memory technology: Flip-flop vs. SRAM vs. DRAM vs.

Disk vs. Tape

• Higher bandwidth is more expensive
• Need more banks, more ports, higher frequency, or faster

technology

6

Carnegie Mellon

Memory Technology: D Flip-Flop (DFF)

7

Q+

Q–

R

S

D

C

Data

Clock T
Trigger

• Very fast

• Very expensive to build

• 6 NOT gates (2 transistors / gate)
• 3 AND gates (3 transistors / gate)
• 2 OR gates (3 transistors / gate)
• 27 transistors in total for just one bit!!

Carnegie Mellon

Memory Technology: SRAM

8

Carnegie Mellon

Memory Technology: SRAM
• Static random access memory

• Random access means you can supply an arbitrary address to

the memory and get a value back

• Two cross coupled inverters store a single bit

• Feedback path enables the stored value to persist in the “cell”
• 4 transistors for storage
• 2 transistors for access
• 6 transistors in total per bit

8

row select

bi
tli

ne

_b
itl

in
e

Carnegie Mellon

Memory Technology: DRAM
• Dynamic random access memory
• Capacitor charge state indicates stored value

• Whether the capacitor is charged or discharged indicates
storage of 1 or 0

• 1 capacitor

9

Carnegie Mellon

Memory Technology: DRAM
• Dynamic random access memory
• Capacitor charge state indicates stored value

• Whether the capacitor is charged or discharged indicates
storage of 1 or 0

• 1 capacitor
• 1 access transistor

• Capacitors will leak!

9

row enable

_b
itl

in
e

Carnegie Mellon

Memory Technology: DRAM
• Dynamic random access memory
• Capacitor charge state indicates stored value

• Whether the capacitor is charged or discharged indicates
storage of 1 or 0

• 1 capacitor
• 1 access transistor

• Capacitors will leak!
• DRAM cell loses charge over time

9

row enable

_b
itl

in
e

Carnegie Mellon

Memory Technology: DRAM
• Dynamic random access memory
• Capacitor charge state indicates stored value

• Whether the capacitor is charged or discharged indicates
storage of 1 or 0

• 1 capacitor
• 1 access transistor

• Capacitors will leak!
• DRAM cell loses charge over time
• DRAM cell needs to be refreshed

9

row enable

_b
itl

in
e

Carnegie Mellon

Latch vs. DRAM vs. SRAM
• DFF

• Fastest
• Low density (27 transistors per bit)
• High cost

• SRAM

• Faster access (no capacitor)
• Lower density (6 transistors per bit)
• Higher cost
• No need for refresh
• Manufacturing compatible with logic process (no capacitor)

• DRAM

• Slower access (capacitor)
• Higher density (1 transistor + 1 capacitor per bit)
• Lower cost
• Requires refresh (power, performance, circuitry)
• Manufacturing requires putting capacitor and logic together

10

Carnegie Mellon

Nonvolatile Memories

11

Carnegie Mellon

Nonvolatile Memories
• DFF, DRAM and SRAM are volatile memories

• Lose information if powered off.

11

Carnegie Mellon

Nonvolatile Memories
• DFF, DRAM and SRAM are volatile memories

• Lose information if powered off.
• Nonvolatile memories retain value even if powered off

• Flash (~ 5 years)
• Hard Disk (~ 5 years)
• Tape (~ 15-30 years)
• DNA (centuries)

11

Carnegie Mellon

Nonvolatile Memories
• DFF, DRAM and SRAM are volatile memories

• Lose information if powered off.
• Nonvolatile memories retain value even if powered off

• Flash (~ 5 years)
• Hard Disk (~ 5 years)
• Tape (~ 15-30 years)
• DNA (centuries)

11

Carnegie Mellon

Nonvolatile Memories
• DFF, DRAM and SRAM are volatile memories

• Lose information if powered off.
• Nonvolatile memories retain value even if powered off

• Flash (~ 5 years)
• Hard Disk (~ 5 years)
• Tape (~ 15-30 years)
• DNA (centuries)

• Uses for Nonvolatile Memories

• Firmware (BIOS, controllers for disks, network cards, graphics

accelerators, security subsystems,…)
• Files in Smartphones, mp3 players, tablets, laptops
• Backup

11

Carnegie Mellon

The Problem
• Bigger is slower

• SRAM, 512 Bytes, sub-nanosec
• SRAM, KByte~MByte, ~nanosec
• DRAM, Gigabyte, ~50 nanosec
• Hard Disk, Terabyte, ~10 millisec

• Faster is more expensive (dollars and chip area)

• SRAM, < 10$ per Megabyte
• DRAM, < 1$ per Megabyte
• Hard Disk < 1$ per Gigabyte

• Other technologies have their place as well

• PC-RAM, MRAM, RRAM

12

Carnegie Mellon

We want both fast and large Memory

• But we cannot achieve both with a single level of memory

• Idea: Memory Hierarchy

• Have multiple levels of storage (progressively bigger and slower

as the levels are farther from the processor)
• ensure most of the data the processor needs in the near future

is kept in the fast(er) level(s)

• Question: How do we know what kind of data processors would
use in the near future?

13

Carnegie Mellon

Locality
• Principle of Locality: Programs tend to use data and instructions

with addresses near or equal to those they have used recently

14

Carnegie Mellon

Locality
• Principle of Locality: Programs tend to use data and instructions

with addresses near or equal to those they have used recently

• Temporal locality:
• Recently referenced items are likely  

to be referenced again in the near future

14

Carnegie Mellon

Locality
• Principle of Locality: Programs tend to use data and instructions

with addresses near or equal to those they have used recently

• Temporal locality:
• Recently referenced items are likely  

to be referenced again in the near future

• Spatial locality:
• Items with nearby addresses tend  

to be referenced close together in time

14

Carnegie Mellon

Locality Example

• Data references

• Spatial Locality: Reference array elements in succession (stride-1

reference pattern)
• Temporal Locality: Reference variable sum each iteration.

• Instruction references

• Spatial Locality: Reference instructions in sequence.
• Temporal Locality: Cycle through loop repeatedly.

15

sum = 0;
for (i = 0; i < n; i++)
 sum += a[i];
return sum;

Carnegie Mellon

Memory Hierarchy

16

fast

small

big but slow

move what you use here

backup

everything

here

With good locality of
reference, memory appears
as fast as

and as large as

fa
st
er
	 p
er
	 b
yt
e

ch
ea
pe

r	 p
er
	 b
yt
e

Carnegie Mellon

Memory Hierarchy

16

fast

small

big but slow

move what you use here

backup

everything

here

With good locality of
reference, memory appears
as fast as

and as large as

fa
st
er
	 p
er
	 b
yt
e

ch
ea
pe

r	 p
er
	 b
yt
e

Carnegie Mellon

Memory Hierarchy
• Fundamental tradeoff

• Fast memory: small
• Large memory: slow

• Balance latency, cost,
size, bandwidth

17

CPU Main
Memory
(DRAM) RF

(Latch)

Cache
(SRAM)

Hard Disk

Carnegie Mellon

Caching Basics: Exploit Temporal Locality
• Idea: Store recently accessed data in fast memory (called

cache)
• Anticipation: the data will be accessed again soon

18

Carnegie Mellon

Caching Basics: Exploit Temporal Locality
• Idea: Store recently accessed data in fast memory (called

cache)
• Anticipation: the data will be accessed again soon

• Temporal locality principle
• Recently accessed data will be again accessed in the near

future

18

Carnegie Mellon

Caching Basics: Exploit Temporal Locality
• Idea: Store recently accessed data in fast memory (called

cache)
• Anticipation: the data will be accessed again soon

• Temporal locality principle
• Recently accessed data will be again accessed in the near

future
• This is what Maurice Wilkes had in mind:

• Wilkes, “Slave Memories and Dynamic Storage Allocation,” IEEE
Trans. On Electronic Computers, 1965.

• “The use is discussed of a fast core memory of, say 32000 words
as a slave to a slower core memory of, say, one million words in
such a way that in practical cases the effective access time is
nearer that of the fast memory than that of the slow memory.”

18

Carnegie Mellon

Caching Basics: Exploit Spatial Locality
• Idea: Store addresses adjacent to the recently accessed one in

fast memory (cache)
• Logically divide memory into equal size blocks
• Fetch to cache the accessed block in its entirety

• Anticipation: nearby data will be accessed soon

19

Carnegie Mellon

Caching Basics: Exploit Spatial Locality
• Idea: Store addresses adjacent to the recently accessed one in

fast memory (cache)
• Logically divide memory into equal size blocks
• Fetch to cache the accessed block in its entirety

• Anticipation: nearby data will be accessed soon

• Spatial locality principle
• Nearby data in memory will be accessed in the near future

• E.g., sequential instruction access, array traversal

19

Carnegie Mellon

Caching Basics: Exploit Spatial Locality
• Idea: Store addresses adjacent to the recently accessed one in

fast memory (cache)
• Logically divide memory into equal size blocks
• Fetch to cache the accessed block in its entirety

• Anticipation: nearby data will be accessed soon

• Spatial locality principle
• Nearby data in memory will be accessed in the near future

• E.g., sequential instruction access, array traversal
• This is what IBM 360/85 implemented

• 16 Kbyte cache with 64 byte blocks
• Liptay, “Structural aspects of the System/360 Model 85 II: the

cache,” IBM Systems Journal, 1968.

19

Carnegie Mellon

The Bookshelf Analogy
• Book in your hand

• Desk

• Bookshelf

• Boxes at home

• Boxes in storage

• Recently-used books tend to stay on desk

• Comp Org. books, books for classes you are currently taking
• Until the desk gets full

• Adjacent books in the shelf needed around the same time

20

Carnegie Mellon

Register	 File	 (DFF)	
32	 words,	 sub-‐nsec	

L1	 cache	 (SRAM)	
~32	 KB,	 ~nsec	

L2	 cache	 (SRAM)	
512	 KB	 ~	 1MB,	 many	 nsec	

L3	 cache	 (SRAM)	
.....	

Main	 memory	 (DRAM),	 	
GB,	 ~100	 nsec	

Hard	 Disk	
100	 GB,	 ~10	 msec

A Modern Memory Hierarchy

21

Carnegie Mellon

This Module (3 Lectures)
•Memory Hierarchy Overview

• Trade-offs between different memory technologies
• Exploiting locality to get the best of all worlds

• SRAM/DRAM Hardware Basics

• Cache

•Memory-oriented Program Optimizations

22

Carnegie Mellon

Random-Access Memory (RAM)
• Key features

• Basic storage unit is normally a cell (one bit per cell).
• A supercell is a collection of cells (e.g., 8, 16)
• RAM is packaged as a chip, which is a collection of supercells
• Multiple RAM chips form a memory module

• RAM comes in two varieties:

• SRAM (Static RAM): implements cache
• DRAM (Dynamic RAM): implement main memory

23

Carnegie Mellon

Abstract View of RAM

24

Address
n

CE (chip enable)

WE (write enable)

k

Content

• A RAM is organized as a 2D array

• Address split into two: row address and column address

25

Hardware Organization of RAM

Carnegie Mellon

SRAM Cell

26

Carnegie Mellon

SRAM Cell

• SRAM
• Static RAM (holds value while power is on)
• Densest logic-only memory
• 6 carefully laid-out transistors

26

word line

=

Carnegie Mellon

SRAM Array

27

word line 0

word line 1

b0 b0 b1 b1 b2 b2 b3 b3

word line 2

word line 3

Column decoder / mux

Ro
w

 d
ec

od
er

Carnegie Mellon

SRAM Array Access

28

bit-cell array

2n row x 2m-col

sense amp and mux
2m diff pairs

2nn

m

1

n+m

Carnegie Mellon

SRAM notes

• SRAMs are very carefully laid out – amortize costs
over many bits (8Kb or more usually)

• In large arrays, the latency of access is dominated by
the latency of the wires!

• Therefore, the larger the memory, the slower it is (generally)

29

Carnegie Mellon

DRAM Cell

30 37

• Capacitor holding value
leaks, eventually you will
lose information
(everything turns to 0)

• How do you maintain the
values in DRAM?
• Refresh periodically
• A major source for power

consumption in DRAM

Carnegie Mellon

DRAM Cell

30 37

• Capacitor holding value
leaks, eventually you will
lose information
(everything turns to 0)

• How do you maintain the
values in DRAM?
• Refresh periodically
• A major source for power

consumption in DRAM

Carnegie Mellon

DRAM Cell

30 37

• Capacitor holding value
leaks, eventually you will
lose information
(everything turns to 0)

• How do you maintain the
values in DRAM?
• Refresh periodically
• A major source for power

consumption in DRAM

Carnegie Mellon

DRAM Chip Organization

31

cols

rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

addr

data

Supercell
(2, 1)
8 bits

2 bits
/

8 bits
/

Memory
controller

(to/from CPU)

Carnegie Mellon

Reading DRAM Supercell (2,1)
Step 1(a): Row access strobe (RAS) selects row 2.

Step 1(b): Row 2 copied from DRAM array to row buffer.

32

Cols

Rows

0 1 2 3

0

1

2

Internal row buffer

16 x 8 DRAM chip

3

addr

data

2
/

8
/

Memory
controller

Carnegie Mellon

Reading DRAM Supercell (2,1)
Step 1(a): Row access strobe (RAS) selects row 2.

Step 1(b): Row 2 copied from DRAM array to row buffer.

32

Cols

Rows

RAS = 2
0 1 2 3

0

1

2

Internal row buffer

16 x 8 DRAM chip

3

addr

data

2
/

8
/

Memory
controller

Carnegie Mellon

Reading DRAM Supercell (2,1)
Step 1(a): Row access strobe (RAS) selects row 2.

Step 1(b): Row 2 copied from DRAM array to row buffer.

32

Cols

Rows

RAS = 2
0 1 2 3

0

1

2

Internal row buffer

16 x 8 DRAM chip

3

addr

data

2
/

8
/

Memory
controller

Carnegie Mellon

Reading DRAM Supercell (2,1)
Step 1(a): Row access strobe (RAS) selects row 2.

Step 1(b): Row 2 copied from DRAM array to row buffer.

32

Cols

Rows

RAS = 2
0 1 2 3

0

1

2

Internal row buffer

16 x 8 DRAM chip

3

addr

data

2
/

8
/

Memory
controller

Carnegie Mellon

Reading DRAM Supercell (2,1)
Step 1(a): Row access strobe (RAS) selects row 2.

Step 1(b): Row 2 copied from DRAM array to row buffer.

32

Cols

Rows

RAS = 2
0 1 2 3

0

1

2

Internal row buffer

16 x 8 DRAM chip

3

addr

data

2
/

8
/

Memory
controller

Carnegie Mellon

Reading DRAM Supercell (2,1)
Step 2(a): Column access strobe (CAS) selects column 1.

Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually

back to the CPU.

33

Cols

Rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

addr

data

2
/

8
/

Memory
controller

Carnegie Mellon

Reading DRAM Supercell (2,1)
Step 2(a): Column access strobe (CAS) selects column 1.

Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually

back to the CPU.

33

Cols

Rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

CAS = 1

addr

data

2
/

8
/

Memory
controller

Carnegie Mellon

Reading DRAM Supercell (2,1)
Step 2(a): Column access strobe (CAS) selects column 1.

Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually

back to the CPU.

33

Cols

Rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

CAS = 1

addr

data

2
/

8
/

Memory
controller

Carnegie Mellon

Reading DRAM Supercell (2,1)
Step 2(a): Column access strobe (CAS) selects column 1.

Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually

back to the CPU.

33

Cols

Rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

CAS = 1

addr

data

2
/

8
/

Memory
controller

Carnegie Mellon

Reading DRAM Supercell (2,1)
Step 2(a): Column access strobe (CAS) selects column 1.

Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually

back to the CPU.

33

Cols

Rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

CAS = 1

addr

data

2
/

8
/

Memory
controller

supercell
(2,1)

Carnegie Mellon

Reading DRAM Supercell (2,1)
Step 2(a): Column access strobe (CAS) selects column 1.

Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually

back to the CPU.

33

Cols

Rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

CAS = 1

addr

data

2
/

8
/

Memory
controller

supercell
(2,1)

supercell
(2,1)

To CPU

Carnegie Mellon

Reading DRAM Supercell (2,1)
Step 3: A sense amplifier amplifies and regenerates the bitline and

refresh the cells. A DRAM controller must periodically read each row
within the allowed refresh time (10s of ms) to restore charge.

34

Cols

Rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

addr

data

2
/

8
/

Memory
controller

Carnegie Mellon

Reading DRAM Supercell (2,1)
Step 3: A sense amplifier amplifies and regenerates the bitline and

refresh the cells. A DRAM controller must periodically read each row
within the allowed refresh time (10s of ms) to restore charge.

34

Cols

Rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

addr

data

2
/

8
/

Memory
controller

Carnegie Mellon

Reading DRAM Supercell (2,1)
Step 3: A sense amplifier amplifies and regenerates the bitline and

refresh the cells. A DRAM controller must periodically read each row
within the allowed refresh time (10s of ms) to restore charge.

34

Cols

Rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

addr

data

2
/

8
/

Memory
controller

Carnegie Mellon

Memory Modules

35

: supercell (i,j)

64 MB
memory module
consisting of
eight 8Mx8 DRAMs

Memory
controller

DRAM 7

DRAM 0

Carnegie Mellon

Memory Modules

35

: supercell (i,j)

64 MB
memory module
consisting of
eight 8Mx8 DRAMs

addr (row = i, col = j)

Memory
controller

DRAM 7

DRAM 0

Carnegie Mellon

Memory Modules

35

: supercell (i,j)

64 MB
memory module
consisting of
eight 8Mx8 DRAMs

addr (row = i, col = j)

Memory
controller

DRAM 7

DRAM 0

031 78151623243263 394047485556

64-bit word main memory address A

bits
0-7

bits
8-15

bits
16-23

bits
24-31

bits
32-39

bits
40-47

bits
48-55

bits
56-63

Carnegie Mellon

Memory Modules

35

: supercell (i,j)

64 MB
memory module
consisting of
eight 8Mx8 DRAMs

addr (row = i, col = j)

Memory
controller

DRAM 7

DRAM 0

031 78151623243263 394047485556

64-bit word main memory address A

bits
0-7

bits
8-15

bits
16-23

bits
24-31

bits
32-39

bits
40-47

bits
48-55

bits
56-63

64-bit word

031 78151623243263 394047485556

Carnegie Mellon

Memory Layout Across Two Chips

36

16b

83b address

Carnegie Mellon

Memory Layout Across Two Chips

36

16b

83b address High

8

Low

8

Carnegie Mellon

Memory Layout Across Two Chips

36

16b

83b address High

8

Low

8

Why is unaligned
memory access slow?

Carnegie Mellon

Narrower RAMs Enable Greater Capacity
• Given Constant Total Width (pins)

•Multiple smaller chips are more reliable than one big chip

• Yield rate issue

37

8M x 16

32
M

 x
 4

32
M

 x
 4

32
M

 x
 4

32
M

 x
 4

Carnegie Mellon

Why Split Address into Row and Column?
• +: Reduce the number of address pins

• +: Also allow reading multiple columns within the same row

• -: Send address in two steps, increase latency

38

Cols

Rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

addr

data

2
/

8
/

Memory
controller

Carnegie Mellon

Memory Scheduling

39

Cols

Rows
A C

B

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

Carnegie Mellon

Memory Scheduling
• Assume the following memory

accesses: A, B, C

39

Cols

Rows
A C

B

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

Carnegie Mellon

Memory Scheduling
• Assume the following memory

accesses: A, B, C
•Which one is faster?

• A —> B —> C
• A —> C —> B

39

Cols

Rows
A C

B

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

Carnegie Mellon

Memory Scheduling
• Assume the following memory

accesses: A, B, C
•Which one is faster?

• A —> B —> C
• A —> C —> B

•Most common memory scheduling
policy: FR-FCFS

• First-ready, first-come-first-serve
• Prioritize addresses to data that is

already in the row buffer; otherwise
first-come-first-serve

39

Cols

Rows
A C

B

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

