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Instructor: Yuhao Zhu
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Action Items: 
• Grades for A2 are out 
• Programming Assignment 4 is out
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Announcement
• A2 grades are out. See TAs if you have doubts.

• Programming Assignment 4 is out


• Trivia due this Thursday, 12:00PM 
• Main assignment due on 11:59pm, Monday, April 2. 
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CPU

So far in 252…

PC
Register 

File
Memory

Code 
Data 
Stack

Addresses

Data

InstructionsCondition 
CodesALU

• We have been discussing the CPU microarchitecture

• Single Cycle, sequential implementation 
• Pipeline implementation 
• Resolving data dependency and control dependency 

• What about memory?
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Memory in a Modern System
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Ideal Memory
• Zero access time (latency)

• Infinite capacity

• Zero cost

• Infinite bandwidth (to support multiple accesses in parallel)

5



Carnegie Mellon

The Problem
• Ideal memory’s requirements oppose each other
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The Problem
• Ideal memory’s requirements oppose each other

• Bigger is slower
• Bigger à Takes longer to determine the location

• Faster is more expensive
• Memory technology: Flip-flop vs. SRAM vs. DRAM vs. 

Disk vs. Tape

• Higher bandwidth is more expensive
• Need more banks, more ports, higher frequency, or faster 

technology
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Memory Technology:  D Flip-Flop (DFF)
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• Very fast

• Very expensive to build

• 6 NOT gates (2 transistors / gate) 
• 3 AND gates (3 transistors / gate) 
• 2 OR gates (3 transistors / gate) 
• 27 transistors in total for just one bit!!
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Memory Technology: SRAM
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Memory Technology: SRAM
• Static random access memory

• Random access means you can supply an arbitrary address to 

the memory and get a value back

• Two cross coupled inverters store a single bit


• Feedback path enables the stored value to persist in the “cell” 
• 4 transistors for storage 
• 2 transistors for access 
• 6 transistors in total per bit

8

row select

bi
tli

ne

_b
itl

in
e



Carnegie Mellon

Memory Technology: DRAM
• Dynamic random access memory
• Capacitor charge state indicates stored value

• Whether the capacitor is charged or discharged indicates 
storage of 1 or 0

• 1 capacitor

9



Carnegie Mellon

Memory Technology: DRAM
• Dynamic random access memory
• Capacitor charge state indicates stored value

• Whether the capacitor is charged or discharged indicates 
storage of 1 or 0

• 1 capacitor
• 1 access transistor

• Capacitors will leak!

9

row enable

_b
itl

in
e



Carnegie Mellon

Memory Technology: DRAM
• Dynamic random access memory
• Capacitor charge state indicates stored value

• Whether the capacitor is charged or discharged indicates 
storage of 1 or 0

• 1 capacitor
• 1 access transistor

• Capacitors will leak!
• DRAM cell loses charge over time

9

row enable

_b
itl

in
e



Carnegie Mellon

Memory Technology: DRAM
• Dynamic random access memory
• Capacitor charge state indicates stored value

• Whether the capacitor is charged or discharged indicates 
storage of 1 or 0

• 1 capacitor
• 1 access transistor

• Capacitors will leak!
• DRAM cell loses charge over time
• DRAM cell needs to be refreshed
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Latch vs. DRAM vs. SRAM
• DFF


• Fastest 
• Low density (27 transistors per bit) 
• High cost 

• SRAM

• Faster access (no capacitor) 
• Lower density (6 transistors per bit) 
• Higher cost 
• No need for refresh 
• Manufacturing compatible with logic process (no capacitor) 

• DRAM

• Slower access (capacitor) 
• Higher density (1 transistor + 1 capacitor per bit) 
• Lower cost 
• Requires refresh (power, performance, circuitry) 
• Manufacturing requires putting capacitor and logic together
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Nonvolatile Memories

11



Carnegie Mellon

Nonvolatile Memories
• DFF, DRAM and SRAM are volatile memories


• Lose information if powered off.

11



Carnegie Mellon

Nonvolatile Memories
• DFF, DRAM and SRAM are volatile memories


• Lose information if powered off.
• Nonvolatile memories retain value even if powered off


• Flash (~ 5 years) 
• Hard Disk (~ 5 years) 
• Tape (~ 15-30 years) 
• DNA (centuries)

11



Carnegie Mellon

Nonvolatile Memories
• DFF, DRAM and SRAM are volatile memories


• Lose information if powered off.
• Nonvolatile memories retain value even if powered off


• Flash (~ 5 years) 
• Hard Disk (~ 5 years) 
• Tape (~ 15-30 years) 
• DNA (centuries)

11



Carnegie Mellon

Nonvolatile Memories
• DFF, DRAM and SRAM are volatile memories


• Lose information if powered off.
• Nonvolatile memories retain value even if powered off


• Flash (~ 5 years) 
• Hard Disk (~ 5 years) 
• Tape (~ 15-30 years) 
• DNA (centuries)

• Uses for Nonvolatile Memories

• Firmware (BIOS, controllers for disks, network cards, graphics 

accelerators, security subsystems,…) 
• Files in Smartphones, mp3 players, tablets, laptops 
• Backup
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The Problem
• Bigger is slower


• SRAM, 512 Bytes, sub-nanosec 
• SRAM,  KByte~MByte, ~nanosec 
• DRAM, Gigabyte, ~50 nanosec 
• Hard Disk, Terabyte, ~10 millisec 

• Faster is more expensive (dollars and chip area)

• SRAM, < 10$ per Megabyte 
• DRAM, < 1$ per Megabyte 
• Hard Disk < 1$ per Gigabyte 

• Other technologies have their place as well 

• PC-RAM, MRAM, RRAM
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We want both fast and large Memory

• But we cannot achieve both with a single level of memory


• Idea: Memory Hierarchy

• Have multiple levels of storage (progressively bigger and slower 

as the levels are farther from the processor) 
• ensure most of the data the processor needs in the near future 

is kept in the fast(er) level(s) 

• Question: How do we know what kind of data processors would 
use in the near future?
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Locality
• Principle of Locality: Programs tend to use data and instructions 

with addresses near or equal to those they have used recently
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Locality
• Principle of Locality: Programs tend to use data and instructions 

with addresses near or equal to those they have used recently

• Temporal locality:  
• Recently referenced items are likely  

to be referenced again in the near future

• Spatial locality:  
• Items with nearby addresses tend  

to be referenced close together in time

14
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Locality Example

• Data references

• Spatial Locality: Reference array elements in succession (stride-1 

reference pattern) 
• Temporal Locality: Reference variable sum each iteration. 

• Instruction references

• Spatial Locality: Reference instructions in sequence. 
• Temporal Locality: Cycle through loop repeatedly. 

15

sum = 0; 
for (i = 0; i < n; i++) 
 sum += a[i]; 
return sum;
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Memory Hierarchy
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Memory Hierarchy
• Fundamental tradeoff


• Fast memory: small 
• Large memory: slow 

• Balance latency, cost, 
size, bandwidth

17

CPU Main 
Memory 
(DRAM) RF 

(Latch)

Cache 
(SRAM)

Hard Disk 
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Caching Basics: Exploit Temporal Locality
• Idea: Store recently accessed data in fast memory (called 

cache)
• Anticipation: the data will be accessed again soon
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Caching Basics: Exploit Temporal Locality
• Idea: Store recently accessed data in fast memory (called 

cache)
• Anticipation: the data will be accessed again soon

• Temporal locality principle
• Recently accessed data will be again accessed in the near 

future
• This is what Maurice Wilkes had in mind:

• Wilkes, “Slave Memories and Dynamic Storage Allocation,” IEEE 
Trans. On Electronic Computers, 1965.

• “The use is discussed of a fast core memory of, say 32000 words 
as a slave to a slower core memory of, say, one million words in 
such a way that in practical cases the effective access time is 
nearer that of the fast memory than that of the slow memory.”

18



Carnegie Mellon

Caching Basics: Exploit Spatial Locality
• Idea: Store addresses adjacent to the recently accessed one in 

fast memory (cache)
• Logically divide memory into equal size blocks
• Fetch to cache the accessed block in its entirety

• Anticipation: nearby data will be accessed soon
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Caching Basics: Exploit Spatial Locality
• Idea: Store addresses adjacent to the recently accessed one in 

fast memory (cache)
• Logically divide memory into equal size blocks
• Fetch to cache the accessed block in its entirety

• Anticipation: nearby data will be accessed soon

• Spatial locality principle
• Nearby data in memory will be accessed in the near future

• E.g., sequential instruction access, array traversal
• This is what IBM 360/85 implemented

• 16 Kbyte cache with 64 byte blocks
• Liptay, “Structural aspects of the System/360 Model 85 II: the 

cache,” IBM Systems Journal, 1968.
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The Bookshelf Analogy
• Book in your hand

• Desk

• Bookshelf

• Boxes at home

• Boxes in storage


• Recently-used books tend to stay on desk

• Comp Org. books, books for classes you are currently taking 
• Until the desk gets full 

• Adjacent books in the shelf needed around the same time

20
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Register	
  File	
  (DFF)	
  
32	
  words,	
  sub-­‐nsec	
  

L1	
  cache	
  (SRAM)	
  
~32	
  KB,	
  ~nsec	
  

L2	
  cache	
  (SRAM)	
  
512	
  KB	
  ~	
  1MB,	
  many	
  nsec	
  

L3	
  cache	
  (SRAM)	
  
.....	
  

Main	
  memory	
  (DRAM),	
  	
  
GB,	
  ~100	
  nsec	
  

Hard	
  Disk	
  
100	
  GB,	
  ~10	
  msec

A Modern Memory Hierarchy
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This Module (3 Lectures)
•Memory Hierarchy Overview


• Trade-offs between different memory technologies 
• Exploiting locality to get the best of all worlds 

• SRAM/DRAM Hardware Basics

• Cache

•Memory-oriented Program Optimizations

22
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Random-Access Memory (RAM)
• Key features


• Basic storage unit is normally a cell (one bit per cell). 
• A supercell is a collection of cells (e.g., 8, 16) 
• RAM is packaged as a chip, which is a collection of supercells 
• Multiple RAM chips form a memory module 

• RAM comes in two varieties:

• SRAM (Static RAM): implements cache 
• DRAM (Dynamic RAM): implement main memory

23
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Abstract View of RAM
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• A RAM is organized as a 2D array

• Address split into two: row address and column address

25

Hardware Organization of RAM
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SRAM Cell
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SRAM Cell

• SRAM
• Static RAM (holds value while power is on)
• Densest logic-only memory
• 6 carefully laid-out transistors

26
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SRAM Array
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SRAM Array Access
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SRAM notes

• SRAMs are very carefully laid out – amortize costs 
over many bits (8Kb or more usually)


• In large arrays, the latency of access is dominated by 
the latency of the wires!

• Therefore, the larger the memory, the slower it is (generally)
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DRAM Cell

30 37

• Capacitor holding value 
leaks, eventually you will 
lose information 
(everything turns to 0)

• How do you maintain the 
values in DRAM?
• Refresh periodically 
• A major source for power 

consumption in DRAM
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DRAM Cell

30 37

• Capacitor holding value 
leaks, eventually you will 
lose information 
(everything turns to 0)

• How do you maintain the 
values in DRAM?
• Refresh periodically 
• A major source for power 

consumption in DRAM
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DRAM Chip Organization
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Reading DRAM Supercell (2,1)
Step 1(a): Row access strobe (RAS) selects row 2.

Step 1(b): Row 2 copied from DRAM array to row buffer.
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Reading DRAM Supercell (2,1)
Step 1(a): Row access strobe (RAS) selects row 2.

Step 1(b): Row 2 copied from DRAM array to row buffer.
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Reading DRAM Supercell (2,1)
Step 1(a): Row access strobe (RAS) selects row 2.

Step 1(b): Row 2 copied from DRAM array to row buffer.
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Reading DRAM Supercell (2,1)
Step 1(a): Row access strobe (RAS) selects row 2.

Step 1(b): Row 2 copied from DRAM array to row buffer.
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Reading DRAM Supercell (2,1)
Step 1(a): Row access strobe (RAS) selects row 2.

Step 1(b): Row 2 copied from DRAM array to row buffer.
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Reading DRAM Supercell (2,1)
Step 2(a): Column access strobe (CAS) selects column 1.

Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually 

back to the CPU.
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Reading DRAM Supercell (2,1)
Step 2(a): Column access strobe (CAS) selects column 1.

Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually 

back to the CPU.
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Reading DRAM Supercell (2,1)
Step 2(a): Column access strobe (CAS) selects column 1.
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Reading DRAM Supercell (2,1)
Step 2(a): Column access strobe (CAS) selects column 1.
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Reading DRAM Supercell (2,1)
Step 2(a): Column access strobe (CAS) selects column 1.

Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually 

back to the CPU.
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Reading DRAM Supercell (2,1)
Step 2(a): Column access strobe (CAS) selects column 1.

Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually 

back to the CPU.
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Reading DRAM Supercell (2,1)
Step 3: A sense amplifier amplifies and regenerates the bitline and 

refresh the cells. A DRAM controller must periodically read each row 
within the allowed refresh time (10s of ms) to restore charge.
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Reading DRAM Supercell (2,1)
Step 3: A sense amplifier amplifies and regenerates the bitline and 

refresh the cells. A DRAM controller must periodically read each row 
within the allowed refresh time (10s of ms) to restore charge.
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Memory Modules
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Memory Modules
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Memory Modules
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Memory Modules
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: supercell (i,j)

64 MB   
memory module 
consisting of 
eight 8Mx8 DRAMs

addr (row = i, col = j)

Memory 
controller

DRAM 7

DRAM 0

031 78151623243263 394047485556

64-bit word main memory address A

bits 
0-7
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8-15
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16-23
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24-31
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32-39
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40-47
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48-55
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56-63

64-bit word

031 78151623243263 394047485556
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Memory Layout Across Two Chips
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Memory Layout Across Two Chips
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Narrower RAMs Enable Greater Capacity
• Given Constant Total Width (pins)

•Multiple smaller chips are more reliable than one big chip


• Yield rate issue
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Why Split Address into Row and Column?
• +: Reduce the number of address pins

• +: Also allow reading multiple columns within the same row

• -: Send address in two steps, increase latency
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Memory Scheduling
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Memory Scheduling
• Assume the following memory 

accesses: A, B, C
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Memory Scheduling
• Assume the following memory 

accesses: A, B, C
•Which one is faster?


• A —> B —> C 
• A —> C —> B
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Memory Scheduling
• Assume the following memory 

accesses: A, B, C
•Which one is faster?


• A —> B —> C 
• A —> C —> B

•Most common memory scheduling 
policy: FR-FCFS


• First-ready, first-come-first-serve 
• Prioritize addresses to data that is 

already in the row buffer; otherwise 
first-come-first-serve
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