
CSC 252: Computer Organization 
           Spring 2018: Lecture 16 

Instructor: Yuhao Zhu


Department of Computer Science

University of Rochester

Action Items: 
• Programming Assignment 4 is out
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Announcement
• Programming Assignment 4 is out


• Main assignment due on 11:59pm, Monday, April 2. 
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Last Lecture: Memory Hierarchy
• Fundamental tradeoff


• Fast memory: small 
• Large memory: slow
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Locality
• Principle of Locality: Programs tend to use data and instructions 

with addresses near or equal to those they have used recently
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Locality
• Principle of Locality: Programs tend to use data and instructions 

with addresses near or equal to those they have used recently

• Temporal locality:  
• Recently	  referenced	  items	  are	  likely	   
to	  be	  referenced	  again	  in	  the	  near	  future

• Spatial locality:  
• Items	  with	  nearby	  addresses	  tend	   
to	  be	  referenced	  close	  together	  in	  time
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Locality Example

• Data references

• Spatial Locality: Reference array elements in succession (stride-1 

reference pattern) 
• Temporal Locality: Reference variable sum each iteration. 

• Instruction references

• Spatial Locality: Reference instructions in sequence. 
• Temporal Locality: Cycle through loop repeatedly. 
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sum = 0; 
for (i = 0; i < n; i++) 
 sum += a[i]; 
return sum;
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Example Memory  
     Hierarchy
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and  
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(e.g., Web servers)

Local disks hold files 
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How Things Have Progressed

1995 low-
mid range
Hennessy & Patterson, 
Computer Arch., 1996

200B
5ns

64KB
10ns

32MB
100ns

2GB
5ms

2009 low-
mid range
www.dell.com, $449 including 
17” LCD flat panel

~200B
0.33ns

8MB 
0.33ns

4GB
<100ns

750GB
4ms

2015  
mid range

~200B
0.33ns

8MB 
0.33ns

16GB
<100ns

256GB
10us
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RF Cache 
$ Memory Disk

http://www.dell.com/
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Cache Illustrations
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Cache Illustrations: Hit
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Cache Illustrations: Hit
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Cache Illustrations: Hit
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Cache Illustrations: Miss
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Cache Illustrations: Miss
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Cache Illustrations: Miss
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Cache Illustrations: Miss
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Cache Illustrations: Miss
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Cache Hit Rate
• Cache hit is when you find the data in the cache

• Hit rate indicates the effectiveness of the cache

12

Accesses #
 Hits#  Hit Rate =
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Two Fundamental Issues in Cache Management

• Placement

• Where in the cache is data placed? 
• Or more importantly, how can I find my data? 
• Random placement? Pros vs. cons 

• Replacement

• Given more than one location to place, where is data placed? 
• Or, what to kick out?

13
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Cache Management: Explicit

14
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• Requirements:
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• Different memory access instructions for cache and memory 

• Often hard/impossible to get right



Carnegie Mellon

Cache Management: Explicit

• Examples of software-managed cache

• Sony Cell Broadband Engine (PS3): Local store 
• DSPs: Scratchpad memory 
• GPUs: “Shared memory” 
• Stream Processors: Stream register file

14
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• Requirements:

• Cache and memory have different address spaces
• Different memory access instructions for cache and memory 

• Often hard/impossible to get right
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Want Automatic Management
• Software-managed cache is nice, but


• explicit management is painful 
• often cannot tell statically what will be reused 
• code portability suffers too 

• Caches are thus mostly hardware-managed

• When we say cache today, it almost always means hardware-

managed cache 
• Software-managed cache is often called scratchpad memory 
• Cray never believed in hardware-managed cache (“Caches are 

for wimps!”)

1543

Cray: https://en.wikipedia.org/wiki/Cray

https://en.wikipedia.org/wiki/Cray
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Baseline Cache & Memory

• 4 cache locations 
• Also called cache-line 
• Every location has a valid bit 

• 16 memory locations 
• For now, assume cache location 

size == memory location size 
• Assume each memory location can 

only reside in one cache-line 
• Cache is smaller than memory 

(obviously) 
• Thus, not all memory locations 

can be cached at the same time

16

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

Content Valid?
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Cache Placement

17

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

addr

cache 
func

00
01
10
11

CA



Carnegie Mellon

Cache Placement
• Use memory address as a name 
• Apply a function to the name to 

generate a cache address to 
access 

• What are reasonable functions?

17
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• Simplest function is a subset 
of address bits


• Six combinations in total

• CA = ADDR[3],ADDR[2] 
• CA = ADDR[3],ADDR[1] 
• CA = ADDR[3],ADDR[0] 
• CA = ADDR[2],ADDR[1] 
• CA = ADDR[2],ADDR[0] 
• CA = ADDR[1],ADDR[0] 

•Direct-Mapped Cache

• CA = ADDR[1],ADDR[0]

Function to Address Cache

18
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Direct-Mapped Cache
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•Direct-Mapped Cache

• CA = ADDR[1],ADDR[0] 
• Always use the lower order 

address bits

Direct-Mapped Cache
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•Direct-Mapped Cache

• CA = ADDR[1],ADDR[0] 
• Always use the lower order 

address bits

•Multiple addresses can be 
mapped to the same location


• E.g., 0010 and 1010

Direct-Mapped Cache
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•Direct-Mapped Cache

• CA = ADDR[1],ADDR[0] 
• Always use the lower order 

address bits

•Multiple addresses can be 
mapped to the same location


• E.g., 0010 and 1010

•How do we differentiate 
between different memory 
locations that are mapped to 
the same cache location?


• Add a tag field for that purpose 
• ADDR[3] and ADDR[2] in this 

particular example

Direct-Mapped Cache
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Example: Direct-Mapped Cache
for (i = 0; i < 4; ++i) {


A += mem[i]; 
}	 

for (i = 0; i < 4; ++i) {


B *= (mem[i] + A); 
}


• Assume mem == 0b1000

• Read 0b1000

• Read 0b1001

• Read 0b1010

• Read 0b1011


• Read 0b1000; cache hit?
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One Possible Direct-Mapped Cache Implementation
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• Cache state is RAM!

• Implement cache as a single 

SRAM

• Need appropriate comparators


• Memory is implemented as a 
DRAM

21
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One Possible Direct-Mapped Cache Implementation
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Conflicts
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Sets
• Each cacheable memory location 

is mapped to a set of cache 
locations 

• A set is one or more cache 
locations 

• Set size is the number of locations 
in a set, also called associativity

23

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11



Carnegie Mellon

2 Way Set Associative

24

Set 1

Set 00

1



Carnegie Mellon

2 Way Set Associative
• 2 sets, each set has two entries

24

Set 1

Set 00

1



Carnegie Mellon

2 Way Set Associative
• 2 sets, each set has two entries
• Only need one bit, addr[0] to index into 

the cache now

24

Set 1

Set 00

1



Carnegie Mellon

2 Way Set Associative
• 2 sets, each set has two entries
• Only need one bit, addr[0] to index into 

the cache now
• Correspondingly, the tag needs 3 bits: 

Addr[3:1]

24

Set 1

Set 00

1



Carnegie Mellon

2 Way Set Associative
• 2 sets, each set has two entries
• Only need one bit, addr[0] to index into 

the cache now
• Correspondingly, the tag needs 3 bits: 

Addr[3:1]
• Either entry can store any address that 

gets mapped to that set

24

Set 1

Set 00

1



Carnegie Mellon

2 Way Set Associative
• 2 sets, each set has two entries
• Only need one bit, addr[0] to index into 

the cache now
• Correspondingly, the tag needs 3 bits: 

Addr[3:1]
• Either entry can store any address that 

gets mapped to that set
• Now with the same access stream:

24

Set 1

Set 00

1



Carnegie Mellon

2 Way Set Associative
• 2 sets, each set has two entries
• Only need one bit, addr[0] to index into 

the cache now
• Correspondingly, the tag needs 3 bits: 

Addr[3:1]
• Either entry can store any address that 

gets mapped to that set
• Now with the same access stream:

• Read 1000

24

Set 1

Set 00

1

100



Carnegie Mellon

2 Way Set Associative
• 2 sets, each set has two entries
• Only need one bit, addr[0] to index into 

the cache now
• Correspondingly, the tag needs 3 bits: 

Addr[3:1]
• Either entry can store any address that 

gets mapped to that set
• Now with the same access stream:

• Read 1000
• Read 1001

24

Set 1

Set 00

1

100

100



Carnegie Mellon

2 Way Set Associative
• 2 sets, each set has two entries
• Only need one bit, addr[0] to index into 

the cache now
• Correspondingly, the tag needs 3 bits: 

Addr[3:1]
• Either entry can store any address that 

gets mapped to that set
• Now with the same access stream:

• Read 1000
• Read 1001
• Read 1010

24

Set 1

Set 00

1

100

100

101



Carnegie Mellon

2 Way Set Associative
• 2 sets, each set has two entries
• Only need one bit, addr[0] to index into 

the cache now
• Correspondingly, the tag needs 3 bits: 

Addr[3:1]
• Either entry can store any address that 

gets mapped to that set
• Now with the same access stream:

• Read 1000
• Read 1001
• Read 1010
• Read 1101 (1001 can still stay)

24

Set 1

Set 00

1

100

100

101



Carnegie Mellon

2 Way Set Associative
• 2 sets, each set has two entries
• Only need one bit, addr[0] to index into 

the cache now
• Correspondingly, the tag needs 3 bits: 

Addr[3:1]
• Either entry can store any address that 

gets mapped to that set
• Now with the same access stream:

• Read 1000
• Read 1001
• Read 1010
• Read 1101 (1001 can still stay)
• Read 1001 -> Hit!
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4 Way Set Associative
• One single set that contains all the cache locations

• Also called Fully-Associative Cache

• Every entry can store any cache-line that maps to that set
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• One single set that contains all the cache locations
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• Every entry can store any cache-line that maps to that set
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Cache Access Summary (So far…)
• Assuming b bits in a memory address

• The b bits are split into two halves:


• Lower s bits used as index to find a set. Total sets S = 2s 
• The higher (b - s) bits are used for the tag 

• Associativity n is independent of the the split between index and 
tag

27
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Locality again
• So far: temporal locality

•What about spatial?

• Idea: Each cache location (cache line) store multiple bytes

28
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Cache-Line Size of 2

• Read 1000
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Cache-Line Size of 2

• Read 1000
• Read 1001 (Hit!)
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• Read 1000
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Cache-Line Size of 2

• Read 1000
• Read 1001 (Hit!)
• Read 1010
• Read 1011 (Hit!)
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Cache Access Summary
• Assuming b bits in a memory address

• The b bits are split into three fields:


• Lower l bits are used for byte offset within a cache line. Cache line 
size L = 2l 

• Next s bits used as index to find a set. Total sets S = 2s 
• The higher (b - l - s) bits are used for the tag 

• Associativity n is independent of the the split between index and tag
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Handling Reads
• Read miss: Put into cache

• Any reason not to put into cache?
• Read hit: Nothing special. Enjoy the hit!

3133



Carnegie Mellon

Handling Writes (Hit)
• Intricacy: data value is modified!
• Implication: value in cache will be different from that in memory!
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• Write through: At the time the write happens
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Handling Writes (Hit)
• Intricacy: data value is modified!
• Implication: value in cache will be different from that in memory!

• When do we write the modified data in a cache to the next level?
• Write through: At the time the write happens
• Write back: When the cache line is evicted

• Write-back
• + Can consolidate multiple writes to the same block before eviction. Potentially 

saves bandwidth between cache and memory + saves energy
• - Need a bit in the tag store indicating the block is “dirty/modified”

• Write-through
• + Simpler
• + Memory is up to date
• - More bandwidth intensive; no coalescing of writes
• - Requires transfer of the whole cache line (although only one byte might have 

been modified)
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Handling Writes (Miss)
• Do we allocate a cache line on a write miss?

• Write-allocate: Allocate on write miss
• Non-Write-Allocate: No-allocate on write miss

• Allocate on write miss
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Handling Writes (Miss)
• Do we allocate a cache line on a write miss?

• Write-allocate: Allocate on write miss
• Non-Write-Allocate: No-allocate on write miss

• Allocate on write miss
• + Can consolidate writes instead of writing each of them 

individually to memory
• + Simpler because write misses can be treated the same way 

as read misses

• Non-allocate
• + Conserves cache space if locality of writes is low (potentially 

better cache hit rate)
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Instruction vs. Data Caches
• Separate or Unified?

• Unified:
• + Dynamic sharing of cache space: no overprovisioning that might 

happen with static partitioning (i.e., split Inst and Data caches)
• - Instructions and data can thrash each other (i.e., no guaranteed 

space for either)
• - Inst and Data are accessed in different places in the pipeline. 

Where do we place the unified cache for fast access?

• First level caches are almost always split 
• Mainly for the last reason above

• Second and higher levels are almost always unified
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Eviction/Replacement Policy

•Which cache line should be replaced?
• Direct mapped? Only one place!
• Associative caches? Multiple places!

• For associative cache:
• Any invalid cache line first
• If all are valid, consult the replacement policy
• Randomly pick one???
• Ideally: Replace the cache line that’s least likely going to be 

used again
• Approximation: Least recently used (LRU)
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• Challenge: Need to keep track of access ordering of blocks

• Question: 2-way set associative cache:


• What do you need to implement LRU perfectly? One bit?
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Implementing LRU
• Idea: Evict the least recently accessed block

• Challenge: Need to keep track of access ordering of blocks

• Question: 2-way set associative cache:


• What do you need to implement LRU perfectly? One bit?
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Implementing LRU
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Implementing LRU
• Question: 4-way set associative cache: 

• What do you need to implement LRU perfectly?
• Will the same mechanism work?
• Essentially have to track the ordering of all cache lines
• How many possible orderings are there?
• What are the hardware structures needed?
• In reality, true LRU is never implemented. Too complex.
• Google Pseudo-LRU
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Address stream:

• Hit on 0

• Hit on 2

• Hit on 3

• Miss, evict 1What to update now???
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General Rule: Bigger == Slower

• How big should the cache be?

• Too small and too much memory traffic 
• Too large and cache slows down execution (high latency)

•Make multiple levels of cache

• Small L1 backed up by larger L2 
• Today’s processors typically have 3 cache levels
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Summary

• Assumptions:

• memory access (~100ns) >> cache access (~1ns) 

• cache smaller, faster, more expensive than memory 
• Programs exhibit temporal locality 

• if an item is referenced, it will tend to be referenced again soon 
• Programs exhibit spatial locality

• If an item is referenced, the next item in memory is likely to be 
accessed soon
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