
CSC 252: Computer Organization 
 Spring 2018: Lecture 16 

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Action Items:
• Programming Assignment 4 is out

Carnegie Mellon

Announcement
• Programming Assignment 4 is out

• Main assignment due on 11:59pm, Monday, April 2.

2

Due

Carnegie Mellon

Last Lecture: Memory Hierarchy
• Fundamental tradeoff

• Fast memory: small
• Large memory: slow

3

CPU Main
Memory
(DRAM) RF

(Latch)

Cache
(SRAM)

Hard Disk

Carnegie Mellon

Locality
• Principle of Locality: Programs tend to use data and instructions

with addresses near or equal to those they have used recently

4

Carnegie Mellon

Locality
• Principle of Locality: Programs tend to use data and instructions

with addresses near or equal to those they have used recently

• Temporal locality:
• Recently	 referenced	 items	 are	 likely	  
to	 be	 referenced	 again	 in	 the	 near	 future

4

Carnegie Mellon

Locality
• Principle of Locality: Programs tend to use data and instructions

with addresses near or equal to those they have used recently

• Temporal locality:
• Recently	 referenced	 items	 are	 likely	  
to	 be	 referenced	 again	 in	 the	 near	 future

• Spatial locality:
• Items	 with	 nearby	 addresses	 tend	  
to	 be	 referenced	 close	 together	 in	 time

4

Carnegie Mellon

Locality Example

• Data references

• Spatial Locality: Reference array elements in succession (stride-1

reference pattern)
• Temporal Locality: Reference variable sum each iteration.

• Instruction references

• Spatial Locality: Reference instructions in sequence.
• Temporal Locality: Cycle through loop repeatedly.

5

sum = 0;
for (i = 0; i < n; i++)
 sum += a[i];
return sum;

Carnegie Mellon

Example Memory  
 Hierarchy

6

Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files
retrieved from disks
on remote servers

L2 cache
(SRAM)

L1 cache holds cache lines
retrieved from the L2 cache.

CPU registers hold words
retrieved from the L1 cache.

L2 cache holds cache lines
 retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
costlier
(per byte)
storage
devices

L3 cache
(SRAM)

L3 cache holds cache lines
 retrieved from main memory.

L6:

Main memory holds disk
blocks retrieved from
local disks.

Carnegie Mellon

How Things Have Progressed

1995 low-
mid range
Hennessy & Patterson,
Computer Arch., 1996

200B
5ns

64KB
10ns

32MB
100ns

2GB
5ms

2009 low-
mid range
www.dell.com, $449 including
17” LCD flat panel

~200B
0.33ns

8MB
0.33ns

4GB
<100ns

750GB
4ms

2015  
mid range

~200B
0.33ns

8MB
0.33ns

16GB
<100ns

256GB
10us

7

RF Cache
$ Memory Disk

http://www.dell.com/

Carnegie Mellon

Cache Illustrations

8

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Memory

(big but slow)

CPU

Carnegie Mellon

Cache Illustrations

9

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations

9

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

4Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations

9

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

4

4

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations

9

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

4

4

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations

9

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

4

4

10

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations

9

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

4

4

10

10

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations

9

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

4

4

10

10

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations: Hit

10

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations: Hit

10

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Data	 in	 address	 b	 is	 needed
Request:	 14

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations: Hit

10

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Data	 in	 address	 b	 is	 needed
Request:	 14

14 Address	 b	 is	 in	 cache:	 Hit!

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations: Miss

11

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations: Miss

11

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Request:	 12

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations: Miss

11

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Request:	 12 Data	 in	 address	 b	 is	 needed

Address	 b	 is	 not	 in	
cache:	 Miss!

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations: Miss

11

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Request:	 12

Address	 b	 is	 fetched	 from	
memoryRequest:	 12

Data	 in	 address	 b	 is	 needed

Address	 b	 is	 not	 in	
cache:	 Miss!

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations: Miss

11

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Request:	 12

Address	 b	 is	 fetched	 from	
memoryRequest:	 12

12

Data	 in	 address	 b	 is	 needed

Address	 b	 is	 not	 in	
cache:	 Miss!

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations: Miss

11

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Request:	 12

Address	 b	 is	 fetched	 from	
memoryRequest:	 12

12

12

Data	 in	 address	 b	 is	 needed

Address	 b	 is	 not	 in	
cache:	 Miss!

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations: Miss

11

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Request:	 12

Address	 b	 is	 fetched	 from	
memoryRequest:	 12

12

12

Address	 b	 is	 stored	 in	 cache

Data	 in	 address	 b	 is	 needed

Address	 b	 is	 not	 in	
cache:	 Miss!

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Hit Rate
• Cache hit is when you find the data in the cache

• Hit rate indicates the effectiveness of the cache

12

Accesses #
 Hits# Hit Rate =

Carnegie Mellon

Two Fundamental Issues in Cache Management

• Placement

• Where in the cache is data placed?
• Or more importantly, how can I find my data?
• Random placement? Pros vs. cons

• Replacement

• Given more than one location to place, where is data placed?
• Or, what to kick out?

13

Carnegie Mellon

Cache Management: Explicit

14

Main
Memory
(DRAM)

Software-
Managed

Cache
(Local
SRAM)

 Registers

ALUs

• Under explicit software control.
• Requirements:

• Cache and memory have different address spaces
• Different memory access instructions for cache and memory

• Often hard/impossible to get right

Carnegie Mellon

Cache Management: Explicit

• Examples of software-managed cache

• Sony Cell Broadband Engine (PS3): Local store
• DSPs: Scratchpad memory
• GPUs: “Shared memory”
• Stream Processors: Stream register file

14

Main
Memory
(DRAM)

Software-
Managed

Cache
(Local
SRAM)

 Registers

ALUs

• Under explicit software control.
• Requirements:

• Cache and memory have different address spaces
• Different memory access instructions for cache and memory

• Often hard/impossible to get right

Carnegie Mellon

Want Automatic Management
• Software-managed cache is nice, but

• explicit management is painful
• often cannot tell statically what will be reused
• code portability suffers too

• Caches are thus mostly hardware-managed

• When we say cache today, it almost always means hardware-

managed cache
• Software-managed cache is often called scratchpad memory
• Cray never believed in hardware-managed cache (“Caches are

for wimps!”)

1543

Cray: https://en.wikipedia.org/wiki/Cray

https://en.wikipedia.org/wiki/Cray

Carnegie Mellon

Baseline Cache & Memory

• 4 cache locations
• Also called cache-line
• Every location has a valid bit

• 16 memory locations
• For now, assume cache location

size == memory location size
• Assume each memory location can

only reside in one cache-line
• Cache is smaller than memory

(obviously)
• Thus, not all memory locations

can be cached at the same time

16

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

Content Valid?

Carnegie Mellon

Cache Placement

17

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

addr

cache
func

00
01
10
11

CA

Carnegie Mellon

Cache Placement
• Use memory address as a name
• Apply a function to the name to

generate a cache address to
access

• What are reasonable functions?

17

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

addr

cache
func

00
01
10
11

CA

Carnegie Mellon

• Simplest function is a subset
of address bits

• Six combinations in total

• CA = ADDR[3],ADDR[2]
• CA = ADDR[3],ADDR[1]
• CA = ADDR[3],ADDR[0]
• CA = ADDR[2],ADDR[1]
• CA = ADDR[2],ADDR[0]
• CA = ADDR[1],ADDR[0]

•Direct-Mapped Cache

• CA = ADDR[1],ADDR[0]

Function to Address Cache

18

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

addr

cache
func

00
01
10
11

CA

Carnegie Mellon

Direct-Mapped Cache

19

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

addr

addr[1:0]

00
01
10
11

Carnegie Mellon

•Direct-Mapped Cache

• CA = ADDR[1],ADDR[0]
• Always use the lower order

address bits

Direct-Mapped Cache

19

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

addr

addr[1:0]

00
01
10
11

Carnegie Mellon

•Direct-Mapped Cache

• CA = ADDR[1],ADDR[0]
• Always use the lower order

address bits

•Multiple addresses can be
mapped to the same location

• E.g., 0010 and 1010

Direct-Mapped Cache

19

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

addr

addr[1:0]

00
01
10
11

Carnegie Mellon

•Direct-Mapped Cache

• CA = ADDR[1],ADDR[0]
• Always use the lower order

address bits

•Multiple addresses can be
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate
between different memory
locations that are mapped to
the same cache location?

• Add a tag field for that purpose
• ADDR[3] and ADDR[2] in this

particular example

Direct-Mapped Cache

19

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

addr

addr[1:0]

00
01
10
11

Carnegie Mellon

•Direct-Mapped Cache

• CA = ADDR[1],ADDR[0]
• Always use the lower order

address bits

•Multiple addresses can be
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate
between different memory
locations that are mapped to
the same cache location?

• Add a tag field for that purpose
• ADDR[3] and ADDR[2] in this

particular example

Direct-Mapped Cache

19

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

addr

addr[1:0]

00
01
10
11

addr [3:2]

addr [3:2]
addr [3:2]

addr [3:2]

Carnegie Mellon

•Direct-Mapped Cache

• CA = ADDR[1],ADDR[0]
• Always use the lower order

address bits

•Multiple addresses can be
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate
between different memory
locations that are mapped to
the same cache location?

• Add a tag field for that purpose
• ADDR[3] and ADDR[2] in this

particular example

Direct-Mapped Cache

19

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

addr

addr[1:0]

00
01
10
11

addr [3:2]

addr [3:2]
addr [3:2]

addr [3:2]

Tag

Carnegie Mellon

•Direct-Mapped Cache

• CA = ADDR[1],ADDR[0]
• Always use the lower order

address bits

•Multiple addresses can be
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate
between different memory
locations that are mapped to
the same cache location?

• Add a tag field for that purpose
• ADDR[3] and ADDR[2] in this

particular example

Direct-Mapped Cache

19

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

addr

addr[1:0]

00
01
10
11

addr [3:2]

addr [3:2]
addr [3:2]

addr [3:2]

= Hit?

addr[3:2]

Tag

Carnegie Mellon

Example: Direct-Mapped Cache
for (i = 0; i < 4; ++i) {

A += mem[i];
}	

for (i = 0; i < 4; ++i) {

B *= (mem[i] + A);
}

• Assume mem == 0b1000

• Read 0b1000

• Read 0b1001

• Read 0b1010

• Read 0b1011

• Read 0b1000; cache hit?

20

a

a
b
c
d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

addr

addr[1:0] = Hit?

addr[3:2]

Carnegie Mellon

Example: Direct-Mapped Cache
for (i = 0; i < 4; ++i) {

A += mem[i];
}	

for (i = 0; i < 4; ++i) {

B *= (mem[i] + A);
}

• Assume mem == 0b1000

• Read 0b1000

• Read 0b1001

• Read 0b1010

• Read 0b1011

• Read 0b1000; cache hit?

20

a

a
b
c
d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

10a 1

addr

addr[1:0] = Hit?

addr[3:2]

Carnegie Mellon

Example: Direct-Mapped Cache
for (i = 0; i < 4; ++i) {

A += mem[i];
}	

for (i = 0; i < 4; ++i) {

B *= (mem[i] + A);
}

• Assume mem == 0b1000

• Read 0b1000

• Read 0b1001

• Read 0b1010

• Read 0b1011

• Read 0b1000; cache hit?

20

a

a
b
c
d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

10
10

a
b

1
1

addr

addr[1:0] = Hit?

addr[3:2]

Carnegie Mellon

Example: Direct-Mapped Cache
for (i = 0; i < 4; ++i) {

A += mem[i];
}	

for (i = 0; i < 4; ++i) {

B *= (mem[i] + A);
}

• Assume mem == 0b1000

• Read 0b1000

• Read 0b1001

• Read 0b1010

• Read 0b1011

• Read 0b1000; cache hit?

20

a

a
b
c
d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

10

10
10

a
b
c

1
1
1

addr

addr[1:0] = Hit?

addr[3:2]

Carnegie Mellon

Example: Direct-Mapped Cache
for (i = 0; i < 4; ++i) {

A += mem[i];
}	

for (i = 0; i < 4; ++i) {

B *= (mem[i] + A);
}

• Assume mem == 0b1000

• Read 0b1000

• Read 0b1001

• Read 0b1010

• Read 0b1011

• Read 0b1000; cache hit?

20

a

a
b
c
d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

10

10
10

10

a
b
c
d

1
1
1
1

addr

addr[1:0] = Hit?

addr[3:2]

Carnegie Mellon

Example: Direct-Mapped Cache
for (i = 0; i < 4; ++i) {

A += mem[i];
}	

for (i = 0; i < 4; ++i) {

B *= (mem[i] + A);
}

• Assume mem == 0b1000

• Read 0b1000

• Read 0b1001

• Read 0b1010

• Read 0b1011

• Read 0b1000; cache hit?

20

a

a
b
c
d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

10

10
10

10

a
b
c
d

1
1
1
1

addr

addr[1:0] = Hit?

addr[3:2]

Carnegie Mellon

One Possible Direct-Mapped Cache Implementation

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

a
00
01
10
11

• Cache state is RAM!

• Implement cache as a single

SRAM

• Need appropriate comparators

• Memory is implemented as a
DRAM

21

Carnegie Mellon

One Possible Direct-Mapped Cache Implementation

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

a

Cache
SRAM2

tag + data

• Cache state is RAM!

• Implement cache as a single

SRAM

• Need appropriate comparators

• Memory is implemented as a
DRAM

21

Carnegie Mellon

One Possible Direct-Mapped Cache Implementation

a

MemoryCache

a

Cache
SRAM2

tag + data

Mem
(DRAM)4

data

• Cache state is RAM!

• Implement cache as a single

SRAM

• Need appropriate comparators

• Memory is implemented as a
DRAM

21

Carnegie Mellon

Conflicts

22

a

a
b
c

d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

addr

addr[1:0] = Hit?

addr[3:2]

Carnegie Mellon

Conflicts

22

a

a
b
c

d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

addr

addr[1:0] = Hit?

addr[3:2]

Assume the following memory
access stream:

Carnegie Mellon

Conflicts

22

a

a
b
c

d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

addr

addr[1:0] = Hit?

addr[3:2]

Assume the following memory
access stream:
• Read 1000

Carnegie Mellon

Conflicts

22

a

a
b
c

d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

10a 1

addr

addr[1:0] = Hit?

addr[3:2]

Assume the following memory
access stream:
• Read 1000

Carnegie Mellon

Conflicts

22

a

a
b
c

d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

10a 1

addr

addr[1:0] = Hit?

addr[3:2]

Assume the following memory
access stream:
• Read 1000
• Read 1001

Carnegie Mellon

Conflicts

22

a

a
b
c

d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

10
10

a
b

1
1

addr

addr[1:0] = Hit?

addr[3:2]

Assume the following memory
access stream:
• Read 1000
• Read 1001

Carnegie Mellon

Conflicts

22

a

a
b
c

d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

10
10

a
b

1
1

addr

addr[1:0] = Hit?

addr[3:2]

Assume the following memory
access stream:
• Read 1000
• Read 1001
• Read 1010

Carnegie Mellon

Conflicts

22

a

a
b
c

d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

10

10
10

a
b
c

1
1
1

addr

addr[1:0] = Hit?

addr[3:2]

Assume the following memory
access stream:
• Read 1000
• Read 1001
• Read 1010

Carnegie Mellon

Conflicts

22

a

a
b
c

d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

10

10
10

a
b
c

1
1
1

addr

addr[1:0] = Hit?

addr[3:2]

Assume the following memory
access stream:
• Read 1000
• Read 1001
• Read 1010
• Read 1101 (kick out 1001)

Carnegie Mellon

Conflicts

22

a

a
b
c

d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

10

10
10

a
b
c

1
1
1

addr

addr[1:0] = Hit?

addr[3:2]

Assume the following memory
access stream:
• Read 1000
• Read 1001
• Read 1010
• Read 1101 (kick out 1001)

• addr[1:0]: 01

Carnegie Mellon

Conflicts

22

a

a
b
c

d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

10

10
10

a
b
c

1
1
1

addr

addr[1:0] = Hit?

addr[3:2]

Assume the following memory
access stream:
• Read 1000
• Read 1001
• Read 1010
• Read 1101 (kick out 1001)

• addr[1:0]: 01
• addr[3:2]: 11

Carnegie Mellon

Conflicts

22

a

a
b
c

d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

10

10

a

c

1
1
1

addr

addr[1:0] = Hit?

addr[3:2]

Assume the following memory
access stream:
• Read 1000
• Read 1001
• Read 1010
• Read 1101 (kick out 1001)

• addr[1:0]: 01
• addr[3:2]: 11

11d

Carnegie Mellon

Conflicts

22

a

a
b
c

d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

10

10

a

c

1
1
1

addr

addr[1:0] = Hit?

addr[3:2]

Assume the following memory
access stream:
• Read 1000
• Read 1001
• Read 1010
• Read 1101 (kick out 1001)

• addr[1:0]: 01
• addr[3:2]: 11

• Read 1001 -> Miss!

11d

Carnegie Mellon

Conflicts

22

a

a
b
c

d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

10

10

a

c

1
1
1

addr

addr[1:0] = Hit?

addr[3:2]

Assume the following memory
access stream:
• Read 1000
• Read 1001
• Read 1010
• Read 1101 (kick out 1001)

• addr[1:0]: 01
• addr[3:2]: 11

• Read 1001 -> Miss!
• Why? Each memory location

is mapped to only one cache
location

11d

Carnegie Mellon

Sets
• Each cacheable memory location

is mapped to a set of cache
locations

• A set is one or more cache
locations

• Set size is the number of locations
in a set, also called associativity

23

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

Carnegie Mellon

2 Way Set Associative

24

Set 1

Set 00

1

Carnegie Mellon

2 Way Set Associative
• 2 sets, each set has two entries

24

Set 1

Set 00

1

Carnegie Mellon

2 Way Set Associative
• 2 sets, each set has two entries
• Only need one bit, addr[0] to index into

the cache now

24

Set 1

Set 00

1

Carnegie Mellon

2 Way Set Associative
• 2 sets, each set has two entries
• Only need one bit, addr[0] to index into

the cache now
• Correspondingly, the tag needs 3 bits:

Addr[3:1]

24

Set 1

Set 00

1

Carnegie Mellon

2 Way Set Associative
• 2 sets, each set has two entries
• Only need one bit, addr[0] to index into

the cache now
• Correspondingly, the tag needs 3 bits:

Addr[3:1]
• Either entry can store any address that

gets mapped to that set

24

Set 1

Set 00

1

Carnegie Mellon

2 Way Set Associative
• 2 sets, each set has two entries
• Only need one bit, addr[0] to index into

the cache now
• Correspondingly, the tag needs 3 bits:

Addr[3:1]
• Either entry can store any address that

gets mapped to that set
• Now with the same access stream:

24

Set 1

Set 00

1

Carnegie Mellon

2 Way Set Associative
• 2 sets, each set has two entries
• Only need one bit, addr[0] to index into

the cache now
• Correspondingly, the tag needs 3 bits:

Addr[3:1]
• Either entry can store any address that

gets mapped to that set
• Now with the same access stream:

• Read 1000

24

Set 1

Set 00

1

100

Carnegie Mellon

2 Way Set Associative
• 2 sets, each set has two entries
• Only need one bit, addr[0] to index into

the cache now
• Correspondingly, the tag needs 3 bits:

Addr[3:1]
• Either entry can store any address that

gets mapped to that set
• Now with the same access stream:

• Read 1000
• Read 1001

24

Set 1

Set 00

1

100

100

Carnegie Mellon

2 Way Set Associative
• 2 sets, each set has two entries
• Only need one bit, addr[0] to index into

the cache now
• Correspondingly, the tag needs 3 bits:

Addr[3:1]
• Either entry can store any address that

gets mapped to that set
• Now with the same access stream:

• Read 1000
• Read 1001
• Read 1010

24

Set 1

Set 00

1

100

100

101

Carnegie Mellon

2 Way Set Associative
• 2 sets, each set has two entries
• Only need one bit, addr[0] to index into

the cache now
• Correspondingly, the tag needs 3 bits:

Addr[3:1]
• Either entry can store any address that

gets mapped to that set
• Now with the same access stream:

• Read 1000
• Read 1001
• Read 1010
• Read 1101 (1001 can still stay)

24

Set 1

Set 00

1

100

100

101

Carnegie Mellon

2 Way Set Associative
• 2 sets, each set has two entries
• Only need one bit, addr[0] to index into

the cache now
• Correspondingly, the tag needs 3 bits:

Addr[3:1]
• Either entry can store any address that

gets mapped to that set
• Now with the same access stream:

• Read 1000
• Read 1001
• Read 1010
• Read 1101 (1001 can still stay)
• Read 1001 -> Hit!

24

Set 1

Set 00

1

100

100

101

Carnegie Mellon

4 Way Set Associative
• One single set that contains all the cache locations

• Also called Fully-Associative Cache

• Every entry can store any cache-line that maps to that set

25

0

Carnegie Mellon

4 Way Set Associative
• One single set that contains all the cache locations

• Also called Fully-Associative Cache

• Every entry can store any cache-line that maps to that set

25

0

Assuming the same access stream

Carnegie Mellon

4 Way Set Associative
• One single set that contains all the cache locations

• Also called Fully-Associative Cache

• Every entry can store any cache-line that maps to that set

25

0 1000

Assuming the same access stream
• Read 1000

Carnegie Mellon

4 Way Set Associative
• One single set that contains all the cache locations

• Also called Fully-Associative Cache

• Every entry can store any cache-line that maps to that set

25

0 1000 1001

Assuming the same access stream
• Read 1000
• Read 1001

Carnegie Mellon

4 Way Set Associative
• One single set that contains all the cache locations

• Also called Fully-Associative Cache

• Every entry can store any cache-line that maps to that set

25

0 1000 10101001

Assuming the same access stream
• Read 1000
• Read 1001
• Read 1010

Carnegie Mellon

4 Way Set Associative
• One single set that contains all the cache locations

• Also called Fully-Associative Cache

• Every entry can store any cache-line that maps to that set

25

0 1000 10101001 1101

Assuming the same access stream
• Read 1000
• Read 1001
• Read 1010
• Read 1101

Carnegie Mellon

4 Way Set Associative
• One single set that contains all the cache locations

• Also called Fully-Associative Cache

• Every entry can store any cache-line that maps to that set

25

0 1000 10101001 1101

Assuming the same access stream
• Read 1000
• Read 1001
• Read 1010
• Read 1101
• Read 1001 -> Hit!

Carnegie Mellon

Associative verses Direct Mapped Trade-offs

26

Carnegie Mellon

Associative verses Direct Mapped Trade-offs
• Direct-Mapped cache

• Generally lower hit rate
• Simpler, Faster

26

Carnegie Mellon

Associative verses Direct Mapped Trade-offs
• Direct-Mapped cache

• Generally lower hit rate
• Simpler, Faster

26

00
01
10
11

10

10
10

10

a
b
c
d

1
1
1
1

addr

addr[1:0] = Hit?

addr[3:2]

Carnegie Mellon

Associative verses Direct Mapped Trade-offs
• Direct-Mapped cache

• Generally lower hit rate
• Simpler, Faster

• Associative cache

• Generally higher hit rate. Better utilization of cache resources
• Slower. Why?

26

00
01
10
11

10

10
10

10

a
b
c
d

1
1
1
1

addr

addr[1:0] = Hit?

addr[3:2]

0
1

101 100
101 100

a
b

c
d

1
1

1
1

Carnegie Mellon

Associative verses Direct Mapped Trade-offs
• Direct-Mapped cache

• Generally lower hit rate
• Simpler, Faster

• Associative cache

• Generally higher hit rate. Better utilization of cache resources
• Slower. Why?

26

00
01
10
11

10

10
10

10

a
b
c
d

1
1
1
1

addr

addr[1:0] = Hit?

addr[3:2]

0
1

101 100
101 100

a
b

c
d

1
1

1
1

addr

addr[0]

Carnegie Mellon

Associative verses Direct Mapped Trade-offs
• Direct-Mapped cache

• Generally lower hit rate
• Simpler, Faster

• Associative cache

• Generally higher hit rate. Better utilization of cache resources
• Slower. Why?

26

00
01
10
11

10

10
10

10

a
b
c
d

1
1
1
1

addr

addr[1:0] = Hit?

addr[3:2]

0
1

101 100
101 100

a
b

c
d

1
1

1
1

addr

addr[0]

=

addr[3:1]

=

Carnegie Mellon

Associative verses Direct Mapped Trade-offs
• Direct-Mapped cache

• Generally lower hit rate
• Simpler, Faster

• Associative cache

• Generally higher hit rate. Better utilization of cache resources
• Slower. Why?

26

00
01
10
11

10

10
10

10

a
b
c
d

1
1
1
1

addr

addr[1:0] = Hit?

addr[3:2]

0
1

101 100
101 100

a
b

c
d

1
1

1
1

addr

addr[0]

=

addr[3:1]

=

Hit?

Or

Carnegie Mellon

Cache Access Summary (So far…)
• Assuming b bits in a memory address

• The b bits are split into two halves:

• Lower s bits used as index to find a set. Total sets S = 2s
• The higher (b - s) bits are used for the tag

• Associativity n is independent of the the split between index and
tag

27

tag index

0sb
Memory
Address

Carnegie Mellon

Locality again
• So far: temporal locality

•What about spatial?

• Idea: Each cache location (cache line) store multiple bytes

28

Carnegie Mellon

Cache-Line Size of 2

29

a

a
b
c
d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

addr

addr[1:0] = Hit?

addr[3:2]

Carnegie Mellon

Cache-Line Size of 2

29

a

a
b
c
d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

addr

addr[1:0] = Hit?

addr[3:2]

Carnegie Mellon

Cache-Line Size of 2

• Read 1000

29

a

a
b
c
d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

a

addr

addr[1:0] = Hit?

addr[3:2]

b

Carnegie Mellon

Cache-Line Size of 2

• Read 1000
• Read 1001 (Hit!)

29

a

a
b
c
d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

a

addr

addr[1:0] = Hit?

addr[3:2]

b

Carnegie Mellon

Cache-Line Size of 2

• Read 1000
• Read 1001 (Hit!)
• Read 1010

29

a

a
b
c
d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

a
c

addr

addr[1:0] = Hit?

addr[3:2]

d
b

Carnegie Mellon

Cache-Line Size of 2

• Read 1000
• Read 1001 (Hit!)
• Read 1010
• Read 1011 (Hit!)

29

a

a
b
c
d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

a
c

addr

addr[1:0] = Hit?

addr[3:2]

d
b

Carnegie Mellon

Cache Access Summary
• Assuming b bits in a memory address

• The b bits are split into three fields:

• Lower l bits are used for byte offset within a cache line. Cache line
size L = 2l

• Next s bits used as index to find a set. Total sets S = 2s
• The higher (b - l - s) bits are used for the tag

• Associativity n is independent of the the split between index and tag

30

tag index

0l+sb
Memory
Address offset

l

Carnegie Mellon

Handling Reads

3133

Carnegie Mellon

Handling Reads
• Read miss: Put into cache

3133

Carnegie Mellon

Handling Reads
• Read miss: Put into cache

• Any reason not to put into cache?

3133

Carnegie Mellon

Handling Reads
• Read miss: Put into cache

• Any reason not to put into cache?
• Read hit: Nothing special. Enjoy the hit!

3133

Carnegie Mellon

Handling Writes (Hit)
• Intricacy: data value is modified!
• Implication: value in cache will be different from that in memory!

• When do we write the modified data in a cache to the next level?
• Write through: At the time the write happens

32

Carnegie Mellon

Handling Writes (Hit)
• Intricacy: data value is modified!
• Implication: value in cache will be different from that in memory!

• When do we write the modified data in a cache to the next level?
• Write through: At the time the write happens
• Write back: When the cache line is evicted

32

Carnegie Mellon

Handling Writes (Hit)
• Intricacy: data value is modified!
• Implication: value in cache will be different from that in memory!

• When do we write the modified data in a cache to the next level?
• Write through: At the time the write happens
• Write back: When the cache line is evicted

• Write-back
• + Can consolidate multiple writes to the same block before eviction. Potentially

saves bandwidth between cache and memory + saves energy
• - Need a bit in the tag store indicating the block is “dirty/modified”

32

Carnegie Mellon

Handling Writes (Hit)
• Intricacy: data value is modified!
• Implication: value in cache will be different from that in memory!

• When do we write the modified data in a cache to the next level?
• Write through: At the time the write happens
• Write back: When the cache line is evicted

• Write-back
• + Can consolidate multiple writes to the same block before eviction. Potentially

saves bandwidth between cache and memory + saves energy
• - Need a bit in the tag store indicating the block is “dirty/modified”

32

Carnegie Mellon

Handling Writes (Hit)
• Intricacy: data value is modified!
• Implication: value in cache will be different from that in memory!

• When do we write the modified data in a cache to the next level?
• Write through: At the time the write happens
• Write back: When the cache line is evicted

• Write-back
• + Can consolidate multiple writes to the same block before eviction. Potentially

saves bandwidth between cache and memory + saves energy
• - Need a bit in the tag store indicating the block is “dirty/modified”

• Write-through

32

Carnegie Mellon

Handling Writes (Hit)
• Intricacy: data value is modified!
• Implication: value in cache will be different from that in memory!

• When do we write the modified data in a cache to the next level?
• Write through: At the time the write happens
• Write back: When the cache line is evicted

• Write-back
• + Can consolidate multiple writes to the same block before eviction. Potentially

saves bandwidth between cache and memory + saves energy
• - Need a bit in the tag store indicating the block is “dirty/modified”

• Write-through
• + Simpler

32

Carnegie Mellon

Handling Writes (Hit)
• Intricacy: data value is modified!
• Implication: value in cache will be different from that in memory!

• When do we write the modified data in a cache to the next level?
• Write through: At the time the write happens
• Write back: When the cache line is evicted

• Write-back
• + Can consolidate multiple writes to the same block before eviction. Potentially

saves bandwidth between cache and memory + saves energy
• - Need a bit in the tag store indicating the block is “dirty/modified”

• Write-through
• + Simpler
• + Memory is up to date

32

Carnegie Mellon

Handling Writes (Hit)
• Intricacy: data value is modified!
• Implication: value in cache will be different from that in memory!

• When do we write the modified data in a cache to the next level?
• Write through: At the time the write happens
• Write back: When the cache line is evicted

• Write-back
• + Can consolidate multiple writes to the same block before eviction. Potentially

saves bandwidth between cache and memory + saves energy
• - Need a bit in the tag store indicating the block is “dirty/modified”

• Write-through
• + Simpler
• + Memory is up to date
• - More bandwidth intensive; no coalescing of writes

32

Carnegie Mellon

Handling Writes (Hit)
• Intricacy: data value is modified!
• Implication: value in cache will be different from that in memory!

• When do we write the modified data in a cache to the next level?
• Write through: At the time the write happens
• Write back: When the cache line is evicted

• Write-back
• + Can consolidate multiple writes to the same block before eviction. Potentially

saves bandwidth between cache and memory + saves energy
• - Need a bit in the tag store indicating the block is “dirty/modified”

• Write-through
• + Simpler
• + Memory is up to date
• - More bandwidth intensive; no coalescing of writes
• - Requires transfer of the whole cache line (although only one byte might have

been modified)
32

Carnegie Mellon

Handling Writes (Miss)
• Do we allocate a cache line on a write miss?

• Write-allocate: Allocate on write miss
• Non-Write-Allocate: No-allocate on write miss

• Allocate on write miss

33

Carnegie Mellon

Handling Writes (Miss)
• Do we allocate a cache line on a write miss?

• Write-allocate: Allocate on write miss
• Non-Write-Allocate: No-allocate on write miss

• Allocate on write miss
• + Can consolidate writes instead of writing each of them

individually to memory

33

Carnegie Mellon

Handling Writes (Miss)
• Do we allocate a cache line on a write miss?

• Write-allocate: Allocate on write miss
• Non-Write-Allocate: No-allocate on write miss

• Allocate on write miss
• + Can consolidate writes instead of writing each of them

individually to memory
• + Simpler because write misses can be treated the same way

as read misses

33

Carnegie Mellon

Handling Writes (Miss)
• Do we allocate a cache line on a write miss?

• Write-allocate: Allocate on write miss
• Non-Write-Allocate: No-allocate on write miss

• Allocate on write miss
• + Can consolidate writes instead of writing each of them

individually to memory
• + Simpler because write misses can be treated the same way

as read misses

• Non-allocate
• + Conserves cache space if locality of writes is low (potentially

better cache hit rate)

33

Carnegie Mellon

Instruction vs. Data Caches
• Separate or Unified?

34

Carnegie Mellon

Instruction vs. Data Caches
• Separate or Unified?

• Unified:

34

Carnegie Mellon

Instruction vs. Data Caches
• Separate or Unified?

• Unified:
• + Dynamic sharing of cache space: no overprovisioning that might

happen with static partitioning (i.e., split Inst and Data caches)

34

Carnegie Mellon

Instruction vs. Data Caches
• Separate or Unified?

• Unified:
• + Dynamic sharing of cache space: no overprovisioning that might

happen with static partitioning (i.e., split Inst and Data caches)
• - Instructions and data can thrash each other (i.e., no guaranteed

space for either)

34

Carnegie Mellon

Instruction vs. Data Caches
• Separate or Unified?

• Unified:
• + Dynamic sharing of cache space: no overprovisioning that might

happen with static partitioning (i.e., split Inst and Data caches)
• - Instructions and data can thrash each other (i.e., no guaranteed

space for either)
• - Inst and Data are accessed in different places in the pipeline.

Where do we place the unified cache for fast access?

34

Carnegie Mellon

Instruction vs. Data Caches
• Separate or Unified?

• Unified:
• + Dynamic sharing of cache space: no overprovisioning that might

happen with static partitioning (i.e., split Inst and Data caches)
• - Instructions and data can thrash each other (i.e., no guaranteed

space for either)
• - Inst and Data are accessed in different places in the pipeline.

Where do we place the unified cache for fast access?

• First level caches are almost always split
• Mainly for the last reason above

• Second and higher levels are almost always unified

34

Carnegie Mellon

Eviction/Replacement Policy

•Which cache line should be replaced?

35

Carnegie Mellon

Eviction/Replacement Policy

•Which cache line should be replaced?
• Direct mapped? Only one place!

35

Carnegie Mellon

Eviction/Replacement Policy

•Which cache line should be replaced?
• Direct mapped? Only one place!
• Associative caches? Multiple places!

35

Carnegie Mellon

Eviction/Replacement Policy

•Which cache line should be replaced?
• Direct mapped? Only one place!
• Associative caches? Multiple places!

• For associative cache:

35

Carnegie Mellon

Eviction/Replacement Policy

•Which cache line should be replaced?
• Direct mapped? Only one place!
• Associative caches? Multiple places!

• For associative cache:
• Any invalid cache line first

35

Carnegie Mellon

Eviction/Replacement Policy

•Which cache line should be replaced?
• Direct mapped? Only one place!
• Associative caches? Multiple places!

• For associative cache:
• Any invalid cache line first
• If all are valid, consult the replacement policy

35

Carnegie Mellon

Eviction/Replacement Policy

•Which cache line should be replaced?
• Direct mapped? Only one place!
• Associative caches? Multiple places!

• For associative cache:
• Any invalid cache line first
• If all are valid, consult the replacement policy
• Randomly pick one???

35

Carnegie Mellon

Eviction/Replacement Policy

•Which cache line should be replaced?
• Direct mapped? Only one place!
• Associative caches? Multiple places!

• For associative cache:
• Any invalid cache line first
• If all are valid, consult the replacement policy
• Randomly pick one???
• Ideally: Replace the cache line that’s least likely going to be

used again

35

Carnegie Mellon

Eviction/Replacement Policy

•Which cache line should be replaced?
• Direct mapped? Only one place!
• Associative caches? Multiple places!

• For associative cache:
• Any invalid cache line first
• If all are valid, consult the replacement policy
• Randomly pick one???
• Ideally: Replace the cache line that’s least likely going to be

used again
• Approximation: Least recently used (LRU)

35

Carnegie Mellon

Implementing LRU
• Idea: Evict the least recently accessed block

• Challenge: Need to keep track of access ordering of blocks

• Question: 2-way set associative cache:

• What do you need to implement LRU perfectly? One bit?

36

0 1Cache Lines

LRU index (1-bit)

Carnegie Mellon

Implementing LRU
• Idea: Evict the least recently accessed block

• Challenge: Need to keep track of access ordering of blocks

• Question: 2-way set associative cache:

• What do you need to implement LRU perfectly? One bit?

36

0 1Cache Lines

LRU index (1-bit)

Address stream:

• Hit on 0

• Hit on 1

• Miss, evict 0

Carnegie Mellon

Implementing LRU
• Idea: Evict the least recently accessed block

• Challenge: Need to keep track of access ordering of blocks

• Question: 2-way set associative cache:

• What do you need to implement LRU perfectly? One bit?

36

0 1Cache Lines

LRU index (1-bit) 1

Address stream:

• Hit on 0

• Hit on 1

• Miss, evict 0

Carnegie Mellon

Implementing LRU
• Idea: Evict the least recently accessed block

• Challenge: Need to keep track of access ordering of blocks

• Question: 2-way set associative cache:

• What do you need to implement LRU perfectly? One bit?

36

0 1Cache Lines

LRU index (1-bit) 10

Address stream:

• Hit on 0

• Hit on 1

• Miss, evict 0

Carnegie Mellon

Implementing LRU
• Idea: Evict the least recently accessed block

• Challenge: Need to keep track of access ordering of blocks

• Question: 2-way set associative cache:

• What do you need to implement LRU perfectly? One bit?

36

0 1Cache Lines

LRU index (1-bit) 10

Address stream:

• Hit on 0

• Hit on 1

• Miss, evict 0

Carnegie Mellon

Implementing LRU
• Idea: Evict the least recently accessed block

• Challenge: Need to keep track of access ordering of blocks

• Question: 2-way set associative cache:

• What do you need to implement LRU perfectly? One bit?

36

0 1Cache Lines

LRU index (1-bit) 10

Address stream:

• Hit on 0

• Hit on 1

• Miss, evict 0

1

Carnegie Mellon

Implementing LRU

37

0 1 2 3Cache Lines
LRU index (2 bits) 1

Address stream:

• Hit on 0

• Hit on 2

• Hit on 3

• Miss, evict 1

Carnegie Mellon

Implementing LRU
• Question: 4-way set associative cache:

• What do you need to implement LRU perfectly?
• Will the same mechanism work?

37

0 1 2 3Cache Lines
LRU index (2 bits) 1

Address stream:

• Hit on 0

• Hit on 2

• Hit on 3

• Miss, evict 1

Carnegie Mellon

Implementing LRU
• Question: 4-way set associative cache:

• What do you need to implement LRU perfectly?
• Will the same mechanism work?

37

0 1 2 3Cache Lines
LRU index (2 bits) 1

Address stream:

• Hit on 0

• Hit on 2

• Hit on 3

• Miss, evict 1

Carnegie Mellon

Implementing LRU
• Question: 4-way set associative cache:

• What do you need to implement LRU perfectly?
• Will the same mechanism work?

37

0 1 2 3Cache Lines
LRU index (2 bits) 1

Address stream:

• Hit on 0

• Hit on 2

• Hit on 3

• Miss, evict 1

Carnegie Mellon

Implementing LRU
• Question: 4-way set associative cache:

• What do you need to implement LRU perfectly?
• Will the same mechanism work?

37

0 1 2 3Cache Lines
LRU index (2 bits) 1

Address stream:

• Hit on 0

• Hit on 2

• Hit on 3

• Miss, evict 1

Carnegie Mellon

Implementing LRU
• Question: 4-way set associative cache:

• What do you need to implement LRU perfectly?
• Will the same mechanism work?

37

0 1 2 3Cache Lines
LRU index (2 bits) 1

Address stream:

• Hit on 0

• Hit on 2

• Hit on 3

• Miss, evict 1

Carnegie Mellon

Implementing LRU
• Question: 4-way set associative cache:

• What do you need to implement LRU perfectly?
• Will the same mechanism work?

37

0 1 2 3Cache Lines
LRU index (2 bits) 1

Address stream:

• Hit on 0

• Hit on 2

• Hit on 3

• Miss, evict 1What to update now???

Carnegie Mellon

Implementing LRU
• Question: 4-way set associative cache:

• What do you need to implement LRU perfectly?
• Will the same mechanism work?
• Essentially have to track the ordering of all cache lines

37

0 1 2 3Cache Lines
LRU index (2 bits) 1

Address stream:

• Hit on 0

• Hit on 2

• Hit on 3

• Miss, evict 1What to update now???

Carnegie Mellon

Implementing LRU
• Question: 4-way set associative cache:

• What do you need to implement LRU perfectly?
• Will the same mechanism work?
• Essentially have to track the ordering of all cache lines
• How many possible orderings are there?

37

0 1 2 3Cache Lines
LRU index (2 bits) 1

Address stream:

• Hit on 0

• Hit on 2

• Hit on 3

• Miss, evict 1What to update now???

Carnegie Mellon

Implementing LRU
• Question: 4-way set associative cache:

• What do you need to implement LRU perfectly?
• Will the same mechanism work?
• Essentially have to track the ordering of all cache lines
• How many possible orderings are there?
• What are the hardware structures needed?

37

0 1 2 3Cache Lines
LRU index (2 bits) 1

Address stream:

• Hit on 0

• Hit on 2

• Hit on 3

• Miss, evict 1What to update now???

Carnegie Mellon

Implementing LRU
• Question: 4-way set associative cache:

• What do you need to implement LRU perfectly?
• Will the same mechanism work?
• Essentially have to track the ordering of all cache lines
• How many possible orderings are there?
• What are the hardware structures needed?
• In reality, true LRU is never implemented. Too complex.

37

0 1 2 3Cache Lines
LRU index (2 bits) 1

Address stream:

• Hit on 0

• Hit on 2

• Hit on 3

• Miss, evict 1What to update now???

Carnegie Mellon

Implementing LRU
• Question: 4-way set associative cache:

• What do you need to implement LRU perfectly?
• Will the same mechanism work?
• Essentially have to track the ordering of all cache lines
• How many possible orderings are there?
• What are the hardware structures needed?
• In reality, true LRU is never implemented. Too complex.
• Google Pseudo-LRU

37

0 1 2 3Cache Lines
LRU index (2 bits) 1

Address stream:

• Hit on 0

• Hit on 2

• Hit on 3

• Miss, evict 1What to update now???

Carnegie Mellon

General Rule: Bigger == Slower

3843

CPU Cache
$ Memory

Carnegie Mellon

General Rule: Bigger == Slower

• How big should the cache be?

• Too small and too much memory traffic
• Too large and cache slows down execution (high latency)

3843

CPU Cache
$ Memory

Carnegie Mellon

General Rule: Bigger == Slower

• How big should the cache be?

• Too small and too much memory traffic
• Too large and cache slows down execution (high latency)

•Make multiple levels of cache

• Small L1 backed up by larger L2
• Today’s processors typically have 3 cache levels

3843

CPU Cache
$ Memory

Carnegie Mellon

General Rule: Bigger == Slower

• How big should the cache be?

• Too small and too much memory traffic
• Too large and cache slows down execution (high latency)

•Make multiple levels of cache

• Small L1 backed up by larger L2
• Today’s processors typically have 3 cache levels

3843

CPU Cache
$ MemoryCache

$

Carnegie Mellon

General Rule: Bigger == Slower

• How big should the cache be?

• Too small and too much memory traffic
• Too large and cache slows down execution (high latency)

•Make multiple levels of cache

• Small L1 backed up by larger L2
• Today’s processors typically have 3 cache levels

3843

CPU Cache
$ MemoryCache

$
Level 1
(L1 $)

Level 2  
(L2 $)

Carnegie Mellon

Summary

• Assumptions:

• memory access (~100ns) >> cache access (~1ns)

• cache smaller, faster, more expensive than memory
• Programs exhibit temporal locality

• if an item is referenced, it will tend to be referenced again soon
• Programs exhibit spatial locality

• If an item is referenced, the next item in memory is likely to be
accessed soon

3944

CPU Cache
$ Memory

