CSC 252: Computer Organization
Spring 2018: Lecture 17

Instructor: Yuhao Zhu

Department of Computer Science
University of Rochester

Action Items:
* Programming Assignment 4 is out
e Cache Problem Set is out (no turn-in)

Announcement

* Programming Assignment 4 is out
e Main assignment due on 11:59pm, Monday, April 2.

25 26 (27) 28 29

Apr 1 2 3 4 S

Due

30

Announcement

* Programming Assignment 4 is out
e Main assignment due on 11:59pm, Monday, April 2.

* | have put up a Problem Set to help you understand cache better
* No turn-in required. Solutions to be released soon
* Get a preview of final exam problems!!!

25 26 @ 28 29 30

Apr 1 2 3 4 S 6

Due

Announcement

Announcement

* Mid-term:
* Mid-term grades will be updated after the class
* You can get your exams from the TAs after the class
» Solutions will be posted very soon

Announcement

* Mid-term:
* Mid-term grades will be updated after the class
* You can get your exams from the TAs after the class
» Solutions will be posted very soon
e Statistics:
» Average: 50.7; Standard-deviation: 10.0
 Random guess: 1/e0 =0
 Just writing down “l don’t know”: 15

Announcement

* Mid-term:
* Mid-term grades will be updated after the class
* You can get your exams from the TAs after the class
* Solutions will be posted very soon
e Statistics:
» Average: 50.7; Standard-deviation: 10.0
 Random guess: 1/e0 =0
 Just writing down “l don’t know”: 15
* So overall encouraging results

Announcement

+08

08-04

| 11—

0/-09

09-0G

0G-0v

0¥-0€

I |

0€-0¢

0Z-0l

0L-0

o
O

I I I I
o O o o O
< O N

SJUSpN)S JO JaquINN

Grade Range

Today

* Review: Cache memory organization and operation

General Cache Organization (S, E, B)

E = 2¢ lines per set

g + \\‘\/
..

4 }
..

General Cache Organization (S, E, B)

E = 2¢ lines per set

A
4 N\
4 —
+ooo —
+oooo

4 bees

Tooc

'} tag 0]1]2] «ccc-- B-1

N— i
~—

B = 2® bytes per cache block (the data)

General Cache Organization (S, E, B)

E = 2¢ lines per set

A
'd Y
4 —
+ooo —
+oooo

4 looe

Tooc

'} tag 0]1]2] «ccc-- B-1

\ N— i

valid bit B = 2® bytes per cache block (the data)

General Cache Organization (S, E, B)

E = 2¢ lines per set

A
r N
4 —
+ooo —
+....
S= < +ooo
25 sets
0 0000000 000O0COCEOGFEOGOEOEOEOGOEOEOOOOOOOO
+...
\
d v tag 0|12 ccce- B-1
dirty bit / ~ ~————

(if write-back) valid bit B = 2® bytes per cache block (the data)

General Cache Organization (S, E, B)

E = 2¢ lines per set
A

Tooc

lacoc

Tooc

Tooc

N\
L

\

Cache size:

C =S x E x B data bytes

Overhead:
Tag, valid bit, dirty bit.
Plus bits for implementing

replacement policy

(not shown).

tag

B-1

dirty bit / \

(if write-back) valid bit

7

B = 2® bytes per cache block (the data)

Cache Access

E = 2¢ lines per set
A

Address of word:

t bits s bits | b bits

S =25 sets < e e e

oo tag set block
index offset

Cache Access

S =2°%sets <

E = 2¢ lines per set
A

* Llocate set

Address of word:

t bits s bits | b bits

— A

tag set block
index offset

Cache Access

S =2°%sets <

E = 2¢ lines per set

A

* Locate set

* Check if any line in set
has matching tag

* Yes + line valid: hit

Address of word:

t bits s bits | b bits

— A

tag set block
index offset

tag

B-1

7

B = 2® bytes per cache block (the data)

Cache Access

S =2°%sets <

E = 2¢ lines per set

A

* Locate set

* Check if any line in set
has matching tag

* Yes + line valid: hit

* Locate data starting
at offset

Address of word:

t bits s bits | b bits

— A

tag set block
index offset

tag

B-1

7

data begins at this offset

B = 2® bytes per cache block (the data)

Example: Direct Mapped Cache

Direct mapped: One line per set
Assume: cache block size 8 bytes

(Address of char:

v ta ol1[2[3]als]6]|7
8 thits | 0..01 | 100

'} tag 01112|3]14]|5]|6]7

S = 25 sets <

'} tag 01112|3]14]|5]|6]7

\'} tag 0|1]2]|3|14]|5]|61]17

Example: Direct Mapped Cache

Direct mapped: One line per set
Assume: cache block size 8 bytes

(Address of char:

v ta ol1[2[3]als]6]|7
8 thits | 0..01 | 100

'} tag 01112|3]14]|5]|6]7

find set

S = 25 sets <

'} tag 01112|3]14]|5]|6]7

\'} tag 0|1]2]|3|14]|5]|61]17

Example: Direct Mapped Cache

Direct mapped: One line per set
Assume: cache block size 8 bytes

Address of char:

t bits 0..01 | 100

Example: Direct Mapped Cache

Direct mapped: One line per set
Assume: cache block size 8 bytes

Address of char:

valid? + match: assume yes = hit

t bits 0..01 | 100

v tag 0111213145617

Example: Direct Mapped Cache

Direct mapped: One line per set
Assume: cache block size 8 bytes

Address of char:

valid? + match: assume yes = hit

t bits 0..01 | 100

v tag 0111213145617

block offset

Example: Direct Mapped Cache

Direct mapped: One line per set

Assume: cache block size 8 bytes

valid? + match: assume yes = hit

Address of char:

v tag 0|1

t bits

0..01

100

Byte 4 is here

block offset

10

Example: Direct Mapped Cache

Direct mapped: One line per set
Assume: cache block size 8 bytes

Address of char:

valid? + match: assume yes = hit

t bits 0..01 | 100

v tag 0|1|2|314|5]|6]7

block offset

Byte 4 is here

If tag doesn’t match: old line is evicted and replaced

Direct-Mapped Cache Simulation

t=1 s=2 b=l 4-bit address space, i.e., Memory = 16 bytes
X XX X B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):

0 [0000,],
1 [0001,],
7 [0111,],
8 [1000,],
0 [0000,]

v Tag Line

Set0 | O ? ?
Set 1
Set 2
Set 3

Direct-Mapped Cache Simulation

t

=1

s=2

b

=1

X

XX

X

Set O
Set 1
Set 2
Set 3

4-bit address space, i.e., Memory = 16 bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,],
7 [0111,],
8 [1000,],
0 [0000,]

v Tag Line
? ?

1

Direct-Mapped Cache Simulation

t

=1

s=2

b

=1

X

XX

X

Set O
Set 1
Set 2
Set 3

4-bit address space, i.e., Memory = 16 bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,],
7 [0111,],
8 [1000,],
0 [0000,]

v Tag Line
0 MI[0-1]

1

Direct-Mapped Cache Simulation

t

=1

s=2

b

=1

X

XX

X

Set O
Set 1
Set 2
Set 3

4-bit address space, i.e., Memory = 16 bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit
7 [0111,],

8 [1000,],

0 [0000,]

v Tag Line
0 MI[0-1]

1

Direct-Mapped Cache Simulation

t

=1

s=2

b

=1

X

XX

X

Set O
Set 1
Set 2
Set 3

4-bit address space, i.e., Memory = 16 bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit
7 [0111,], miss
8 [1000,],

0 [0000,]

v Tag Line
0 MI[0-1]

1

Direct-Mapped Cache Simulation

t

=1

s=2

b

=1

X

XX

X

Set O
Set 1
Set 2
Set 3

4-bit address space, i.e., Memory = 16 bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit
7 [0111,], miss
8 [1000,],

0 [0000,]

v Tag Line
0 MI[0-1]

1] o M[6-7]

1

Direct-Mapped Cache Simulation

t

=1

s=2

b

=1

X

XX

X

Set O
Set 1
Set 2
Set 3

4-bit address space, i.e., Memory = 16 bytes

B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit
7 [0111,], miss
8 [1000,], miss
0 [0000,]

v Tag Line
0 MI[0-1]

1 0 M[6-7]

1

Direct-Mapped Cache Simulation

t

=1

s=2

b

=1

X

XX

X

Set O
Set 1
Set 2
Set 3

4-bit address space, i.e., Memory = 16 bytes

B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit
7 [0111,], miss
8 [1000,], miss
0 [0000,]

v Tag Line
1 M[8-9]

1 0 M[6-7]

1

Direct-Mapped Cache Simulation

t

=1

s=2

b

=1

X

XX

X

Set O
Set 1
Set 2
Set 3

4-bit address space, i.e., Memory = 16 bytes

B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):

0 [0000,],
1 [0001,],
7 [0111,],
8 [1000,],
0 [0000,]
v Tag Line
1 M[8-9]
1 0 M[6-7]

miss
hit
miss
miss
miss

1

Direct-Mapped Cache Simulation

t

=1

s=2

b

=1

X

XX

X

Set O
Set 1
Set 2
Set 3

4-bit address space, i.e., Memory = 16 bytes

B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):

0 [0000,],
1 [0001,],
7 [0111,],
8 [1000,],
0 [0000,]
v Tag Line
0 MI[0-1]
1 0 M[6-7]

miss
hit
miss
miss
miss

1

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

v| | tag | [o]2]2]3]4]5]6[7]| |[v] | tag | [0o]2][2]3]a]5]6]7

v| | tag | [o]2]2]3]4]5]6[7]| |[v] | tag | [0o]2][2]3]a]5]6]7

v| | tag | [o]2]2]3]4]5]6[7]| |[v] [tag | [0o]2][2]3]a]5]6]7

v tag 011)12|314|5]|6]|7 v tag 0]1|213]|4|5]|6]7

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

Address of short int:

v tag 011)12|314|5]|6]|7

tag

thits | 0..01 | 100
v| [tag | [0]1]2]3]4]5]6]7 tag | 5]6(7
v] [tae | [o]2]2[3]4]5]6]7 tag | 5[6]7]| —find set
v| [tag | [0]1]2]3]4]5]6]7 tag | 5]6(7

12

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

Address of short int:

t bits

0..01

100

'} tag 0l1]21314]|5]|6]|7

13

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes

Address of short int:

compare both

t bits

0..01

100

v tag 01112|3

13

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

valid? +

Address of short int:

match: yes = hit

compare both

t bits

0..01

100

tag 0|1]2)3]|4

13

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

valid? +

Address of short int:

match: yes = hit

compare both

t bits

0..01

100

tag 0|1]2)3]|4

67| |lv] | _tag | [0]2]2]3

block offset

13

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

compare both

valid? + |match: yes = hit

vl | tag | |o]1]2]|3]a]5]|6]7 v| | tag | [0o]1]2[3]a]5[6]|7]| —

block offset

short int (2 Bytes) is here

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

compare both

valid? + |match: yes = hit

vl | tag | |o]1]2]|3]a]5]|6]7 v| | tag | [0o]1]2[3]a]5[6]|7]| —

block offset

short int (2 Bytes) is here

No match:
* One line in set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...

14

2-Way Set Associative Cache Simulation

t=2 s=1 b=1 _
XX X X 4-bit address space, i.e., Memory = 16 bytes

S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

0 [0000,],
1 [0001,],
7 [0111,],
8 [1000,],
0 [0000,]
v Tag Block
seto |9 |7 7
0
Set 1 L
0

2-Way Set Associative Cache Simulation

t=2

s=1

b

=1

XX

X

X

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,],
7 [0111,],
8 [1000,],
0 [0000,]
v Tag Block
seto |9 |7 7
0
Set 1 L
0

15

2-Way Set Associative Cache Simulation

t=2

s=1

b

=1

XX

X

X

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

Set 0

Set1l

0

1
7
8
0
Vv

Tag

[0000,], miss
[0001,],
[0111,],
[1000,],
[0000,]
Block

00

M[O-1]

15

2-Way Set Associative Cache Simulation

t=2

s=1

b

=1

XX

X

X

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

Set 0

Set1l

0

1
7
8
0
Vv

Tag

[0000,], miss
[0001,], hit
[0111,],
[1000,],
[0000,]

Block

00

M[O-1]

15

2-Way Set Associative Cache Simulation

t=2

s=1

b

=1

XX

X

X

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

Set 0

Set1l

0

1
7
8
0
Vv

Tag

[0000,], miss
[0001,], hit
[0111,], miss
[1000,],
[0000,]

Block

00

M[O-1]

15

2-Way Set Associative Cache Simulation

t=2

s=1

b

=1

XX

X

X

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

Set 0

Set1l

0

1
7
8
0
Vv

Tag

[0000,], miss
[0001,], hit
[0111,], miss
[1000,],
[0000,]

Block

00

M[O-1]

01

M[6-7]

15

2-Way Set Associative Cache Simulation

t=2

s=1

b

=1

XX

X

X

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

Set 0

Set1l

0 [0000,], miss
1 [0001,], hit
7 [0111,], miss
8 [1000,], miss
0 [0000,]
v Tag Block

00 |M[O0-1]

01 [M][6-7]

15

2-Way Set Associative Cache Simulation

t=2

s=1

b

=1

XX

X

X

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

Set 0

Set1l

0

1
7
8
0
Vv

Tag

[0000,], miss
[0001,], hit
[0111,], miss
[1000,], miss
[0000,]

Block

00

M[O-1]

10

M[8-9]

01

M[6-7]

15

2-Way Set Associative Cache Simulation

t=2 s=1 b=1 _
XX X X 4-bit address space, i.e., Memory = 16 bytes

S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit
7 [0111,], miss
8 [1000,], miss
0 [0000,] hit
v Tag Block
seto |1 00 |[M][O0-1]
1 10 [M[8-9]
Set 1 (1) 01 |[M[6-7]

Today

e Performance impact of caches
« Analytical Model

16

Cache Performance Metrics

e Miss Rate

* Fraction of memory references not found in cache
(misses / accesses)
=1 - hit rate
 Typical numbers (in percentages):
e 3-10% for L1

« can be quite small (e.g., < 1%) for L2, depending on
sSize, etc.

17

Cache Performance Metrics

e Hit Time
e Time to deliver a line in the cache to the processor

e includes time to determine whether the line is in the
cache

e Typical numbers:
* 1~4 clock cycle for L1
e 5~10 clock cycles for L2

18

Cache Performance Metrics

* Miss Penalty
« Additional time required because of a miss
 Typically 50-200 cycles for main memory
 Trend: increasing!

19

Let’s think about those numbers

* Huge difference between a hit and a miss
o Could be 100k, if just L1 and main memory

20

Let’s think about those numbers

* Huge difference between a hit and a miss
o Could be 100k, if just L1 and main memory

* Compare 97% hit rate with 99% hit rate

20

Let’s think about those numbers

* Huge difference between a hit and a miss
o Could be 100k, if just L1 and main memory

* Compare 97% hit rate with 99% hit rate

e Assume:
cache hit time of 1 cycle
miss penalty of 100 cycles

20

Let’s think about those numbers

* Huge difference between a hit and a miss
o Could be 100k, if just L1 and main memory

* Compare 97% hit rate with 99% hit rate

e Assume:
cache hit time of 1 cycle
miss penalty of 100 cycles

« Average access time:

20

Let’s think about those numbers

* Huge difference between a hit and a miss
o Could be 100k, if just L1 and main memory
* Compare 97% hit rate with 99% hit rate

e Assume:
cache hit time of 1 cycle
miss penalty of 100 cycles

« Average access time:
97% hit rate: 1 cycle + 0.03 * 100 cycles = 4 cycles

20

Let’s think about those numbers

* Huge difference between a hit and a miss
o Could be 100k, if just L1 and main memory

* Compare 97% hit rate with 99% hit rate

e Assume:
cache hit time of 1 cycle
miss penalty of 100 cycles

« Average access time:

97% hit rate: 1 cycle + 0.03 * 100 cycles = 4 cycles
99% hit rate: 1 cycle + 0.01 * 100 cycles = 2 cycles

20

Let’s think about those numbers

* Huge difference between a hit and a miss
o Could be 100k, if just L1 and main memory

* Compare 97% hit rate with 99% hit rate

e Assume:
cache hit time of 1 cycle
miss penalty of 100 cycles

« Average access time:
97% hit rate: 1 cycle + 0.03 * 100 cycles = 4 cycles
99% hit rate: 1 cycle + 0.01 * 100 cycles = 2 cycles

e Think of it as reducing the miss rate from 3% to 1% (3X
improvement) rather than improving hit rate

20

Let’s think about those numbers

* Huge difference between a hit and a miss
o Could be 100k, if just L1 and main memory
* Compare 97% hit rate with 99% hit rate

o Assume:
cache hit time of 1 cycle
miss penalty of 100 cycles

« Average access time:

97% hit rate: 1 cycle + 0.03 * 100 cycles = 4 cycles
99% hit rate: 1 cycle + 0.01 * 100 cycles = 2 cycles

e Think of it as reducing the miss rate from 3% to 1% (3X
improvement) rather than improving hit rate

* Improving hit rate by even a little bit helps overall speed a lot

20

Writing Cache Friendly Code

* Make the common case go fast
« Inner loops get executed most often. So focus on those

* Minimize the misses in the inner loops
« Repeated references to variables are good (temporal locality)
 Stride-1 reference patterns are good (spatial locality)

21

Today

e Performance impact of caches

« Rearranging loops to improve spatial locality

22

Matrix Multiplication Example

Matrix Multiplication Example

. G
1l G

v

/* ijk */
for (i=0; i<n; 1i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)

c[1]1[]J] = sum;

}

}

sum += a[i][k] * b[k][3j];

—p

>

]

X

23

Matrix Multiplication Example

/* ijk */
for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i][k] * b[k][3j];
c[i] [j] = sum;

Variable sum
held in register

}

}

> ——

>

]

L= XL

23

Matrix Multiplication Example

o Multiply N x N matrices

« Matrix elements are doubles (8 bytes)

« O(N?®) total operations

v

}

}

/* ijk */
for (i=0; i<n; i++) {
for (3j=0; j<n; j++) {

Variable sum

=0.0; . .
st held in register

for (k=0; k<n; k++)
sum += a[i][k] * b[k][3j];
c[i][J] = sum;

—p

>

]

X

23

Miss Rate Analysis for Matrix Multiply

* Assume:
 Block size = 32B (big enough for four doubles)
« Matrix dimension (N) is very large
o Approximate 1/N as 0.0
e Cache is not even big enough to hold multiple rows
* Analysis Method:

o Look at access pattern of inner loop

> ——

L= XL

24

Layout of C Arrays in Memory (review)

* C arrays allocated in row-major order
« each row in contiguous memory locations

* Stepping through columns in one row:
e for (1 = 0; 1 < N; i++)
sum += a[0][1];
e accesses successive elements

e cache line size (32) > size of an element (8 bytes), exploiting spatial locality!
e missrate=8/32=25%

25

Layout of C Arrays in Memory (review)

* C arrays allocated in row-major order
« each row in contiguous memory locations

* Stepping through rows in one column:
e for (1 = 0; Jj < n; j++)
sum += al[1][0];
e accesses distant elements
e no spatial locality!
e miss rate =1 (i.e. 100%)

>

]

gl

26

Matrix Multiplication (ijk)

/* ijk */
for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i] [k] * b[k][j];
c[i][J] = sum;
}

} matmult/mm.c

Inner loop:

g(i,*) ﬁi
A B

A A

Row-wise Column-

Misses per inner loop iteration:
A B
0.25 1.0

wise

0.0

(i

Fixed

27

Matrix Multiplication (jik)

/* Jik */ Inner loop:
for (j=0; j<n; j++) {
for (i=0; i<n; i++) { *
sum = 0.0; g . |1__Ii
for (k=0; k<n; k++) (%)
sum += a[i] [k] * b[k][j]; A B
c[i][j] = sum [|
}
} matmult/mm.c Row-wise Column-

Misses per inner loop iteration:
A B
0.25 1.0

wise

0.0

(i

Fixed

28

Matrix Multiplication (Kkij)

/* kij */
for (k=0; k<n; k++) {
for (1=0; i<n; i++) {
r = a[i] [k]’
for (j=0; j<n; Jj++)
c[i][J] += r * b[k][]];

} matmult/mm.c

Inner loop:

(i,k)

Misses per inner loop iteration:
A B
0.0 0.25

A

Fixed

0.25

=
B C

A A

Row-wise Row-wise

Matrix Multiplication (ikj)

/* ikj */
for (1=0; i<n; i++) {
for (k=0; k<n; k++) {
r = a[i] [k];
for (3j=0; j<n; J++)
c[i][J] += r * b[k][]J]’

} matmult/mm.c

Misses per inner loop iteration:
A B
0.0 0.25

Inner loop:
2l Ly
D (i,)
A B C
Fixed Row-wise Row-wise
C
0.25

30

Matrix Multiplication (jki)

/* jki */
for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r = b[k][]J]’
for (1=0; i<n; i++)

c[i][J] += a[i][k] * r;

} matmult/mm.

c

Misses per inner loop iteration:

A
1.0

B
0.0

= 10O

Inner loop:
(*,k)
| \ (k,j)
[
A B
A A
Column- Fixed
wise
0)

(*,J)

Il

C

A

Column-
wise

31

Matrix Multiplication (kii)

Misses per inner loop iteration:
A B
1.0 0.0

/* kji */ Inner loop:
for (k=0; k<n; k++) {
for (3=0; j<n; j++) { (*,k)
r = b[k][j]; J <k_,i)
for (1i=0; i<n; i++)
c[i]1[]j] += ali]l[k] * r; AA BA
}
} matmult/mm.c
Column- Fixed
wise

(@]

1.0

Column-
wise

32

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i] [k] * b[k][j];
c[i][]j] = sum;
}
}

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i] [k];
for (jJ=0; j<n; j++)
c[i]l[3] += r * b[k][3]~
}
}

for (3=0; j<n; j++) {
for (k=0; k<n; k++) {
r = b[k][]3]~
for (i=0; i<n; i++)
c[i][]j] += a[i][k] * r;

Summary of Matrix Multiplication

ijk (& jik):
e 2 |loads, O stores
* misses/iter = 1.25

kij (& ikj):
e 2 |loads, 1 store
e misses/iter = 0.5

jki (& kji):
e 2 |loads, 1 store
e misses/iter = 2.0

33

Core i7 Matrix Multiply Performance

Cycles per inner loop iteration

100 -

10 -

jki_/ kii

m ik

: e e ettt i

@ jKi
o ijk
O ki

o K
o jik
& ik

ij / iKj

50 100 150 200 250 300 350 400 450 500 550 600 650 700

Array size (n)

34

Today
e Performance impact of caches

« Using blocking to improve temporal locality

35

Example: Matrix Multiplication

c = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {
int i, j, k;
for (1 = 0; i < n; i++)
for (j = 0; j < n; j++)
for (k = 0; k < n; k++)
c[i*n + j] += a[i*n + k] * b[k*n + j];

]
*

36

Cache Miss Analysis

* Assume:
« Matrix elements are doubles
e Cache block = 8 doubles
o Cache size C << n (much smaller than n)

* First iteration:

37

Cache Miss Analysis

e Assume:
o Matrix elements are doubles
e Cache block = 8 doubles

o Cache size C << n (much smaller than n)

* First iteration: r N
e n/8 + n =9n/8 misses

I
*
~

>

]
*

8 wide
37

Cache Miss Analysis

* Assume:
« Matrix elements are doubles
e Cache block = 8 doubles
o Cache size C << n (much smaller than n)

e Second iteration:

8 wide

38

Cache Miss Analysis

* Assume:
« Matrix elements are doubles
e Cache block = 8 doubles
o Cache size C << n (much smaller than n)

* Second iteration:
e Again:
n/8 + n =9n/8 misses

8 wide

38

Cache Miss Analysis

* Assume:
« Matrix elements are doubles
e Cache block = 8 doubles
o Cache size C << n (much smaller than n)

* Second iteration:
e Again:
n/8 + n =9n/8 misses

e Total misses:
e 9n/8 * n?2=(9/8) * n3

8 wide

38

Blocked Matrix Multiplication

¢ = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {
int 1,
for (i
for (3

j, k;

= 0; j < n; j+=B)
for (k = 0; k < n; k+=B)

i < n; i+=B)

/* B x B mini matrix multiplications */
for (i1l = i; il < i+B; i++)
for (§1 = j; j1l < J+B; j++)
for (k1 = k; k1l < k+B; k++)
c[il*n+3j1l] += a[il*n + k1l]*b[kl*n + jl];
matmult/bmm. c

j1
a b
- 3
i1 [A

Block size B x B 39

Cache Miss Analysis

* Assume:
e Cache block = 8 doubles
e Cache size C << n (much smaller than n)
e Three blocks M fit into cache: 3B2< C

n/B blocks
* First (block) iteration: A

I
*
e | [|| B

Block size B x B

40

Cache Miss Analysis

* Assume:
e Cache block = 8 doubles
e Cache size C << n (much smaller than n)
e Three blocks M fit into cache: 3B2< C

* First (block) iteration:
o B2/8 misses for each block ™
« 2n/B * B2/8 = nB/4

n/B blocks
A

N\

e | [|| B

Block sizeBxB

40

Cache Miss Analysis

* Assume:
e Cache block = 8 doubles
e Cache size C << n (much smaller than n)
e Three blocks M fit into cache: 3B2< C

* Second (block) iteration:
[]

n/B blocks

A

'd

*

Block size B x B

N\

41

Cache Miss Analysis

* Assume:
e Cache block = 8 doubles
e Cache size C << n (much smaller than n)
e Three blocks M fit into cache: 3B2< C

* Second (block) iteration:
e Same as first iteration []
e« 2n/B * B2/8 = nB/4

n/B blocks

A

'd

*

Block size B x B

N\

41

Cache Miss Analysis

* Assume:
e Cache block = 8 doubles
e Cache size C << n (much smaller than n)
e Three blocks M fit into cache: 3B2< C

_ _ n/B blocks
* Second (block) iteration: —A
e Same as first iteration] B
e« 2n/B * B2/8 = nB/4 - *
* TOtal miSSGS: B|ock size BxB

e nB/4 * (n/B)? = n3/(4B)

41

Blocking Summary

* No blocking: (9/8) * n3
e Blocking: 1/(4B) * n3

42

Blocking Summary

* No blocking: (9/8) * n3
e Blocking: 1/(4B) * n3

e Suggest largest possible block size B, but limit 3B2 < C!

42

Blocking Summary

* No blocking: (9/8) * n3
e Blocking: 1/(4B) * n3

e Suggest largest possible block size B, but limit 3B2 < C!

* Reason for dramatic difference:
o Matrix multiplication has inherent temporal locality:
 Input data: 3n?%, computation 2n3
e Every array elements used O(n) times!
e But program has to be written properly

42

Cache Summary

* Cache memories can have significant performance impact

* You can write your programs to exploit this!
e Focus on the inner loops, where bulk of computations and memory
accesses occur.
e Try to maximize spatial locality by reading data objects with sequentially
with stride 1.

o Try to maximize temporal locality by using a data object as often as
possible once it’s read from memory.

43

