CSC 252: Computer Organization Spring 2018: Lecture 21

Instructor: Yuhao Zhu

Department of Computer Science University of Rochester

Action Items:

Programming Assignment 5 is out

Announcement

- Programming Assignment 5 is out
 - Main assignment: 11:59pm, Monday, April 16.
- Thursday office hours moved to today (4-5 pm)

8	9	10	11	12	13	14
15	Due	17	18	19	20	21

Process Address Space

Multiprocessing Illustration

Problem

Space:

- Each process's virtual space is huge (64-bit): can memory hold it (4GB is just 32-bit)?
- There are multiple processes, increasing the overhead further

Problem

Space:

- Each process's virtual space is huge (64-bit): can memory hold it (4GB is just 32-bit)?
- There are multiple processes, increasing the overhead further
- Solution: store all the data in disk, and use memory only for most recently used data
 - Does this sound similar?

What Does a Programmer Want?

- What Does a Programmer Want?
- Infinitely large, infinitely fast memory
 - Preferably automatically moved to where it is needed

- What Does a Programmer Want?
- Infinitely large, infinitely fast memory
 - Preferably automatically moved to where it is needed
- Virtual memory to the rescue
 - Present a large, uniform memory to programmers
 - Data in virtual memory by default stays in disk
 - Data moves to physical memory "on demand"
 - Effectively, virtual memory system transparently share the physical memory across different processes
 - Manage the sharing automatically: hardware-software collaborative strategy (too complex for hardware alone)

- What Does a Programmer Want?
- Infinitely large, infinitely fast memory
 - Preferably automatically moved to where it is needed
- Virtual memory to the rescue
 - Present a large, uniform memory to programmers
 - Data in virtual memory by default stays in disk
 - Data moves to physical memory "on demand"
 - Effectively, virtual memory system transparently share the physical memory across different processes
 - Manage the sharing automatically: hardware-software collaborative strategy (too complex for hardware alone)
- At the same time: complete isolation between programs
 - So that process A can't sneak peek process B's data

Today

- Virtual memory (VM) illustration
- VM basic concepts and operation
- Memory management in VM
- Address translation

A System Using Physical Addressing

 Used in "simple" systems like embedded microcontrollers in devices like cars, elevators, and digital picture frames

A System Using Virtual Addressing

- Used in all modern servers, laptops, and smart phones
- One of the great ideas in computer science
- MMU: Memory Management Unit

• Linear address space: Ordered set of contiguous non-negative integer addresses:

$$\{0, 1, 2, 3 \dots \}$$

 Linear address space: Ordered set of contiguous non-negative integer addresses:

$$\{0, 1, 2, 3 \dots \}$$

- Virtual address space: Set of N = 2ⁿ virtual addresses
 - Virtual address space is a linear address space, but limited {0, 1, 2, 3, ..., N-1}

 Linear address space: Ordered set of contiguous non-negative integer addresses:

$$\{0, 1, 2, 3 \dots \}$$

- Virtual address space: Set of N = 2ⁿ virtual addresses
 - Virtual address space is a linear address space, but limited {0, 1, 2, 3, ..., N-1}
- Physical address space: Set of M = 2^m physical addresses
 - Physical address space is a also linear address space, but smaller than virtual address space

Today

- Virtual memory (VM) illustration
- VM basic concepts and operation
- Memory management in VM
- Address translation

VM Concepts

- Conceptually, virtual memory is an array of N contiguous blocks stored on disk.
- The contents of the array on disk are cached in *physical memory*
- These blocks are called pages (size is P = 2^p bytes)

Why Page?

- Facts:
 - Disk is about 10,000x slower than DRAM

Consequences

- Want large page (block) size: typically 4 KB, sometimes 4 MB
- Fully associative
 - Any virtual page can be placed in any physical page
- Highly sophisticated, expensive replacement algorithms
 - Too complicated and open-ended to implement in hardware
- Write-back rather than write-through (why?)

Analogy for Address Translation: A Secure Hotel

Analogy for Address Translation: A Secure Hotel

- Call a hotel looking for a guest; what happens?
 - Front desk routes call to room, does not give out room number
 - Guest's name is a virtual address
 - Room number is physical address
 - Front desk is doing address translation!

Analogy for Address Translation: A Secure Hotel

- Call a hotel looking for a guest; what happens?
 - Front desk routes call to room, does not give out room number
 - Guest's name is a virtual address
 - Room number is physical address
 - Front desk is doing address translation!

Benefits

- Ease of management: Guest could change rooms (physical address). You can still find her without knowing it
- Protection: Guest could have block on calls, block on calls from specific callers (permissions)
- Sharing: Multiple guests (virtual addresses) can share the same room (physical address)

Different Names in Different Places

- Programmer uses text-based names
 - int array[100];
- Compiler maps names to flat, uniform space
 - Starting point is relative, size specified (see next slide)
- Assembler maps uniform space to virtual addresses
 - Mechanical transformation
- Processor instructions use virtual addresses, translates to physical addresses

- A page table is an array of page table entries (PTEs) that maps every virtual page to its physical page.
 - Per-process kernel data structure in DRAM

- A page table is an array of page table entries (PTEs) that maps every virtual page to its physical page.
 - Per-process kernel data structure in DRAM

- A page table is an array of page table entries (PTEs) that maps every virtual page to its physical page.
 - Per-process kernel data structure in DRAM

- A page table is an array of page table entries (PTEs) that maps every virtual page to its physical page.
 - Per-process kernel data structure in DRAM

Page Hit

Page hit: reference to VM word that is in physical memory

Page Hit

• Page hit: reference to VM word that is in physical memory

Page Fault

• Page fault: reference to VM word that is not in physical memory

Page Fault

• Page fault: reference to VM word that is not in physical memory

Handling Page Fault

Page miss causes page fault (an exception)

Handling Page Fault

- Page miss causes page fault (an exception)
- Page fault handler selects a victim to be evicted (here VP 4)

Handling Page Fault

- Page miss causes page fault (an exception)
- Page fault handler selects a victim to be evicted (here VP 4)

Handling Page Fault

- Page miss causes page fault (an exception)
- Page fault handler selects a victim to be evicted (here VP 4)

Allocating Pages

• Allocating a new page (VP 5) of virtual memory.

Allocating Pages

• Allocating a new page (VP 5) of virtual memory.

Allocating Pages

• Allocating a new page (VP 5) of virtual memory.

Virtual Memory Exploits Locality (Again!)

- Virtual memory seems terribly inefficient, but it works because of locality.
- At any point in time, programs tend to access a set of active virtual pages called the working set
 - Programs with better temporal locality will have smaller working sets
- If (working set size < main memory size)
 - Good performance for one process after initial misses
- If (SUM(working set sizes) > main memory size)
 - Thrashing: Performance meltdown where pages are swapped (copied) in and out continuously

Where Does Page Table Live?

Where Does Page Table Live?

- It needs to be at a specific location where we can find it
 - Some special SRAM?
 - In main memory?
 - On disk?

Where Does Page Table Live?

- It needs to be at a specific location where we can find it
 - Some special SRAM?
 - In main memory?
 - On disk?
- Assume 4KB page, 4GB main memory, each PTE is 8 Bytes
 - 1M PTEs in a page table
 - 8MB total size per page table
 - Too big for on-chip SRAM
 - Too slow to access in disk
 - Put the page table in DRAM, with its start address stored in a special register (Page Table Base Register)

Today

- Virtual memory (VM) illustration
- VM basic concepts and operation
- Memory management in VM
- Address translation

VM as a Tool for Memory Management

- Key idea: each process has its own virtual address space
 - It can view memory as a simple linear array
 - Mapping function scatters addresses through physical memory
 - Well-chosen mappings can improve locality

Virtual Memory Enables Isolations

• If all processes use physical address, it would be easy for one program to modify the data of another program. This is obviously a huge security and privacy issue.

Virtual Memory Enables Isolations

- If all processes use physical address, it would be easy for one program to modify the data of another program. This is obviously a huge security and privacy issue.
- Early days (e.g., EDSAC in 50's), ISA use physical address. To address the security issue, a program is loaded to a different address in memory every time it runs.
 - not ideal: address in programs depend on where the program is loaded in memory

Virtual Memory Enables Isolations

- If all processes use physical address, it would be easy for one program to modify the data of another program. This is obviously a huge security and privacy issue.
- Early days (e.g., EDSAC in 50's), ISA use physical address. To address the security issue, a program is loaded to a different address in memory every time it runs.
 - not ideal: address in programs depend on where the program is loaded in memory
- With virtual memory, addresses used by program are not the same as what the processor uses to actually access memory.
 This naturally isolates/protect programs.

Simplifying Linking and Loading

Simplifying Linking and Loading

Linking

- Each program has similar virtual address space
- Code, data, and heap always start at the same addresses.

Loaded from the

executable file

Simplifying Linking and Loading

Linking

- Each program has similar virtual address space
- Code, data, and heap always start at the same addresses.

Loading

- execve allocates virtual pages for .text and .data sections & creates PTEs marked as invalid
- The .text and .data sections are copied, page by page, on demand by the VM system

Loaded from the executable file

 0×400000

0

Virtual Memory Enables Sharing

- Simplifying memory allocation
 - Each virtual page can be mapped to any physical page
 - A virtual page can be stored in different physical pages at different times
- Sharing code and data among processes
 - Map virtual pages to the same physical page (here: PP 6)

VM Provides Further Protection Opportunities

- Extend PTEs with permission bits
- MMU checks these bits on each access

Today

- Virtual memory (VM) illustration
- VM basic concepts and operation
- Memory management in VM
- Address translation

So Far...

- Translate address
 - Enforce permissions
 - Fetch from disk

1) Processor sends virtual address to MMU

1) Processor sends virtual address to MMU

- 1) Processor sends virtual address to MMU
- 2-3) MMU fetches PTE from page table in memory

- 1) Processor sends virtual address to MMU
- 2-3) MMU fetches PTE from page table in memory
- 4) MMU sends physical address to cache/memory

- 1) Processor sends virtual address to MMU
- 2-3) MMU fetches PTE from page table in memory
- 4) MMU sends physical address to cache/memory
- 5) Cache/memory sends data word to processor

Disk

1) Processor sends virtual address to MMU

1) Processor sends virtual address to MMU

- 1) Processor sends virtual address to MMU
- 2-3) MMU fetches PTE from page table in memory

- 1) Processor sends virtual address to MMU
- 2-3) MMU fetches PTE from page table in memory
- 4) Valid bit is zero, so MMU triggers page fault exception

- 1) Processor sends virtual address to MMU
- 2-3) MMU fetches PTE from page table in memory
- 4) Valid bit is zero, so MMU triggers page fault exception

- 1) Processor sends virtual address to MMU
- 2-3) MMU fetches PTE from page table in memory
- 4) Valid bit is zero, so MMU triggers page fault exception
- 5) Handler identifies victim (and, if dirty, pages it out to disk)

- 1) Processor sends virtual address to MMU
- 2-3) MMU fetches PTE from page table in memory
- 4) Valid bit is zero, so MMU triggers page fault exception
- 5) Handler identifies victim (and, if dirty, pages it out to disk)
- 6) Handler pages in new page and updates PTE in memory

- 1) Processor sends virtual address to MMU
- 2-3) MMU fetches PTE from page table in memory
- 4) Valid bit is zero, so MMU triggers page fault exception
- 5) Handler identifies victim (and, if dirty, pages it out to disk)
- 6) Handler pages in new page and updates PTE in memory
- 7) Handler returns to original process, restarting faulting instruction

