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Action Items:
* Programming Assignment 6 is out



Announcement

* Programming Assignment 6 is out

e Trivia: 12:00pm, Thursday, April 19.

e Main assignment: 11:59pm, Monday, April 30.
* Thursday office hours moved to today.
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Today

* Case study: Core i7/Linux memory system



Intel Core i7 Memory System

Processor package

i Core x4 :

| Registers Instruction MMU |

i fetch (addr translation) i

L1 d-cache L1 i-cache L1 d-TLB L1i-TLB i

! 32 KB, 8-way 32 KB, 8-way 64 entries, 4-way 128 entries, 4-way !

| L2 unified cache L2 unified TLB |

i 256 KB, 8-way 512 entries, 4-way :

E : To other
i QuickPath interconnect = cores

E 4 links @ 25.6 GB/s each j R To1/O
i : bridge
i L3 unified cache DDR3 Memory controller :

i 8 MB, 16-way ) > 3 x 64 bit @ 10.66 GB/s i

i (shared by all cores) 32 GB/s total (shared by all cores) :

Main memory
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End-to-End Core i7 Address Translation
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End-to-End Core i7 Address Translation

CPU

32/64

Virtual address (VA)
12

Result

VPO

I

9

9

TLBT | TLBI
|
TLB
hit
TLB
miss S | [ |

L1 TLB (16 sets, 4 entries/set)

9 9 40

VPN1

VPN2 | VPN3 | VPN4

L1
hit

L2, L3, and
main memory

L1 d-cache
(64 sets, 8 lines/set)

L1
miss

12

PPO

T PPN

CR3 T

—PTE

|

PTE J |— PTE | Lo{ PTE

Page tables

Physical
address
(PA)




Core i7 Page Table Translation

12

Virtual
VPN 1 VPN 2 VPN 3 VPN 4 VPO
address
L1 PT L2 PT L3 PT L4 PT
Page global Page upper Page middle Page
directory a0 directory a0 directory 49  table
40 Y 149
CR3 7 7 7 1
Physical
address Offset into
(12 physical and
L1PT
of 1 L1 PTE L2 PTE — L3PTE [— L4 PTE virtual page
Physical
address
512 GB 1GB 2 MB 4 KB of page
region region region region
per entry per entry per entry per entry
40
7
40 : 12 Physical
PPN PPO

address
6



Virtual Address Space of a Linux Process

~
Process-specific data )
) < structs (ptables,
Different for task and mm structs, K /
each process kernel stack) f_’rne
~ virtual
i memor
Identical for Physical memory y
each process Kernel code and data )
User stack )
%LSP —» *
Memory mapped region
for shared libraries
Process
brk _, t > virtual
Runtime heap (malloc) memory
Uninitialized data (.bss)
Initialized data (.data)
0x00400000 —,| Program text (.text)
. J




Linux Organizes VM as Collection of “Areas”

Process virtual memory

vmm area struct
task struct — -
- mm_ struct vm_end
mm pgd vm_start
vm_prot
mmap vm_flags
Shared libraries
vm_next
vm_end
= \
vm_start
e Areas are also known as vm_prot 5
= ata
“segments” vm_flags
o .
pgd' vm_next
 Page global directory address (L1 PT)
e vm_prot: Text
« Read/write permissions for this area vm_end
vm_start
 Pages shared with other processes vm _flags
or private to this process vm_next 0
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Linux Page Fault Handling

Process virtual memory

vm_area_struct

vm_end
vm_start
vm_prot
vm_flags
shared libraries
o Segmentation fault:

accessing a non-existing page
vm_end —
vm_start
vm_prot
vm_flags data L Normal page fault

text e Protec.tion.exceptio'n: |

T G & e.g, violating permission by
vm start writing to a read-only page (Linux
vm_prot reports as Segmentation fault)
vm_flags
vm_next
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* Memory mapping
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VM areas (standard across modern OSes)
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Memory Mapping

* Memory mapping is the mechanism that Linux uses to initialize
VM areas (standard across modern OSes)

* VM area initial data can come from:
* Some file on disk (e.g., an compiled executable)
e Initialized to O
* /M Area can be backed by (i.e., get its initial values from) :
e Reqular file on disk (e.g., an executable object file)
o Initial page bytes come from a section of a file
« Anonymous file (i.e., nothing)
« First fault will allocate a physical page full of 0's (demand-zero page)

* Dirty pages are copied back and forth between memory and a
special swap file.

* Memory map provides a clean interface to initialize VM data
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Memory Mapping For Sharing

* Multiple processes often share data
* Different processes that run the same code (e.g., shell)
* Different processes linked to the same standard libraries
* Different processes share the same file
* |t is wasteful to create exact copies of the share object
* Memory mapping allow us to easily share objects
* Different VM pages point to the same physical page/object

12



Sharing Revisited: Shared Objects

* Process 1 maps the shared object. ® The kernel remembers
that the object (backed

Process 1 Physical Process 2 by a unique file) is
virtual memory memory virtual memory mapped by Proc. 1 to
some physical pages.
Shared

object

13



Sharing Revisited: Shared Objects

* The kernel remembers
that the object (backed
by a unique file) is
mapped by Proc. 1 to

some physical pages.

\ e Now when Proc. 2

S wants to access the

. Y same object, the kernel

" can simply point the

PTEs of Proc. 2 to the

already-mapped

physical pages.

* Process 2 maps the shared object.

Process 2
virtual memory

Process 1
virtual memory

Physical
memory

Shared
object

14



The Problem...

* What if Proc. 1 now wants to modify the shared object, but
doesn’t want the modification to be visible to Proc. 2
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* What if Proc. 1 now wants to modify the shared object, but
doesn’t want the modification to be visible to Proc. 2

e Simplest solution: always create duplicate copies of shared
objects at the cost of wasting space. Not ideal.
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The Problem...

* What if Proc. 1 now wants to modify the shared object, but
doesn’t want the modification to be visible to Proc. 2

e Simplest solution: always create duplicate copies of shared
objects at the cost of wasting space. Not ideal.

* |dea: Copy-on-write (COW)

 First pretend that both processes will share the objects without
modifying them. If modification happens, create separate copies.

15



Private Copy-on-write (COW) Objects

* Two processes
mapping a private

Process 1 Physical Process 2 copy-on-write
virtual memory memory virtual memory (COW) object
e Area flagged as
. private copy-on-
kT Private write (COW)
s } :‘r’g@“""’"te * PTEs in private
areas are flagged
as read-only
Private

copy-on-write object
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Private Copy-on-write (COW) Objects

task_struct

mm

mm_s truct

pgd

vm_area_s truct

vm_end

vm_start

vm_prot

mmap

vm_flags

vm_next

vm_end

vm_start

vm_prot

vm_flags

vm_next

vm_end

vm_start

Process virtual memory

Shared libraries

Data

Text

vm_prot

vm_flags

vm_next
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* Two processes
mapping a private

Process 1 Physical Process 2 copy-on-write
virtual memory memory virtual memory (COW) object
e Area flagged as
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kT Private write (COW)
s } :‘r’g@“""’"te * PTEs in private
areas are flagged
as read-only
Private
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Private Copy-on-write (COW) Objects

e |Instruction writing to
private page triggers

Process 1 Physical Process 2 page (protection) fault.
virtual memory memory virtual memory

-~ .. Copy-on-write

\ -~ ~

\ \ p [«

Write to

private

COW page
Private

copy-on-write object
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Private Copy-on-write (COW) Objects

e |Instruction writing to
private page triggers

Process 1 Physical Process 2 page (protection) fault.
virtual memory memory virtual memory e Handler checks the area
e protection, and sees
. \C;b\y’-on\-write that it’s a COW object
\ Write to
\ private
\ COW page
Private

copy-on-write object
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Private Copy-on-write (COW) Objects

Process 1 Physical Process 2
virtual memory memory virtual memory
e . Coffymp-write
. Write to
R private
X COW page
Private

copy-on-write object

e |Instruction writing to
private page triggers
page (protection) fault.

e Handler checks the area
protection, and sees
that it’s a COW object

e Handler then creates
new R/W page.
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Private Copy-on-write (COW) Objects

Process 1
virtual memory

Physical

memory

~

=~
-
-
-
-

=~
-
-
-
-

Private

copy-on-write object

Process 2

._ Copy-on-write

— /\

l¢

virtual memory

Write to
private
COW page

e Instruction writing to
private page triggers
page (protection) fault.

e Handler checks the area

protection, and sees
that it’s a COW object

e Handler then creates
new R/W page.
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Private Copy-on-write (COW) Objects

Process 1 Physical Process 2
virtual memory memory virtual memory
e . Coffymp-write
\\\ \\\ ~~~~~~~~ ] 7’3:: 4 .
Write to
private
COW page
Private

copy-on-write object

e Instruction writing to
private page triggers
page (protection) fault.

e Handler checks the area

protection, and sees
that it’s a COW object

e Handler then creates
new R/W page.

e |nstruction restarts upon
handler return.
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Private Copy-on-write (COW) Objects

Process 1
virtual memory

Physical

memory

=~
-
-
-
-

=~
-
-
-
-

Private

copy-on-write object

Process 2
virtual memory

._ Copy-on-write

— /\

l¢

Write to
private
COW page

e Instruction writing to
private page triggers
page (protection) fault.

e Handler checks the area

protection, and sees
that it’s a COW object

e Handler then creates
new R/W page.

e |nstruction restarts upon
handler return.

e Copying deferred as
long as possible!
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The fork Function Revisited

* VM and memory mapping explain how fork provides private
address space for each process.

* To create virtual address for new new process

« Create exact copies of currentmm struct, vin_area struct, and
page tables.

o Flag (in the PTE) of each page in both processes as read-only
« Flag each area in both processes as private COW (in vm_area struct)

* On return, each process has exact copy of virtual memory

* Subsequent writes create new pages using COW mechanism.

18



The execve Function Revisited

libc.so

User stack

v
A

.data

text

a.out

Memory mapped region
for shared libraries

t

Runtime heap (via malloc)

Uninitialized data (.bss)

.data

Initialized data (.data)

text

Program text (.text)

} Private, demand-zero ®

} Shared, file-backed L

} Private, demand-zero

Private, demand-zero

} Private, file-backed

To load and run a new
program a.out in the current
process using:

execve (Ya.out”, NULL,
NULL)

Free vm area struct and
page tables for old process

Create vm_area struct

and page tables for new

areas

e Programs and initialized data
backed by object files.

e .bss and stack backed by
anonymous files.

Set PC to entry point
In . text

e Linux will fault in code and

data pages as needed.
19



User-Level Memory Mapping

void *mmap (void *start, int len,

int prot, int flags, int fd, int offset)

* Map len bytes starting at offset offset of the file specified by
file description £d, preferably at address start

e« start: may be 0 for “pick an address”
« prot: PROT_READ, PROT_WRITE, ...

« flags: MAP_ANON, MAP_PRIVATE, MAP_SHARED, ...

e Return a pointer to start of mapped area (may not be start)

20



User-Level Memory Mapping

void *mmap (void *start, int len,
int prot, int flags, int fd, int offset)

----------------------- a
............................................ , Len bytes
i <’ start
_____________________________________ (or address
len bYtes < ................................. Chosen by kernel)
offset — L
(bytes)
0 0
Disk file specified by Process virtual memory
file descriptor £d

21



Example: Using mmap to Copy Files

* Copying a file to stdout without transferring data to user space
* |.e., no file data is copied to user stack

#include "csapp.h"

void mmapcopy(int fd, int size)

{

/* Ptr to memory mapped area */
char xbufp;

bufp = mmap(NULL, size,
PROT_READ,
MAP_PRIVATE,
fd, 0);
Write(1l, bufp, size);
return;

mmapcopy.c

/* mmapcopy driver x/

int main(int argc, char xxargv)

{
struct stat stat;
int fd;

/* Check for required cmd line arg */
if (argc !'= 2) {
printf("usage: %s <filename>\n",
argv[o]);
exit(0);
}

/* Copy input file to stdout x/
fd = Open(argv[1l], O_RDONLY, 0);
Fstat(fd, &stat);

mmapcopy(fd, stat.st_size);
exit(0);

mmapcopy.c

22



Today

* Dynamic memory allocation
e Basic concepts

23



Dynamic Memory Allocation

* Programmers use dynamic
memory allocators (such as
malloc) to acquire VM at
run time.

* Dynamic memory
allocators manage an area
of process virtual memory
known as the heap.

User stack

2 ¥

Heap (viamalloc)

Uninitialized data (.bss)

Initialized data (.data)

Program text (. text)

Top of heap

4_ (brk ptr)

24



The malloc/free Functions

#include <stdlib.h>
void *malloc(size t size)
e Successful:

o Returns a pointer to a memory block of at least size bytes
aligned to an 8-byte (x86) or 16-byte (x86-64) boundary

e Ifsize == 0, returns NULL

o Unsuccessful: returns NULL (0) and sets errno

25



The malloc/free Functions

#include <stdlib.h>
void *malloc(size t size)
e Successful:

o Returns a pointer to a memory block of at least size bytes
aligned to an 8-byte (x86) or 16-byte (x86-64) boundary

e Ifsize == 0, returns NULL

o Unsuccessful: returns NULL (0) and sets errno

volid free(void *p)
e Returns the block pointed at by p to pool of available memory

e p must come from a previous calltomalloc orrealloc
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The malloc/free Functions

#include <stdlib.h>

void *malloc(size t size)
e Successful:

o Returns a pointer to a memory block of at least size bytes
aligned to an 8-byte (x86) or 16-byte (x86-64) boundary

e Ifsize == 0, returns NULL
o Unsuccessful: returns NULL (0) and sets errno
volid free(void *p)
e Returns the block pointed at by p to pool of available memory

e p must come from a previous calltomalloc orrealloc

Other functions
e calloc: Version of malloc thatinitializes allocated block to zero.

e realloc: Changes the size of a previously allocated block.
e sbrk: Used internally by allocators to grow or shrink the heap
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malloc Example

#include <stdio.h>
#include <stdlib.h>

void foo(int n) {
int 1, *xp;

/* Allocate a block of n ints x/
p = (int *x) malloc(n x sizeof(int));
if (p == NULL) {
perror("malloc");
exit(0);
¥

/* Initialize allocated block x/
for (i=@; i<n; i++)
pli]l = 1i;

/* Return allocated block to the heap *x/
free(p);

Heap (via malloc)

Uninitialized data (.bss)

Initialized data (.data)

Program text (. text)
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Why Do We Need Dynamic Allocation?

* Some data structures’ size is only known at runtime. Statically
allocating the space would be a waste.

* More importantly: access data across function calls. Variables
on stack are destroyed when the function returns!!!
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* Some data structures’ size is only known at runtime. Statically

allocating the space would be a waste.

* More importantly: access data across function calls. Variables
on stack are destroyed when the function returns!!!

intx foo() {
int 1i;
int p[5];

for (i=@; i<5; i++)
pli]l = 1i;
return p;

¥

void bar() {
int *p = foo();

printf(“sd\n”, pl0]);
}

bar Stack
P
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Dynamic Memory Allocation

* Allocator maintains heap as collection of variable sized blocks,
which are either allocated or free

* Blocks that are no longer used should be free-ed to save space

\ v J Q ,_I
Allocated block Free block
(4 words) (3 words) Free word

Allocated word

* Assumptions Made in This Lecture
 Memory is word addressed
* Words are int-sized
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Dynamic Memory Allocation

* Types of allocators
o Explicit allocator: application (i.e., programmer) allocates and frees space
e E.g., mallocand freeinC

e Implicit allocator: application allocates, but does not free space
o E.g. garbage collection in Java, JavaScript, Python, etc...

* Will discuss simple explicit memory allocation today

30



Allocation Example

pl = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free (p2)

p4 = malloc(2)
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Constraints

* Applications
e Can issue arbitrary sequence of malloc and f£ree requests

o« free request mustbetoamalloc’d block

e Allocators
e Can’t control number or size of allocated blocks

Must respond immediately to malloc requests
e j.e., can’t reorder or buffer requests
Must allocate blocks from free memory

 j.e., can place allocated blocks only in free memory

Must align blocks so they satisfy all alignment requirements
o 8-byte (x86) or 16-byte (x86-64) alignment on Linux boxes

Can manipulate and modify only free memory

Can’t move the allocated blocks once they aremalloc’d
e j.e., compaction is not allowed
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External Fragmentation

* Occurs when there is enough aggregate heap memory, but no
single free block is large enough

pl = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free (p2)
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External Fragmentation

* Occurs when there is enough aggregate heap memory, but no
single free block is large enough

pl = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free (p2)

p4 = malloc(6) Oops! (what would happen now?)

* Depends on the pattern of future requests
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Key Issues in Dynamic Memory Allocation

* Free:
 How do we know how much memory to free given just a pointer?
 How do we keep track of the free blocks”?
* How do we reinsert freed block?

* Allocation:

* What do we do with the extra space when allocating a structure
that is smaller than the free block it is placed in”?

* How do we pick a block to use for allocation -- many might fit"?
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Knowing How Much to Free

e Standard method

o Keep the length of a block in the word preceding the block.

e This word is often called the header field or header
e Requires an extra word for every allocated block

pO = malloc (4) 5

block size payload

free (p0)
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Internal Fragmentation

e For a given block, internal fragmentation occurs if payload is

smaller than block size

Internal
fragmentation

Block
A
s N
—— Payload <

Internal
fragmentation
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Internal Fragmentation

e For a given block, internal fragmentation occurs if payload is
smaller than block size

Block
/\
o N
Internal R Payload Internal .
fragmentation fragmentation

e (Caused by
e Overhead of maintaining heap data structures
o Padding for alignment purposes

« Explicit policy decisions (e.g., to return a big block to satisfy a small
request)



Keeping Track of Free Blocks

e Method 1: Implicit list using length—Ilinks all blocks
/\/\A/_\A

5 4 6 2
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Keeping Track of Free Blocks

e Method 1: Implicit list using length—Ilinks all blocks

e Method 2: Explicit list among the free blocks using pointers

.

5 4 6 2

e Method 3: Segregated free list
e Different free lists for different size classes

e Method 4: Blocks sorted by size

» Can use a balanced tree (e.g. Red-Black tree) with pointers within each free
block, and the length used as a key
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Today

* Dynamic memory allocation

¢ Implicit free lists

38



Implicit List

e For each block we need both size and allocation status
e Could store this information in two words: wasteful!
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Implicit List

e For each block we need both size and allocation status
e Could store this information in two words: wasteful!

1 word

Size

d

Payload

Optional
padding

a = 1: Allocated block
a = 0: Free block

Size: block size

Payload: application data
(allocated blocks only)
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e For each block we need both size and allocation status
e Could store this information in two words: wasteful!
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e If blocks are aligned, some low-order address bits are always O
e Instead of storing an always-0 bit, use it as a allocated/free flag
 When reading size word, must mask out this bit
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Implicit List

e For each block we need both size and allocation status
e Could store this information in two words: wasteful!

e Standard trick
e If blocks are aligned, some low-order address bits are always O
e Instead of storing an always-0 bit, use it as a allocated/free flag
 When reading size word, must mask out this bit

1 word
A
/ ™~
Size a a = 1: Allocated block
a = 0: Free block
Format of
allocated and Payload Size: block size
r lock
free blocks Payload: application data
(allocated blocks only)
Optional
padding
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