CSC 252: Computer Organization Spring 2018: Lecture 25

Instructor: Yuhao Zhu

Department of Computer Science
University of Rochester

Action Items:

- Programming Assignment 5 grades are out
- Programming Assignment 6 is due soon

Announcement

- Programming assignment 6 is due on 11:59pm, Monday, April 30.
- Programming assignment 5 grades are out

22	23	24	25	26	27	28
29	30	May 1	2	3	4	5
	Due					

Today

- From process to threads
 - Basic thread execution model
- Shared variables in multi-threaded programming
 - Mutual exclusion using semaphore
 - Deadlock
- Thread-level parallelism
 - Amdahl's Law: performance model of parallel programs
- Hardware implementation implications of threads
 - Multi-core
 - Hyper-threading
 - Cache coherence

Traditional View of a Process

Process = process context + code, data, and stack

Process context

Program context:
 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Code, data, and stack

Alternate View of a Process

- Process = thread + code, data, and kernel context
- A thread runs in the context of a process

A Process With Multiple Threads

- Multiple threads can be associated with a process
 - Each thread has its own logical control flow
 - Each thread shares the same code, data, and kernel context
 - Each thread has its own stack for local variables
 - but not protected from other threads
 - Each thread has its own thread id (TID)

Thread 1 (main thread) Thread 2 (peer thread)

stack 1

Thread 1 context:

Data registers

Condition codes

SP1

PC1

stack 2

Thread 2 context:

Data registers

Condition codes

SP2

PC2

Shared code and data

shared libraries

run-time heap read/write data

read-only code/data

0

Kernel context:
VM structures
Descriptor table
brk pointer

Logical View of Threads

- Threads associated with process form a pool of peers
 - Unlike processes which form a tree hierarchy
 Threads associated with process foo

 Process

Concurrent Threads

- Two threads are concurrent if their flows overlap in time
- Otherwise, they are sequential
- Examples:
 - Concurrent: A & B, A&C
 - Sequential: B & C

Time

Concurrent Thread Execution

- Single Core Processor
 - Simulate parallelism by time slicing

- Multi Core Processor
 - Threads can have true parallelisms

Threads vs. Processes

- How threads and processes are similar
 - Each has its own logical control flow
 - Each can run concurrently with others (possibly on different cores)
 - Each is context switched, controlled by kernel

Threads vs. Processes

- How threads and processes are similar
 - Each has its own logical control flow
 - Each can run concurrently with others (possibly on different cores)
 - Each is context switched, controlled by kernel
- How threads and processes are different
 - Threads share all code and data (except local stacks)
 - Processes (typically) do not
 - Threads are less expensive than processes
 - Process control (creating and reaping) twice as expensive as thread control
 - Typical Linux numbers:
 - ~20K cycles to create and reap a process
 - ~10K cycles (or less) to create and reap a thread

Posix Threads (Pthreads) Interface

- Pthreads: Standard interface for ~60 functions that manipulate threads from C programs
 - Creating and reaping threads
 - pthread create()
 - pthread join()
 - Determining your thread ID
 - pthread self()
 - Terminating threads
 - pthread cancel()
 - pthread_exit()
 - exit() [terminates all threads], RET [terminates current thread]
 - Synchronizing access to shared variables
 - pthread mutex init
 - pthread mutex [un]lock

```
/*
 * hello.c - Pthreads "hello, world" program
 */
#include "csapp.h"
void *thread(void *vargp);

int main()
{
    pthread_t tid;
    Pthread_create(&tid, NULL, thread, NULL);
    Pthread_join(tid, NULL);
    exit(0);
}
```

```
void *thread(void *vargp) /* thread routine */
{
    printf("Hello, world!\n");
    return NULL;
}
```

```
/*
 * hello.c - Pthreads "hello, world" program
 */
#include "csapp.h"
void *thread(void *vargp);

int main()
{
    pthread_t tid;
    Pthread_create(&tid, NULL, thread, NULL);
    Pthread_join(tid, NULL);
    exit(0);
}
```

```
void *thread(void *vargp) /* thread routine */
{
    printf("Hello, world!\n");
    return NULL;
}
```

```
/*
  * hello.c - Pthreads "hello, world" program
  */
#include "csapp.h"
void *thread(void *vargp);

int main()
{
    pthread_t tid;
    Pthread_create(&tid, NULL, thread, NULL);
    Pthread_join(tid, NULL);
    exit(0);
}
hello.c
```

```
void *thread(void *vargp) /* thread routine */
{
    printf("Hello, world!\n");
    return NULL;
}
```

```
/*
  * hello.c - Pthreads "hello, world" program
  */
#include "csapp.h"
void *thread(void *vargp);

int main()
{
    pthread_t tid;
    Pthread_create(&tid, NULL, thread, NULL);
    Pthread_join(tid, NULL);
    exit(0);
}
Thread attributes
(usually NULL)

Thread routine
```

```
void *thread(void *vargp) /* thread routine */
{
    printf("Hello, world!\n");
    return NULL;
}
```

```
hello.c - Pthreads "hello, world" program
 */
                                                         Thread attributes
                                       Thread ID
#include "csapp.h"
                                                          (usually NULL)
void *thread(void *vargp);
int main()
                                                          Thread routine
    pthread_t tid;
    Pthread_create(&tid, NULL, thread, NULL);
    Pthread join(tid, NULL);
                                                        Thread arguments
    exit(0);
                                                            (void *p)
                                            hello.c
```

```
void *thread(void *vargp) /* thread routine */
{
    printf("Hello, world!\n");
    return NULL;
}
```

```
* hello.c - Pthreads "hello, world" program
 */
                                                         Thread attributes
                                       Thread ID
#include "csapp.h"
                                                          (usually NULL)
void *thread(void *vargp);
int main()
                                                          Thread routine
    pthread_t tid;
    Pthread_create(&tid, NULL, thread, NULL);
    Pthread join(tid, NULL);
                                                        Thread arguments
    exit(0);
                                                            (void *p)
                                            hello.c
                                                        Return value
                                                         (void **p)
void *thread(void *vargp) /* thread routine */
    printf("Hello, world!\n");
    return NULL:
                                                  hello.c
```


Main thread

call Pthread_create()

Today

- From process to threads
 - Basic thread execution model
- Shared variables in multi-threaded programming
 - Mutual exclusion using semaphore
 - Deadlock
- Thread-level parallelism
 - Amdahl's Law: performance model of parallel programs
- Hardware implementation implications of threads
 - Multi-core
 - Hyper-threading
 - Cache coherence

Shared Variables in Threaded C Programs

- One great thing about threads is that they can share same program variables.
- Question: Which variables in a threaded C program are shared?
- Intuitively, the answer is as simple as "global variables are shared" and "stack variables are private". Not so simple in reality.

Thread 1 (main thread) Thread 2 (peer thread)

stack 1

Thread 1 context:

Data registers

Condition codes

SP1

PC1

stack 2

Thread 2 context:
Data registers
Condition codes
SP2
PC2

Shared code and data

shared libraries

run-time heap read/write data

read-only code/data

Kernel context:

VM structures
Descriptor table
brk pointer

```
char **ptr; /* global var */
void *thread(void *varqp)
    long myid = (long)vargp;
    static int cnt = 0;
    printf("[%ld]: %s (cnt=%d)\n",
         myid, ptr[myid], ++cnt);
    return NULL:
int main()
    long i;
    pthread_t tid;
    char *msgs[2] = {
        "Hello from foo",
        "Hello from bar"
    };
    ptr = msgs;
    for (i = 0; i < 2; i++)
        pthread_create(&tid,
            NULL,
            thread,
            (void *)i);
    pthread exit(NULL);
                             sharing.c
```

Main thread stack Peer thread 0 stack Peer thread 1 stack Memory mapped region for shared libraries Runtime heap (malloc) Uninitialized data (.bss) Initialized data (.data) Program text (.text)

```
char **ptr; /* global var */
void *thread(void *varqp)
    long myid = (long)vargp;
    static int cnt = 0;
    printf("[%ld]: %s (cnt=%d)\n",
         myid, ptr[myid], ++cnt);
    return NULL:
int main()
    long i;
    pthread_t tid;
    char *msgs[2] = {
        "Hello from foo",
        "Hello from bar"
    };
    ptr = msgs;
    for (i = 0; i < 2; i++)
        pthread_create(&tid,
            NULL,
            thread,
            (void *)i);
    pthread exit(NULL);
                             sharing.c
```

Main thread stack Peer thread 0 stack Peer thread 1 stack Memory mapped region for shared libraries Runtime heap (malloc) Uninitialized data (.bss) ptr Initialized data (.data) Program text (.text)

```
char **ptr; /* global var */
void *thread(void *varqp)
    long myid = (long)vargp;
    static int cnt = 0;
    printf("[%ld]: %s (cnt=%d)\n",
         myid, ptr[myid], ++cnt);
    return NULL:
int main()
    long i;
    pthread_t tid;
    char *msgs[2] = {
        "Hello from foo",
        "Hello from bar"
    };
    ptr = msqs;
    for (i = 0; i < 2; i++)
        pthread_create(&tid,
            NULL,
            thread,
            (void *)i);
    pthread exit(NULL);
                             sharing.c
```

Main thread stack i tid msgs Peer thread 0 stack Peer thread 1 stack Memory mapped region for shared libraries Runtime heap (malloc) Uninitialized data (.bss) ptr Initialized data (.data) Program text (.text)

```
char **ptr; /* global var */
void *thread(void *varqp)
    long myid = (long)vargp;
    static int cnt = 0;
    printf("[%ld]: %s (cnt=%d)\n",
         myid, ptr[myid], ++cnt);
    return NULL:
int main()
    long i;
    pthread_t tid;
    char *msgs[2] = {
        "Hello from foo",
        "Hello from bar"
    };
    ptr = msgs;
    for (i = 0; i < 2; i++)
        pthread_create(&tid,
            NULL,
            thread,
            (void *)i);
    pthread exit(NULL);
                             sharing.c
```

```
Main thread stack
        i tid
         msgs
  Peer thread 0 stack
         myid
  Peer thread 1 stack
Memory mapped region
  for shared libraries
Runtime heap (malloc)
Uninitialized data (.bss)
         ptr
 Initialized data (.data)
  Program text (.text)
```

```
char **ptr; /* global var */
void *thread(void *varqp)
    long myid = (long)vargp;
    static int cnt = 0;
    printf("[%ld]: %s (cnt=%d)\n",
         myid, ptr[myid], ++cnt);
    return NULL:
int main()
    long i;
    pthread_t tid;
    char *msgs[2] = {
        "Hello from foo",
        "Hello from bar"
    };
    ptr = msgs;
    for (i = 0; i < 2; i++)
        pthread_create(&tid,
            NULL,
            thread,
            (void *)i);
    pthread exit(NULL);
                             sharing.c
```

Main thread stack i tid msgs Peer thread 0 stack myid Peer thread 1 stack myid Memory mapped region for shared libraries Runtime heap (malloc) Uninitialized data (.bss) ptr Initialized data (.data) Program text (.text)

```
char **ptr; /* global var */
void *thread(void *varqp)
    long myid = (long)vargp;
    static int cnt = 0;
    printf("[%ld]: %s (cnt=%d)\n",
         myid, ptr[myid], ++cnt);
    return NULL:
int main()
    long i;
    pthread_t tid;
    char *msgs[2] = {
        "Hello from foo",
        "Hello from bar"
    };
    ptr = msgs;
    for (i = 0; i < 2; i++)
        pthread_create(&tid,
            NULL,
            thread,
            (void *)i);
    pthread exit(NULL);
                             sharing.c
```

```
Main thread stack
        i tid
         msgs
  Peer thread 0 stack
         myid
  Peer thread 1 stack
         myid
Memory mapped region
  for shared libraries
Runtime heap (malloc)
Uninitialized data (.bss)
         ptr
 Initialized data (.data)
         cnt
  Program text (.text)
```

```
char **ptr; /* global var */
void *thread(void *varqp)
    long myid = (long)vargp;
    static int cnt = 0;
    printf("[%ld]: %s (cnt=%d)\n",
         myid, ptr[myid], ++cnt);
    return NULL:
int main()
    long i;
    pthread_t tid;
    char *msgs[2] = {
        "Hello from foo",
        "Hello from bar"
    };
    ptr = msgs;
    for (i = 0; i < 2; i++)
        pthread_create(&tid,
            NULL,
            thread,
            (void *)i);
    pthread exit(NULL);
                             sharing.c
```

Main thread stack i tid msgs Peer thread 0 stack myid Peer thread 1 stack myid Memory mapped region for shared libraries Runtime heap (malloc) Uninitialized data (.bss) ptr Initialized data (.data) cnt Program text (.text)

main

```
char **ptr; /* global var */
void *thread(void *varqp)
    long myid = (long)vargp;
    static int cnt = 0;
    printf("[%ld]: %s (cnt=%d)\n",
         myid, ptr[myid], ++cnt);
    return NULL:
int main()
    long i;
    pthread_t tid;
    char *msgs[2] = {
        "Hello from foo",
        "Hello from bar"
    };
    ptr = msgs;
    for (i = 0; i < 2; i++)
        pthread_create(&tid,
            NULL,
            thread,
            (void *)i);
    pthread exit(NULL);
                             sharing.c
```

Main thread stack i tid msgs Peer thread 0 stack myid Peer thread 1 stack myid Memory mapped region for shared libraries Runtime heap (malloc) Uninitialized data (.bss) ptr Initialized data (.data) cnt Program text (.text)

main p0 p1 main

```
char **ptr; /* global var */
void *thread(void *varqp)
    long myid = (long)vargp;
    static int cnt = 0;
    printf("[%ld]: %s (cnt=%d)\n",
         myid, ptr[myid], ++cnt);
    return NULL:
int main()
    long i;
    pthread_t tid;
    char *msgs[2] = {
        "Hello from foo",
        "Hello from bar"
    };
    ptr = msgs;
    for (i = 0; i < 2; i++)
        pthread_create(&tid,
            NULL,
            thread,
            (void *)i);
    pthread exit(NULL);
                             sharing.c
```

Main thread stack i tid msgs Peer thread 0 stack myid Peer thread 1 stack myid Memory mapped region for shared libraries Runtime heap (malloc) Uninitialized data (.bss) ptr Initialized data (.data) cnt Program text (.text)

main p0 p1 main p0

```
char **ptr; /* global var */
void *thread(void *varqp)
    long myid = (long)vargp;
    static int cnt = 0;
    printf("[%ld]: %s (cnt=%d)\n",
         myid, ptr[myid], ++cnt);
    return NULL:
int main()
    long i;
    pthread_t tid;
    char *msgs[2] = {
        "Hello from foo",
        "Hello from bar"
    };
    ptr = msgs;
    for (i = 0; i < 2; i++)
        pthread_create(&tid,
            NULL,
            thread,
            (void *)i);
    pthread exit(NULL);
                             sharing.c
```

```
Main thread stack
        i tid
         msgs
  Peer thread 0 stack
        myid
  Peer thread 1 stack
         myid
Memory mapped region
  for shared libraries
Runtime heap (malloc)
Uninitialized data (.bss)
         ptr
 Initialized data (.data)
         cnt
  Program text (.text)
```

```
main
p0
        main
    p1
p0
p1
```

```
char **ptr; /* global var */
void *thread(void *varqp)
    long myid = (long)vargp;
    static int cnt = 0;
    printf("[%ld]: %s (cnt=%d)\n",
         myid, ptr[myid], ++cnt);
    return NULL:
int main()
    long i;
    pthread_t tid;
    char *msgs[2] = {
        "Hello from foo",
        "Hello from bar"
    };
    ptr = msgs;
    for (i = 0; i < 2; i++)
        pthread_create(&tid,
            NULL,
            thread,
            (void *)i);
    pthread exit(NULL);
                             sharing.c
```

```
Main thread stack
       i tid
                          main
         msgs
                          p0
                                      main
                               p1
 Peer thread 0 stack
                          p0
        myid
 Peer thread 1 stack
                          p1
        myid
Memory mapped region
  for shared libraries
Runtime heap (malloc)
Uninitialized data (.bss)
                                      main
                          p0
                                р1
         ptr
 Initialized data (.data)
         cnt
  Program text (.text)
```

```
char **ptr; /* global var */
void *thread(void *varqp)
    long myid = (long)vargp;
    static int cnt = 0;
    printf("[%ld]: %s (cnt=%d)\n",
         myid, ptr[myid], ++cnt);
    return NULL:
int main()
    long i;
    pthread_t tid;
    char *msgs[2] = {
        "Hello from foo",
        "Hello from bar"
    };
    ptr = msgs;
    for (i = 0; i < 2; i++)
        pthread_create(&tid,
            NULL,
            thread,
            (void *)i);
    pthread exit(NULL);
                             sharing.c
```

Main thread stack i tid main msgs **p0 p1** Peer thread 0 stack **p0** myid Peer thread 1 stack **p1** myid Memory mapped region for shared libraries Runtime heap (malloc) Uninitialized data (.bss) **p0** ptr Initialized data (.data) **p0** cnt Program text (.text)

main

Synchronizing Threads

• Shared variables are handy...

• ...but introduce the possibility of nasty synchronization errors.

Improper Synchronization

```
/* Global shared variable */
volatile long cnt = 0; /* Counter */
int main(int argc, char **argv)
   pthread t tid1, tid2;
   long niters = 10000;
   Pthread create(&tid1, NULL,
        thread, &niters);
    Pthread create(&tid2, NULL,
        thread, &niters);
    Pthread join(tid1, NULL);
    Pthread_join(tid2, NULL);
    /* Check result */
    if (cnt != (2 * 10000))
        printf("B00M! cnt=%ld\n", cnt);
    else
        printf("OK cnt=%ld\n", cnt);
    exit(0);
                                   badcnt.c
```

Improper Synchronization

```
/* Global shared variable */
volatile long cnt = 0; /* Counter */
int main(int argc, char **argv)
   pthread_t tid1, tid2;
   long niters = 10000;
   Pthread create(&tid1, NULL,
        thread, &niters);
    Pthread create(&tid2, NULL,
        thread, &niters);
    Pthread join(tid1, NULL);
    Pthread_join(tid2, NULL);
    /* Check result */
    if (cnt != (2 * 10000))
        printf("B00M! cnt=%ld\n", cnt);
    else
        printf("OK cnt=%ld\n", cnt);
    exit(0);
                                   badcnt.c
```

```
linux> ./badcnt
OK cnt=20000
linux> ./badcnt
BOOM! cnt=13051
```

cnt should equal 20,000.

What went wrong?

Assembly Code for Counter Loop

C code for counter loop in thread i

```
for (i = 0; i < niters; i++)
    cnt++;</pre>
```

Asm code for thread i

```
movq (%rdi), %rcx
    testq %rcx, %rcx
                              H_i: Head
    ile .L2
   movl $0, %eax
.L3:
                              L;: Load cnt
   movq cnt(%rip),%rdx
                              U;: Update cnt
    addq $1, %rdx
   movq %rdx, cnt(%rip)
                              S: Store cnt
    addq $1, %rax
    cmpq %rcx, %rax
    jne
          .L3
                              T_i: Tail
.L2:
```

Concurrent Execution

 Key observation: In general, any sequentially consistent interleaving is possible, but some give an unexpected result!

	i (thread)	instr _i	$%$ rdx $_{1}$	%rdx ₂	cnt	
	1	•	0		0	Thread 1
L	Τ	<u>L</u> 1	0	-	0	critical section
	1	U ₁	1	-	0	critical section
	1	S ₁	1	-	1	Thread 2
	2	L ₂	-	1	1	critical section
	2	U ₂	-	2	1	
	2	S ₂	-	2	2	

Progress Graphs

A progress graph depicts the discrete execution state space of concurrent threads.

Each axis corresponds to the sequential order of instructions in a thread.

Each point corresponds to a possible *execution state* (Inst₁, Inst₂).

E.g., (L₁, S₂) denotes state where thread 1 has completed L₁ and thread 2 has completed S₂.

Thread 2

A *trajectory* is a sequence of legal state transitions that describes one possible concurrent execution of the threads.

Execution Ordering:

Thread 2

A *trajectory* is a sequence of legal state transitions that describes one possible concurrent execution of the threads.

Execution Ordering:

Thread 2

A *trajectory* is a sequence of legal state transitions that describes one possible concurrent execution of the threads.

Execution Ordering:

Thread 2

A *trajectory* is a sequence of legal state transitions that describes one possible concurrent execution of the threads.

Execution Ordering:

Thread 2

A *trajectory* is a sequence of legal state transitions that describes one possible concurrent execution of the threads.

Execution Ordering:

Thread 2

A *trajectory* is a sequence of legal state transitions that describes one possible concurrent execution of the threads.

Execution Ordering:

Thread 2

A *trajectory* is a sequence of legal state transitions that describes one possible concurrent execution of the threads.

Execution Ordering:

Thread 2

A *trajectory* is a sequence of legal state transitions that describes one possible concurrent execution of the threads.

Execution Ordering:

Concurrent Execution (cont)

• Incorrect ordering: two threads increment the counter, but the result is 1 instead of 2

i (thread)	instr _i	%rdx ₁	%rdx ₂	cnt
1	L ₁	0	-	0
1	$\overline{U_{\scriptscriptstyle 1}}$	1	-	0
2	L ₂	-	0	0
1	S ₁	1	-	1
2	U ₂	-	1	1
2	S ₂	-	1	1

Thread 2

Execution Ordering:

H1, L1, U1, H2, L2, S1, U2, S2, T1, T2

Thread 2

Execution Ordering:

H1, L1, U1, H2, L2, S1, U2, S2, T1, T2

Concurrent Execution (cont)

i (thread)	instr _i	%rdx ₁	%rdx ₂	cnt
1	L ₁			
2	L ₂			
2	U ₂			
2	S ₂			
1	U ₁			
1	S ₁			

i (thread)	instr _i	%rdx ₁	%rdx ₂	cnt
1	L ₁	0		
2	L ₂			
2	U ₂			
2	S ₂			
1	U ₁			
1	S ₁			

i (thread)	instr _i	%rdx ₁	%rdx ₂	cnt
1	L ₁	0		
2	L ₂		0	
2	U ₂			
2	S ₂			
1	U ₁			
1	S ₁			

i (thread)	instr _i	%rdx ₁	%rdx ₂	cnt
1	L ₁	0		
2	L ₂		0	
2	U ₂		1	
2	S ₂			
1	U ₁			
1	S ₁			

i (thread)	instr _i	%rdx₁	%rdx ₂	cnt
1	L ₁	0		
2	L ₂		0	
2	U ₂		1	
2	S ₂		1	
1	U_1			
1	S ₁			

i (thread)	instr _i	%rdx ₁	%rdx ₂	cnt
1	L ₁	0		
2	L ₂		0	
2	U ₂		1	
2	S ₂		1	1
1	$\overline{U_{\mathtt{1}}}$			
1	S ₁			

i (thread)	instr _i	%rdx ₁	%rdx ₂	cnt
1	L ₁	0		
2	L ₂		0	
2	U ₂		1	
2	S ₂		1	1
1	U ₁	1		
1	S ₁			

i (thread)	instr _i	%rdx ₁	%rdx ₂	cnt
1	L ₁	0		
2	L ₂		0	
2	U ₂		1	
2	S ₂		1	1
1	U ₁	1		
1	S ₁	1		

i (thread)	instr _i	%rdx ₁	%rdx ₂	cnt
1	L ₁	0		
2	L ₂		0	
2	U ₂		1	
2	S ₂		1	1
1	$\overline{U_{\mathtt{1}}}$	1		
1	S ₁	1		1

• Another undesired, but legal, interleaving

i (thread)	instr _i	%rdx ₁	%rdx ₂	cnt
1	L ₁	0		
2	L ₂		0	
2	U ₂		1	
2	S ₂		1	1
1	U ₁	1		
1	S ₁	1		1

TI I O

Thread 2

Thread 2

Execution Ordering:

Assembly Code for Counter Loop

C code for counter loop in thread i

```
for (i = 0; i < niters; i++)
    cnt++;</pre>
```

Asm code for thread i

```
movq (%rdi), %rcx
    testq %rcx,%rcx
                                H_i: Head
    jle .L2
    movl $0, %eax
.L3:
                                L;: Load cnt
    movq cnt(%rip),%rdx
                                U;: Update cnt
    addq $1, %rdx
    movq %rdx, cnt(%rip)
                                S<sub>i</sub>: Store cnt
    addq $1, %rax
           %rcx, %rax
    cmpq
           .L3
    jne
                                T_i: Tail
.L2:
```

Assembly Code for Counter Loop

C code for counter loop in thread i

```
for (i = 0; i < niters; i++)
    cnt++;</pre>
```

Asm code for thread i

```
movq (%rdi), %rcx
    testq %rcx,%rcx
                               H_i: Head
    jle .L2
    movl $0, %eax
.L3:
                                L;: Load cnt
    movq cnt(%rip),%rdx
                                U;: Update cnt
    addq $1, %rdx
    movq %rdx, cnt(%rip)
                                S<sub>i</sub>: Store cnt
    addq $1, %rax
           %rcx, %rax
    cmpq
    jne
           .L3
                                T_i: Tail
.L2:
```

critical section wrt cnt

Critical Section

- Code section (a sequence of instructions) where no more than one thread should be executing concurrently.
- Critical section refers to code, but its intention is to protect data!
- Threads need to have *mutually exclusive* access to critical section

Asm code for thread i

movq (%rdi), %rcx testq %rcx,%rcx H_i : Head jle .L2 movl \$0, %eax .L3: critical L;: Load cnt movq cnt(%rip),%rdx section U;: Update cnt addq \$1, %rdx wrt cnt %rdx, cnt(%rip) movq S_i: Store cnt addq \$1, %rax %rcx, %rax cmpq .L3 jne T_i : Tail .L2:

Enforcing Mutual Exclusion

- Question: How can we guarantee a safe trajectory?
- Answer: We must synchronize the execution of the threads so that they can never have an unsafe trajectory.
 - i.e., need to guarantee *mutually exclusive access* for each critical section.
- Classic solution:
 - Semaphores (Edsger Dijkstra)
- Other approaches (out of our scope)
 - Mutex and condition variables
 - Monitors (Java)

Using Semaphores for Mutual Exclusion

• Basic idea:

- Associate each shared variable (or related set of shared variables) with a unique variable, called **semaphore**, initially 1
- Every time a thread tries to enter the critical section, it first checks the mutex value. If it's still 1, the thread decrements the mutex value to 0 (through a P operation) and enters the critical section
- Every time a thread exits the critical section, it increments the mutex value to 1 (through a **V operation**) so that other threads are now allowed to enter the critical section
- No more than one thread can be in the critical section at a time

Using Semaphores for Mutual Exclusion

- Terminology:
 - Binary semaphore: semaphore whose value is always 0 or 1
 - Mutex: binary semaphore used for mutual exclusion
 - P operation: "locking" the mutex
 - V operation: "unlocking" or "releasing" the mutex
 - "Holding" a mutex: locked and not yet unlocked.
 - Counting semaphore: used as a counter for set of available resources.

Proper Synchronization

Define and initialize a mutex for the shared variable cnt:

```
volatile long cnt = 0; /* Counter */
sem_t mutex; /* Semaphore that protects cnt */
Sem_init(&mutex, 0, 1); /* mutex = 1 */
```

Surround critical section with P and V:

```
for (i = 0; i < niters; i++) {
    P(&mutex);
    cnt++;
    V(&mutex);
}</pre>
```

```
linux> ./goodcnt 10000
OK cnt=20000
linux> ./goodcnt 10000
OK cnt=20000
linux>
```

Warning: It's orders of magnitude slower than badent.c.

• Semaphore: non-negative global integer synchronization variable. Manipulated by P and V operations.

- Semaphore: non-negative global integer synchronization variable.
 Manipulated by P and V operations.
- P(s)
 - If s is nonzero, then decrement s by 1 and return immediately.
 - Test and decrement operations occur atomically (indivisibly)
 - If s is zero, then suspend thread until s becomes nonzero and the thread is restarted by a V operation.
 - After restarting, the P operation decrements s and returns to the caller.

- Semaphore: non-negative global integer synchronization variable.
 Manipulated by P and V operations.
- P(s)
 - If s is nonzero, then decrement s by 1 and return immediately.
 - Test and decrement operations occur atomically (indivisibly)
 - If s is zero, then suspend thread until s becomes nonzero and the thread is restarted by a V operation.
 - After restarting, the P operation decrements s and returns to the caller.
- V(s):
 - Increment s by 1.
 - Increment operation occurs atomically
 - If there are any threads blocked in a P operation waiting for s to become non-zero, then restart exactly one of those threads, which then completes its P operation by decrementing s.

- Semaphore: non-negative global integer synchronization variable.
 Manipulated by P and V operations.
- P(s)
 - If s is nonzero, then decrement s by 1 and return immediately.
 - Test and decrement operations occur atomically (indivisibly)
 - If s is zero, then suspend thread until s becomes nonzero and the thread is restarted by a V operation.
 - After restarting, the P operation decrements s and returns to the caller.
- V(s):
 - Increment s by 1.
 - Increment operation occurs atomically
 - If there are any threads blocked in a P operation waiting for s to become non-zero, then restart exactly one of those threads, which then completes its P operation by decrementing s.
- Semaphore invariant: (s >= 0)

C Semaphore Operations

Pthreads functions:

```
#include <semaphore.h>
int sem_init(sem_t *s, 0, unsigned int val);} /* s = val */
int sem_wait(sem_t *s); /* P(s) */
int sem_post(sem_t *s); /* V(s) */
```

Why Mutexes Work

Thread 2

Provide mutually exclusive access to shared variable by surrounding critical section with *P* and *V* operations on semaphore s (initially set to 1)

Semaphore invariant creates a *forbidden region* that encloses unsafe region and that cannot be entered by any trajectory.

Thread 1

Initially

s = 1

Mutual Exclusion Summary

- Programmers need a clear model of how variables are shared by threads.
- Variables shared by multiple threads must be protected to ensure mutually exclusive access.
- Semaphores are a fundamental mechanism for enforcing mutual exclusion.

Coordinate Access to Shared Resources

- So far we have described how to use binary semaphore to ensure mutual exclusion
- We can also use counting (non-binary) semaphore to achieve more sophisticated coordination of share data accesses
- Basic idea: Use counting semaphores to keep track of resource state and to notify other threads that some condition has become true
- Two classic examples:
 - The Producer-Consumer Problem
 - The Readers-Writers Problem (see textbook)

Producer-Consumer Problem

- Common synchronization pattern:
 - Producer waits for empty slot, inserts item in buffer, and notifies consumer
 - Consumer waits for *item*, removes it from buffer, and notifies producer

Examples

- Multimedia processing:
 - Producer creates MPEG video frames, consumer renders them
- Graphical user interfaces (GUI) applications:
 - Producer detects mouse clicks, mouse movements, and keyboard hits and inserts corresponding events in buffer
 - Consumer retrieves events from buffer and paints the display

• Consume element by moving front pointer forward. Produce element by moving rear pointer forward

- Consume element by moving front pointer forward. Produce element by moving rear pointer forward
- Requires a mutex (binary semaphore) to ensure mutual exclusive access to the shared buffer

- Consume element by moving front pointer forward. Produce element by moving rear pointer forward
- Requires a mutex (binary semaphore) to ensure mutual exclusive access to the shared buffer
- But how we know if there are enough space for the producer and there are available elements for the consumer?

- Consume element by moving front pointer forward. Produce element by moving rear pointer forward
- Requires a mutex (binary semaphore) to ensure mutual exclusive access to the shared buffer
- But how we know if there are enough space for the producer and there are available elements for the consumer?
- Use two counting semaphores:
 - slots: counts the available slots in the buffer
 - items: counts the available items in the buffer

Removing an item from a shared buffer:

```
/* Remove and return the first item from buffer sp */
int sbuf_remove(sbuf_t *sp)
{
   int item;

   P(&sp->mutex);
   item = sp->buf[(++sp->front)%(sp->n)]; /* Remove the item */
   V(&sp->mutex);
   /* Unlock the buffer */
   return item;
}
```

Inserting an item into a shared buffer:

Implementation

```
Sem_init(&sp->mutex, 0, 1);
Sem_init(&sp->items, 0, 0);
```

Removing an item from a shared buffer:

```
/* Remove and return the first item from buffer sp */
int sbuf_remove(sbuf_t *sp)
{
    int item;
    P(&sp->items);
    P(&sp->mutex);
    item = sp->buf[(++sp->front)%(sp->n)]; /* Remove the item */
    V(&sp->mutex);
    return item;
}
```

Inserting an item into a shared buffer:

Implementation

Sem_init(&sp->mutex, 0, 1);
Sem_init(&sp->items, 0, 0);
Sem_init(&sp->slots, 0, n);

Removing an item from a shared buffer:

```
/* Remove and return the first item from buffer sp */
int sbuf_remove(sbuf_t *sp)
{
    int item;
    P(&sp->items);
    P(&sp->mutex);
    item = sp->buf[(++sp->front)%(sp->n)]; /* Remove the item */
    V(&sp->mutex);
    V(&sp->slots);
    return item;
}
```

Inserting an item into a shared buffer: