CSC 252: Computer Organization
Spring 2018: Lecture 25

Instructor: Yuhao Zhu

Department of Computer Science
University of Rochester

Action Items:
* Programming Assignment 5 grades are out
* Programming Assignment 6 is due soon

Announcement

* Programming assignment 6 is due on 11:39pm, Monday, April 30.
* Programming assignment 5 grades are out

22 23 (24) 25 26 27 28

29 30

Due

Today

* From process to threads
e Basic thread execution model
e Shared variables in multi-threaded programming
e Mutual exclusion using semaphore
e Deadlock
e Thread-level parallelism
e Amdahl’s Law: performance model of parallel programs
* Hardware implementation implications of threads
e Multi-core
e Hyper-threading
e Cache coherence

Traditional View of a Process

* Process = process context + code, data, and stack

Process context Code, data, and stack
Program context: Sp —> Stack

Data registers

Condition codes Shared libraries

Stack pointer (SP)

Program counter (PC) brk = Run-time heap
Kernel context: Read/write data

VM structures PC —> Read-only code/data

Descriptor table
brk nointer

Alternate View of a Process

e Process = thread + code, data, and kernel context
e A thread runs in the context of a process

Thread (main thread) Code, data, and kernel context

Shared libraries

Program counter (PC) Kernel context:

VM structures
Descriptor table
brk pointer

| [

. I

. - I >

; SP = bk Run-time heap
I Thread context: : Read/write data
: Data registers : PC —> Read-only code/data
: Condition codes : 0

: Stack pointer (SP) I

| |

. I

|

A Process With Multiple Threads

* Multiple threads can be associated with a process

e Each thread has its own logical control flow

e Each thread shares the same code, data, and kernel context

e Each thread has its own stack for local variables
e but not protected from other threads

e Each thread has its own thread id (TID)

Thread 1 (main thread)

stack 1

Thread 1 context:
Data registers
Condition codes
SP1
PC1

Thread 2 (peer thread)

Shared code and data

stack 2

shared libraries

run-time hean

Thread 2 context:
Data registers
Condition codes
SP2
PC2

read/write data

read-only code/data

Kernel context:
VM structures
Descriptor table
brk pointer

Logical View of Threads

* Threads associated with process form a pool of

peers
e Unlike processes which form a tree hierarchy
Threads associated with process foo Process hierarchy

“a| shared code, data
and kernel context

®
®
2@

ofolo

Concurrent Threads

* Two threads are concurrent if their flows overlap in
time

e Otherwise, they are sequential

Thread A Thread B Thread C
e Examples:
e Concurrent: A&B,A&C | ----- I ---------------------------------------
e Sequential: B& C I
Time | I ______

Concurrent Thread Execution

* Single Core Processor * Multi Core Processor
e Simulate parallelism by e Threads can have true
time slicing parallelisms
Thread A Thread B Thread C Thread A Thread B Thread C
_________________________________ I Time

Run 3 threads on 2 cores

Threads vs. Processes

e How threads and processes are similar
e Each has its own logical control flow
e Each can run concurrently with others (possibly on different cores)

e Each is context switched, controlled by kernel

10

Threads vs. Processes

e How threads and processes are similar
e Each has its own logical control flow
e Each can run concurrently with others (possibly on different cores)

e Each is context switched, controlled by kernel

e How threads and processes are different

 Threads share all code and data (except local stacks)
e Processes (typically) do not

 Threads are less expensive than processes

e Process control (creating and reaping) twice as expensive as thread
control

o Typical Linux numbers:
e ~20K cycles to create and reap a process
« ~10K cycles (or less) to create and reap a thread

10

Posix Threads (Pthreads) Interface

® Pthreads: Standard interface for ~60 functions that manipulate threads
from C programs
e Creating and reaping threads
e pthread create ()
e pthread join()
e Determining your thread ID
e pthread self()
e Terminating threads
« pthread cancel ()
« pthread exit ()
e exit () [terminates all threads] , RET [terminates current thread]
e Synchronizing access to shared variables
e pthread mutex 1init

e pthread mutex [un]lock

11

The Pthreads "hello, world" Program

/*
* hello.c - Pthreads "hello, world" program
*/

#include "csapp.h"

void xthread(void *vargp);

int main()

{
pthread_t tid;
Pthread_create(&tid, NULL, thread, NULL);
Pthread_join(tid, NULL);
exit(0);
} hello.c

void xthread(void xvargp) /* thread routine x/

{
printf("Hello, world!\n");
return NULL;

hello.c

12

The Pthreads "hello, world" Program

/*
* hello.c - Pthreads "hello, world" program
*/

#include “csapp.h" Thread ID

void xthread(void *vargp);

int main()

{
pthread_t tid;
Pthread_create(&tid, NULL, thread, NULL);
Pthread_join(tid, NULL);
exit(0);
} hello.c

void xthread(void xvargp) /* thread routine x/

{
printf("Hello, world!\n");
return NULL;

hello.c

12

The Pthreads "hello, world" Program

/*
* hello.c - Pthreads "hello, world" program
*/

#include “csapp.h" Thread ID

void xthread(void *vargp);

int main()

{
pthread_t tid;
Pthread_create(&tid, NULL thread, NULL);
Pthread_join(tid, NULL);
exit(0);
} hello.c

Thread attributes
(usually NULL)

void xthread(void xvargp) /* thread routine x/

{
printf("Hello, world!\n");
return NULL;

hello.c

12

The Pthreads "hello, world" Program

/*
* hello.c - Pthreads "hello, world" program
*/

#include “csapp.h" Thread ID

void xthread(void *vargp);

int main()

{
pthread_t tid;
Pthread_create(&tid, NULL thread, NULL);
Pthread_join(tid, NULL);
exit(0);
} hello.c

Thread attributes

(usually NULL)

Thread routine

void xthread(void xvargp) /* thread routine x/

{
printf("Hello, world!\n");
return NULL;

hello.c

12

The Pthreads "hello, world" Program

/*
* hello.c - Pthreads "hello, world" program
*/ Thread attributes
#include "csapp.h" Thread ID
void xthread(void *vargp); (usually NULL)
int main()
{ Thread routine
pthread_t tid; p
Pthread_create(&tid, NULL, thread, NULL);
Pthread join(tid, NULL); | Thread arguments
ex1t(0); (void *p)
} hello.c

void xthread(void xvargp) /* thread routine x/

{
printf("Hello, world!\n");
return NULL;

hello.c

12

The Pthreads "hello, world" Program

/*
* hello.c - Pthreads "hello, world" program
5 Thread attributes
#include "csapp.h" Thread ID
void *thread(void xvargp); (usually NULL)
int main()
{ Thread routine
pthread_t tid;
Pthread_create(&tid, NULL thread, NULL)
Pthread_join(tid, NULL); \ Thread arguments
exit(0); (void *p)
} hello.c

void xthread(void xvargp) /* thread routine x/

{
printf("Hello, world!\n");
return NULL;

Return value
(void **p)

hello.c

12

Execution of Threaded “hello, world”

Main thread

13

Execution of Threaded “hello, world”

Main thread

call Pthread_create()

13

orld”
G‘hellol w

ion of Threaded

tio

Execu

Main thread

call Pthread_create()

--

Execution of Threaded “hello, world”

Main thread

call Pthread_create()

................................... Peer thread

,,,,, 1

v

13

Execution of Threaded “hello, world”

Main thread

call Pthread_create()
Pthread_create() returns

.................................. Peer thread

,,,,, 1

v

13

Execution of Threaded “hello, world”

Main thread

call Pthread_create()
Pthread_create() returns

.................................. Peer thread

,,,,, 1

v

call Pthread_join()

13

Execution of Threaded “hello, world”

Main

thread

call Pthread_create()
Pthread_create() returns

call Pthread_join()

Main thread waits for
peer thread to terminate

.................................. Peer thread

,,,,, 1

v

13

Execution of Threaded “hello, world”

Main thread

call Pthread_create()
Pthread_create() returns

call Pthread_join()

Main thread waits for
peer thread to terminate

.................................. Peer thread

..... “printf()

return NULL;
Peer thread
terminates

v

13

Execution of Threaded “hello, world”

Main thread

call Pthread_create()
Pthread_create() returns

call Pthread_join()

Main thread waits for
peer thread to terminate

Pthread_join() returns

................................... Peer thread

..... “ printf ()

¥ return NULL;
......................... Peer thread
......................... torminates

13

Execution of Threaded “hello, world”

Main thread

call Pthread_create()
Pthread_create() returns

................................... Peer thread

call Pthread_join() | e
“printf()
Main thread waits for y return NULL;
peer thread to terminate| e Peer thread
.......................... terminates

Pthread_join() returns |a

exit ()
Terminates '
main thread and
any peer threads

13

Today

e Shared variables in multi-threaded programming
¢ Mutual exclusion using semaphore

14

Shared Variables in Threaded C Programs

* One great thing about threads is that they can share same
program variables.
* Question: Which variables in a threaded C program are shared?
* |Intuitively, the answer is as simple as “global variables are
shared” and “stack variables are private”. Not so simple in reality.
Shared code and data

Thread 1 (main thread) Thread 2 (peer thread) shared libraries

run-time hean
read/write data

read-only code/data

stack 1 stack 2

Thread 1 context:
Data registers
Condition codes
SP1
PC1

Thread 2 context:
Data registers
Condition codes
SP2
PC2

Kernel context:
VM structures
Descriptor table
brk pointer

15

Example Program to lllustrate Sharing

char *xxptr; /x global var x/

void xthread(void *vargp)

{
long myid = (long)vargp;
static int cnt = @;

printf(" %ld]: %S (Cnt:%d)\nu’

myid, ptrlmyid]l, ++cnt);
return NULL;

int main()

long 1ij;
pthread_t tid;
char smsgs[2] = {
"Hello from foo",
"Hello from bar"
h
ptr = msgs;
for (1 =0; 1 < 2; 1i++)
pthread_create(&tid,
NULL,
thread,
(void %)i);
pthread_exit(NULL);

3 sharing.c

Main thread stack

Peer thread O stack

Peer thread 1 stack

|
v

Memory mapped region
for shared libraries

t

Runtime heap (malloc)

Uninitialized data (.bss)

Initialized data (.data)

Program text (.text)

16

Example Program to lllustrate Sharing

char *xxptr; /x global var x/

void xthread(void *vargp)

{
long myid = (long)vargp;
static int cnt = @;

printf(" %ld]: %S (Cnt:%d)\nu’

myid, ptrlmyid]l, ++cnt);
return NULL;

int main()

long 1ij;
pthread_t tid;
char smsgs[2] = {
"Hello from foo",
"Hello from bar"
h
ptr = msgs;
for (1 =0; 1 < 2; 1i++)
pthread_create(&tid,
NULL,
thread,
(void %)i);
pthread_exit(NULL);

3 sharing.c

Main thread stack

Peer thread O stack

Peer thread 1 stack

|
v

Memory mapped region
for shared libraries

t

Runtime heap (malloc)

Uninitialized data (.bss)
ptr

Initialized data (.data)

Program text (.text)

16

Example Program to lllustrate Sharing

char *xxptr; /x global var x/

void xthread(void *vargp)

{
long myid = (long)vargp;
static int cnt = @;

printf(" %ld]: %S (Cnt=6d)\nu’

myid, ptrlmyid]l, ++cnt);
return NULL;

int main()

long 1ij;
pthread_t tid;
char smsgs[2] = {
"Hello from foo",
"Hello from bar"
h
ptr = msgs;
for (1 =0; 1 < 2; 1i++)
pthread_create(&tid,
NULL,
thread,
(void %)i);
pthread_exit(NULL);

3 sharing.c

Main thread stack
1 tid

msgs

Peer thread O stack

Peer thread 1 stack

|
v

Memory mapped region
for shared libraries

t

Runtime heap (malloc)

Uninitialized data (.bss)
ptr

Initialized data (.data)

Program text (.text)

16

Example Program to lllustrate Sharing

char *xxptr; /x global var x/

void xthread(void *vargp)

{
long myid = (long)vargp;
static int cnt = @;

printf(" %ld]: %S (Cnt=6d)\nu’

myid, ptrlmyid]l, ++cnt);
return NULL;

int main()

long 1ij;
pthread_t tid;
char smsgs[2] = {
"Hello from foo",
"Hello from bar"
h
ptr = msgs;
for (1 =0; 1 < 2; 1i++)
pthread_create(&tid,
NULL,
thread,
(void %)i);
pthread_exit(NULL);

3 sharing.c

Main thread stack
1 tid

msgs

Peer thread O stack
myid

Peer thread 1 stack

|
v

Memory mapped region
for shared libraries

t

Runtime heap (malloc)

Uninitialized data (.bss)
ptr

Initialized data (.data)

Program text (.text)

16

Example Program to lllustrate Sharing

char *xxptr; /x global var x/

void xthread(void *vargp)

{
long myid = (long)vargp;
static int cnt = @;

printf(" %ld]: %S (Cnt=6d)\nu’

myid, ptrlmyid]l, ++cnt);
return NULL;

int main()

long 1ij;
pthread_t tid;
char smsgs[2] = {
"Hello from foo",
"Hello from bar"
h
ptr = msgs;
for (1 =0; 1 < 2; 1i++)
pthread_create(&tid,
NULL,
thread,
(void %)i);
pthread_exit(NULL);

3 sharing.c

Main thread stack
1 tid

msgs

Peer thread O stack
myid

Peer thread 1 stack
myid

|
v

Memory mapped region
for shared libraries

t

Runtime heap (malloc)

Uninitialized data (.bss)
ptr

Initialized data (.data)

Program text (.text)

16

Example Program to lllustrate Sharing

char *xxptr; /x global var x/

void xthread(void *vargp)

{
long myid = (long)vargp;
static int cnt = @;

printf(" %ld]: %S (Cnt=6d)\nu’

myid, ptrlmyid]l, ++cnt);
return NULL;

int main()

long 1ij;
pthread_t tid;
char smsgs[2] = {
"Hello from foo",
"Hello from bar"
h
ptr = msgs;
for (1 =0; 1 < 2; 1i++)
pthread_create(&tid,
NULL,
thread,
(void %)i);
pthread_exit(NULL);

3 sharing.c

Main thread stack
1 tid

msgs

Peer thread O stack
myid

Peer thread 1 stack
myid

|
v

Memory mapped region
for shared libraries

t

Runtime heap (malloc)

Uninitialized data (.bss)
ptr

Initialized data (.data)
cnt

Program text (.text)

16

Example Program to lllustrate Sharing

char *xxptr; /x global var x/

void xthread(void *vargp)

{
long myid = (long)vargp;
static int cnt = @;

printf(" %ld]: %S (Cnt=6d)\nu’

myid, ptrlmyid]l, ++cnt);
return NULL;

int main()

long 1ij;
pthread_t tid;
char smsgs[2] = {
"Hello from foo",
"Hello from bar"
h
ptr = msgs;
for (1 =0; 1 < 2; 1i++)
pthread_create(&tid,
NULL,
thread,
(void %)i);
pthread_exit(NULL);

3 sharing.c

Main thread stack
1 tid

msgs

Peer thread O stack
myid

Peer thread 1 stack
myid

|
v

Memory mapped region
for shared libraries

t

Runtime heap (malloc)

Uninitialized data (.bss)
ptr

Initialized data (.data)
cnt

Program text (.text)

main

16

Example Program to lllustrate Sharing

char *xxptr; /x global var x/

void xthread(void *vargp)
{
long myid = (long)vargp;
static int cnt = 0;
printf (" [%1d]:
myid, ptrlmyid], ++cnt);
return NULL;

int main()

long 1ij;
pthread_t tid;
char smsgs[2] = {
"Hello from foo",
"Hello from bar"
h
ptr = msgs;
for (1 =0; 1 < 2; 1i++)
pthread_create(&tid,
NULL,
thread,
(void %)i);
pthread_exit(NULL);

3 sharing.c

Main thread stack
1 tid

msgs

%s (cnt=%d)\n",

Peer thread O stack
myid

Peer thread 1 stack
myid

|
v

Memory mapped region
for shared libraries

t

Runtime heap (malloc)

Uninitialized data (.bss)
ptr

Initialized data (.data)
cnt

Program text (.text)

main

p0 p1

main

16

Example Program to lllustrate Sharing

char *xxptr; /x global var x/

void xthread(void *vargp)
{
long myid = (long)vargp;
static int cnt = 0;
printf (" [%1d]:
myid, ptrlmyid], ++cnt);
return NULL;

int main()

long 1ij;
pthread_t tid;
char smsgs[2] = {
"Hello from foo",
"Hello from bar"
h
ptr = msgs;
for (1 =0; 1 < 2; 1i++)
pthread_create(&tid,
NULL,
thread,
(void %)i);
pthread_exit(NULL);

3 sharing.c

Main thread stack
1 tid

msgs

%s (cnt=%d)\n",

Peer thread O stack
myid

Peer thread 1 stack
myid

|
v

Memory mapped region
for shared libraries

t

Runtime heap (malloc)

Uninitialized data (.bss)
ptr

Initialized data (.data)
cnt

Program text (.text)

main

pO0 p1 main

p0

16

Example Program to lllustrate Sharing

char *xxptr; /x global var x/

void xthread(void *vargp)
{
long myid = (long)vargp;
static int cnt = 0;
printf (" [%1d]:
myid, ptrlmyid], ++cnt);
return NULL;

int main()

long 1ij;
pthread_t tid;
char smsgs[2] = {
"Hello from foo",
"Hello from bar"
h
ptr = msgs;
for (1 =0; 1 < 2; 1i++)
pthread_create(&tid,
NULL,
thread,
(void %)i);
pthread_exit(NULL);

3 sharing.c

Main thread stack
1 tid

msgs

%s (cnt=%d)\n",

Peer thread O stack
myid

Peer thread 1 stack
myid

|
v

Memory mapped region
for shared libraries

t

Runtime heap (malloc)

Uninitialized data (.bss)
ptr

Initialized data (.data)
cnt

Program text (.text)

main

pO0 p1 main
p0

p1i

16

Example Program to lllustrate Sharing

char *xxptr; /x global var x/

void xthread(void *vargp)
{
long myid = (long)vargp;
static int cnt = 0;
printf (" [%1d]:
myid, ptrlmyid], ++cnt);
return NULL;

int main()

long 1ij;
pthread_t tid;
char smsgs[2] = {
"Hello from foo",
"Hello from bar"
h
ptr = msgs;
for (1 =0; 1 < 2; 1i++)
pthread_create(&tid,
NULL,
thread,
(void %)i);
pthread_exit(NULL);

3 sharing.c

Main thread stack
1 tid

msgs

%s (cnt=%d)\n",

Peer thread O stack
myid

Peer thread 1 stack
myid

|
v

Memory mapped region
for shared libraries

t

Runtime heap (malloc)

Uninitialized data (.bss)
ptr

Initialized data (.data)
cnt

Program text (.text)

main
p0 p1
p0

p1i

p0 p1

main

main

16

Example Program to lllustrate Sharing

char *xxptr; /x global var x/

void xthread(void *vargp)
{
long myid = (long)vargp;
static int cnt = 0;
printf (" [%1d]:
myid, ptrlmyid], ++cnt);
return NULL;

int main()

long 1ij;
pthread_t tid;
char smsgs[2] = {
"Hello from foo",
"Hello from bar"
h
ptr = msgs;
for (1 =0; 1 < 2; 1i++)
pthread_create(&tid,
NULL,
thread,
(void %)i);
pthread_exit(NULL);

3 sharing.c

Main thread stack
1 tid

msgs

%s (cnt=%d)\n",

Peer thread O stack
myid

Peer thread 1 stack
myid

|
v

Memory mapped region
for shared libraries

t

Runtime heap (malloc)

Uninitialized data (.bss)
ptr

Initialized data (.data)
cnt

Program text (.text)

main
p0 p1
p0
p1i
p0 p1
p0 p1

main

main

16

Synchronizing Threads

* Shared variables are handy...

e ...but introduce the possibility of nasty synchronization errors.

17

Improper Synchronization

/* Global shared variable x/
volatile long cnt = @; /% Counter x/

int main(int argc, char xxargv)
{
pthread_t tidl, tid2;
long niters = 10000;

Pthread_create(&tidl, NULL,
thread, &niters);
Pthread_create(&tid2, NULL,
thread, &niters);
Pthread_join(tidl, NULL);
Pthread_join(tid2, NULL);

/* Check result x/
if (cnt !'= (2 *x 10000))
printf("BOOM! cnt=%ld\n", cnt);
else
printf("0K cnt=%1d\n", cnt);
exit(0);
1 badcnt.c

/* Thread routine x/
void xthread(void xvargp)

{

long 1, niters
x((long *)vargp);

for (i 0; i++)

cnt++;

1 < niters;

return NULL;

18

Improper Synchronization

/* Global shared variable x/
volatile long cnt = @; /% Counter x/

int main(int argc, char xxargv)
{
pthread_t tidl, tid2;
long niters = 10000;

Pthread_create(&tidl, NULL,
thread, &niters);
Pthread_create(&tid2, NULL,
thread, &niters);
Pthread_join(tidl, NULL);
Pthread_join(tid2, NULL);

/* Check result x/
if (cnt != (2 % 10000))
printf("BOOM! cnt=%ld\n", cnt);
else
printf("0K cnt=%1d\n", cnt);

exit(0);
1 badcnt.c

/* Thread routine x/
void xthread(void xvargp)

{

long 1, niters =
x((long *)vargp);
i++)

for (1 = 0; i < niters;

cnt++;

return NULL;

linux> ./badcnt
OK cnt=20000

linux> ./badcnt
BOOM! cnt=13051

cnt should equal 20,000.

What went wrong?

18

Assembly Code for Counter Loop

C code for counter loop in thread i

for

(1 =

0; i < niters; i++)
cnt++;

Asm code for thread i

movqg

$rdi) , %rcx

testqg %rcx, srcx

jle

.L2:

.L2

cnt (%rip) , Srdx
$1, %rdx
$rdx, cnt(%rip)

: Head

: Load cnt
: Update cnt
: Store cnt

: Tail

19

Concurrent Execution

* Key observation: In general, any sequentially consistent
interleaving is possible, but some give an unexpected result!

i (thread) instr, %rdx, %rdx, cnt
Thread 1
E L, 0 . 0 critical section
1 U, 1 - 0
1 S, 1 - 1 Thread 2
2 L, - 1 1 critical section
2 U, - 2 1
2 S, - 2 2

Progress Graphs

A progress graph depicts
Thread 2 P g arap . P
the discrete execution
state space of concurrent
@ o o o [([J
T threads.
? (L, S,)) .
. o o o o ° Each axis corresponds to
S, the sequential order of
instructions in a thread.
o o [o [([J
U, Each point corresponds to
O ° 0 O o o a possible execution state
Inst., Inst,).
L, (Inst, 2)
@ o o o [([
H E.g., (L, S,) denotes state
2 where thread 1 has

e ® o o ¢ *—Thread1l completed L, and thread
2 has completed S,.

21

Trajectories in Progress Graphs

Thread 2

A trajectory is a sequence of legal state

° transitions that describes one possible
concurrent execution of the threads.

o
Execution Ordering:

o H1, L1, U1, S1,T1,H2,1L2,U2,S2, T2

[

o

*— Thread 1

22

Trajectories in Progress Graphs

A trajectory is a sequence of legal state

Thread 2
® [
TZ
® [
SZ
® [
UZ
® o
LZ
® [
HZ
—_—
Hl

° transitions that describes one possible
concurrent execution of the threads.

o
Execution Ordering:

o H1, L1, U1, S1,T1,H2,1L2,U2,S2, T2

[

o

*— Thread 1

22

Trajectories in Progress Graphs

Thread 2
J A traj.'e.ctory isa sequtence of legal s.tate
transitions that describes one possible
T, concurrent execution of the threads.
L [o [o [
S, Execution Ordering:
. o o O O o H1, L1, U1, S1,T1, H2, L2, U2,S2, T2
U,
® [o [o o
L,
] [o [[[
H,
o ‘ ° *— Thread 1

22

Trajectories in Progress Graphs

Thread 2
J A traj.'e.ctory isa sequtence of legal s.tate
transitions that describes one possible
T, concurrent execution of the threads.
L [o [o [
S, Execution Ordering:
. o o O O o H1, L1, U1, S1,T1, H2, L2, U2,S2, T2
U,
® [o [o o
L,
] [o [[[
H,
e p— - e— @ *— Thread 1

22

Trajectories in Progress Graphs

Thread 2
J A traj.'e.ctory isa sequtence of legal s.tate
transitions that describes one possible
T, concurrent execution of the threads.
L [o [o [
S, Execution Ordering:
. o o O O o H1, L1, U1, S1,T1, H2, L2, U2,S2, T2
U,
® [o [o o
L,
] [o [[[
H,

22

Trajectories in Progress Graphs

Thread 2
J A traj.'e.ctory isa sequtence of legal s.tate
transitions that describes one possible
T, concurrent execution of the threads.
L [o [o [
S, Execution Ordering:
. o o O O o H1, L1, U1, S1,T1, H2, L2, U2,S2, T2
U,
® [o [o o
L,
] [o [[[
H,

22

Trajectories in Progress Graphs

Thread 2
J A traj.'e.ctory isa sequtence of legal s.tate
transitions that describes one possible

T, concurrent execution of the threads.

L [o [o [
S, Execution Ordering:

. o o O O o H1, L1, U1, S1,T1, H2, L2, U2,S2, T2
U,

® [o [o o
L,

] [o [[x
Hzo—»-—b—b—n—J—

Thread 1

H, L, U S T

22

Trajectories in Progress Graphs

Thread 2
J A traj.'e.ctory isa sequtence of legal s.tate
transitions that describes one possible

T, concurrent execution of the threads.

L [o [o [
S, Execution Ordering:

. o o O O o H1, L1, U1, S1,T1, H2, L2, U2,S2, T2
U,

® [o [[x
L,

] [o [[1
Hzo—»-—b—b—n—J—

Thread 1

H, L, U S T

22

Trajectories in Progress Graphs

Thread 2
A trajectory is a sequence of legal state
i ° ¢ ° ¢ ° transitions that describes one possible
T, concurrent execution of the threads.
® o ([J o ([J [
S, Execution Ordering:
o o o o o H1, L1, U1, S1,T1,H2,1L2,U2,S2, T2

Hzo—.-—.—.—»—J;
Thread 1

H, L, U S T

-
N
@

22

Trajectories in Progress Graphs

Thread 2
A trajectory is a sequence of legal state
i ° ¢ ° ¢ ° transitions that describes one possible
T, concurrent execution of the threads.
® o ([J o o
S, Execution Ordering:

H1, L1, U1, S1,T1, H2, L2, U2, S2, T2

Hzo—.-—.—.—»—J;
Thread 1

H, L, U S T

®
°
°
°
°
P e P e) s

22

Trajectories in Progress Graphs

Thread 2

A trajectory is a sequence of legal state
transitions that describes one possible
concurrent execution of the threads.

Execution Ordering:

H1, L1, U1, S1,T1, H2, L2, U2, S2, T2

Hzo—.-—.—.—»—J;
Thread 1

H, L, U S T

C
N
P — — — —p

22

Concurrent Execution (cont)

* |[ncorrect ordering: two threads increment the counter, but the
result is 1 instead of 2

i (thread) instr, %rdx, %rdx, cnt

1 L, 0 0
1 U, 1 0
2 L, - 0 0
1 S, 1 1
2 u, - 1 1
2 S, 1 1

23

Trajectories in Progress Graphs

Thread 2
® o ([J o ([J [
T, Execution Ordering:
1 ¢ ¢ ¢ ¢ ¢ H1, L1, U1, H2, L2, S1, U2, S2, T1, T2
SZ
® o ([J o ([J [
UZ
o o o [o [
LZ
® o ([o ([[
HZ
¢ ° ° ° ° *— Thread 1

24

Trajectories in Progress Graphs

Thread 2
® o ([J o ([J [
T, Execution Ordering:
1 ¢ ¢ ¢ ¢ ¢ H1, L1, U1, H2, L2, S1, U2, S2, T1, T2
SZ
® o ([J o ([J [
UZ
o o o [o [
LZ
® o ([o ([[
HZ
e ° ° ° *— Thread 1

24

Trajectories in Progress Graphs

Thread 2
® [([J o ([J o
T, Execution Ordering:
1 ¢ ¢ ¢ ¢ ¢ H1, L1, U1, H2, L2, S1, U2, S2, T1, T2
SZ
® [([J o ([J o
UZ
o o o [o [
LZ
® [([o ([o
HZ
e ‘ * *— Thread 1

24

Trajectories in Progress Graphs

Thread 2
® [o [([J o
T, Execution Ordering:
1 ¢ ¢ ¢ ¢ ¢ H1, L1, U1, H2, L2, S1, U2, S2, T1, T2
SZ
® [o [([J o
UZ
o o o o o [
LZ
® [o [([o
HZ
—— r—— — o *— Thread 1

24

Trajectories in Progress Graphs

Thread 2
® o ([J o o [
T, Execution Ordering:
1 ¢ ¢ ¢ ¢ ¢ H1, L1, U1, H2, L2, S1, U2, S2, T1, T2
SZ
® o ([J o o [
UZ
o o o [o [
LZ
® o ([x ([[
B
° *— Thread 1

24

Trajectories in Progress Graphs

Thread 2
® o ([J o o [
T, Execution Ordering:
1 ¢ ¢ ¢ ¢ ¢ H1, L1, U1, H2, L2, S1, U2, S2, T1, T2
SZ
® o ([J o o [
UZ
o o o x o [
LZ
o [([([[
B
° *— Thread 1

24

Trajectories in Progress Graphs

Thread 2
® o ([J o o [
T, Execution Ordering:
1 ¢ ¢ ¢ ¢ ¢ H1, L1, U1, H2, L2, S1, U2, S2, T1, T2
SZ
® o ([J o o [
UZ
Q o) o P ——— o)
LZ
o [([1 ([[
B
° *— Thread 1

24

Trajectories in Progress Graphs

Thread 2
® [o [([J o
T, Execution Ordering:
1 ¢ ¢ ¢ ¢ ¢ H1, L1, U1, H2, L2, S1, U2, S2, T1, T2
SZ
. o o o % o
u, ‘
) ° ° A——p e
LZ
o [o 1 o o
Y
i *— Thread 1

24

Trajectories in Progress Graphs

Thread 2
® [o [([J o
T, Execution Ordering:
1 ¢ ¢ ¢ 0 ¢ H1, L1, U1, H2, L2, S1, U2, S2, T1, T2
s, ‘
. o o o N o
u, ‘
) ° ° A——p e
LZ
o [o 1 o o
Y
i *— Thread 1

24

Trajectories in Progress Graphs

Thread 2

H,

L,

U

o ([J
o A—
|
J £
|
—

S

T

Execution Ordering:

H1, L1, U1, H2, L2,S1,U2,S2,T1, T2

R
® *— Thread 1

24

Trajectories in Progress Graphs

Thread 2

H,

L,

U

o ([J
o A—
|
J £
|
—

S

T

Execution Ordering:

H1, L1, U1, H2, L2,S1,U2,S2,T1, T2

R
® *— Thread 1

24

Concurrent Execution (cont)

i (thread) instr, %rdx, %rdx, cnt

F
=

F
N

=

R=(NN(N|-

wiCclw Cc
N

25

Concurrent Execution (cont)

i (thread) instr, %rdx, %rdx, cnt

0

F
=

F
N

=

R=(NN(N|-

wiCclw Cc
N

25

Concurrent Execution (cont)

i (thread) instr, %rdx, %rdx, cnt

0

F
=

F
o

N

=

R=(NN(N|-

wiCclw Cc
N

25

Concurrent Execution (cont)

i (thread) instr, %rdx, %rdx, cnt

1 L, 0

2 L, 0
2 U, 1
2 S,

1 U,

1 S,

25

Concurrent Execution (cont)

i (thread) instr, %rdx, %rdx, cnt

1 L, 0

2 L, 0
2 U, 1
2 S, 1
1 U,

1 S,

25

Concurrent Execution (cont)

i (thread) instr, %rdx, %rdx, cnt

1 L, 0

2 L, 0

2 U, 1

2 S, 1 1
1 U,

1 S,

25

Concurrent Execution (cont)

i (thread) instr, %rdx, %rdx, cnt

1 L, 0

2 L, 0

2 U, 1

2 S, 1 1
1 U, 1

1 S,

25

Concurrent Execution (cont)

i (thread) instr, %rdx, %rdx, cnt

1 L, 0

2 L, 0

2 U, 1

2 S, 1 1
1 U, 1

1 S, 1

25

Concurrent Execution (cont)

i (thread) instr, %rdx, %rdx, cnt

1 L, 0

2 L, 0

2 U, 1

2 S, 1 1
1 U, 1

1 S, 1 1

25

Concurrent Execution (cont)

* Another undesired, but legal, interleaving

i (thread) instr, %rdx, %rdx, cnt

1 L, 0

2 L 0

2 U, 1

2 S, 1 1
1 U, 1

1 S, 1 1

25

Trajectories in Progress Graphs

Thread 2
® o ([J o ([J [
T, Execution Ordering:
1 ¢ ¢ ¢ ¢ ¢ H1, L1, H2, L2, U2, S2, U1, S1, T1, T2
SZ
® o ([J o ([J [
UZ
o o o [o [
LZ
® o ([o ([[
HZ
¢ ° ° ° ° *— Thread 1

26

Trajectories in Progress Graphs

Thread 2
® o ([J o ([J [
T, Execution Ordering:
1 ¢ ¢ ¢ ¢ ¢ H1, L1, H2, L2, U2, S2, U1, S1, T1, T2
SZ
® o ([J o ([J [
UZ
o o o [o [
LZ
® o ([o ([[
HZ
e ° ° ° *— Thread 1

26

Trajectories in Progress Graphs

Thread 2
® [([J o ([J o
T, Execution Ordering:
1 ¢ ¢ ¢ ¢ ¢ H1, L1, H2, L2, U2, S2, U1, S1, T1, T2
SZ
® [([J o ([J o
UZ
o o o [o [
LZ
® [([o ([o
HZ
e ‘ * *— Thread 1

26

Trajectories in Progress Graphs

Thread 2
® o ([J o o [
T, Execution Ordering:
1 ¢ ¢ ¢ ¢ ¢ H1, L1, H2, L2, U2, S2, U1, S1, T1, T2
SZ
® o ([J o o [
UZ
o o o [o [
LZ
® o x o ([[
I
° ° *— Thread 1

26

Trajectories in Progress Graphs

Thread 2
® o ([J o o [
T, Execution Ordering:
1 ¢ ¢ ¢ ¢ ¢ H1, L1, H2, L2, U2, S2, U1, S1, T1, T2
SZ
® o ([J o o [
UZ
o o x [o [
LZ
® o o ([[
I
° ° *— Thread 1

26

Trajectories in Progress Graphs

Thread 2
[] o [] [) [] [)
T, Execution Ordering:
. i ° ¢ ° ¢ ° H1, L1, H2, L2, U2, S2, U1, S1, T1, T2
2

M|
¢ ® *— Thread 1

26

Trajectories in Progress Graphs

Thread 2
® o ([J [o [
T, Execution Ordering:
® o [o [

H1, L1, H2, L2, U2,S2,U1,S1,T1, T2

M|
¢ ® *— Thread 1

26

Trajectories in Progress Graphs

Thread 2
® o ([J [o [
T, Execution Ordering:
® [e o [

H1, L1, H2, L2, U2,S2,U1,S1,T1, T2

M|
¢ ® *— Thread 1

26

Trajectories in Progress Graphs

Thread 2
® o ([J [o [
T, Execution Ordering:
© Y — —— ®

H1, L1, H2, L2, U2,S2,U1,S1,T1, T2

M|
¢ ® *— Thread 1

26

Trajectories in Progress Graphs

Thread 2
[] o [] [) [] [)
T, Execution Ordering:
i ° — R H1, L1, H2, L2, U2, S2, U1, S1, T1, T2
SZ
[] o o [] [)

M|
¢ ® *— Thread 1

26

Trajectories in Progress Graphs

Thread 2
® [([J o ([J [
T, ‘ Execution Ordering:
i ° » > H1, L1, H2,L2,U2,S2,U1,S51,T1, T2
S,
® [o ([J o

M|
o ® *— Thread 1

26

Assembly Code for Counter Loop

C code for counter loop in thread i

for (1 = 0; i < niters; i++)
cnt++;

Asm code for thread i

movq $rdi) , %Srcx
testqg %rcx, srcx
jle .L2

movqg cnt(%rip) ,%rdx
addg $1, %$rdx
movqg %rdx, cnt(%rip)

.L2:

: Head

: Load cnt
: Update cnt
: Store cnt

: Tail

27

Assembly Code for Counter Loop

critical
section
wrt cnt

C code for counter loop in thread i

for (1 = 0; i < niters; i++)

cnt++;

Asm code for thread i

movq $rdi) , srcx
testqg %rcx,srcx
jle .L2

movqg cnt(%rip) ,%rdx
addg $1, %$rdx
movqg %rdx, cnt(%rip)

.L2:

: Head

: Load cnt

: Update cnt
: Store cnt

: Tail

27

Critical Section

e Code section (a sequence of instructions) where no more than one
thread should be executing concurrently.

» Critical section refers to code, but its intention is to protect data!
e Threads need to have mutually exclusive access to critical section

Asm code for thread i

movqg (%rdi), Srcx
testqg %rcx,srcx

jle L2 » H,: Head
_______ movl 350, %eax |
critical) | :

_ movqg cnt(%rip),%rdx L;:Load ent
section addg $1, %$rdx » U;: Update cnt
wrt cnt movqg %rdx, cnt(%rip) S.: Store ent

"""" addg $1, %$rax) '
cmpg 3rcx, 5srax
jne .L3 (T,: Tail

.L2:

28

Critical Sections and Unsafe Regions

Thread 2

L, U, and S form a critical
® section with respect to the
shared variable cnt

[)
Instructions in critical sections
(wrt some shared variable)

L should not be interleaved

o Sets of states where such
interleaving occurs form
unsafe regions

[)

*— Thread 1

29

Critical Sections and Unsafe Regions

Thread 2
L, U, and S form a critical
. o o o o O section with respect to the
T, shared variable cnt
-9 ° ° ° ° ° . . .
S Instructions in critical sections
2 (wrt some shared variable)
critical ¢ o ° o ° ° should not be interleaved
section< U,
wrt cnt ! o o o o o Sets of states where such
1 interleaving occurs form
2 unsafe regions
NS ° ° ° ° °
H,
¢ ¢ ¢ ¢ ¢ *— Thread 1
H, L, U, S; T
N\ /
N

critical section wrt cnt

29

Critical Sections and Unsafe Regions

Thread 2
L, U, and S form a critical
. o o o o O section with respect to the
T, shared variable cnt
-9 o ° ° ° ° . . .
S Instructions in critical sections
2 (wrt some shared variable)
critical 7 ° ® ° ° ° should not be interleaved
section< U, Unsafe region
wrt ent)\ o . . o o Sets of states where such
L interleaving occurs form
2 unsafe regions
NP ° ° ° o o
H,
@ ¢ ® ¢ ® *— Thread 1
H, L, U, S T
N\ /
N

critical section wrt cnt

29

Critical Sections and Unsafe Regions

Thread 2
safe
»
T 1 ¢ = * 1 Def: A trajectory is safe iff it
2 ‘ does not enter any unsafe region
-9 L — — —
S, ‘ ‘ unsafe Claim: A trajectory is correct
(wrt cnt) iffitis safe
critical) e—— 2 ° ° °
section< U, Urlsafe region
wrt cnt 2 ° 2 ° ° °
L,
\ x [[o o
Hzo—»—l
° ° *— Thread 1

H, L, U, S T

- J/
hd

critical section wrt cnt

30

Enforcing Mutual Exclusion

* Question: How can we guarantee a safe trajectory?

* Answer: We must synchronize the execution of the threads so
that they can never have an unsafe trajectory.
e i.e., need to guarantee mutually exclusive access for each critical section.

* Classic solution:
« Semaphores (Edsger Dijkstra)

e Other approaches (out of our scope)
e Mutex and condition variables
e Monitors (Java)

31

Using Semaphores for Mutual Exclusion

¢ Basic idea:

« Associate each shared variable (or related set of shared variables) with
a unique variable, called semaphore, initially 1

e Every time a thread tries to enter the critical section, it first checks the
mutex value. If it’s still 1, the thread decrements the mutex value to O
(through a P operation) and enters the critical section

« Every time a thread exits the critical section, it increments the mutex
value to 1 (through a V operation) so that other threads are now
allowed to enter the critical section

« NO more than one thread can be in the critical section at a time

32

Using Semaphores for Mutual Exclusion

* Terminology:
o Binary semaphore: semaphore whose value is always 0 or 1
o Mutex: binary semaphore used for mutual exclusion
e P operation: “locking” the mutex
e V operation: “unlocking” or “releasing” the mutex
e “Holding” a mutex: locked and not yet unlocked.
« Counting semaphore: used as a counter for set of available resources.

33

Proper Synchronization

e Define and initialize a mutex for the shared variable cnt:

volatile long cnt = 0; /% Counter x/
sem_t mutex; /* Semaphore that protects cnt */

Sem_init(&mutex, 0, 1); /* mutex = 1 %/

« Surround critical section with P and V:

for (1 = 0; 1 < niters; 1++) { linux> ./goodecnt 10000
P(&mutex) ; OK cnt=20000
cnt++; linux> ./goodent 10000
V(&mutex) ; OK cnt=20000
} linux>
goodcnt.c

Warning: It’s orders of magnitude slower
than badcnt.c.

34

Semaphores

35

Semaphores

* Semaphore: non-negative global integer synchronization variable.
Manipulated by P and V operations.

35

Semaphores

* Semaphore: non-negative global integer synchronization variable.
Manipulated by P and V operations.
* P(s)
 |f sis nonzero, then decrement s by 1 and return immediately.
 Test and decrement operations occur atomically (indivisibly)
o If sis zero, then suspend thread until s becomes nonzero and the
thread is restarted by a V operation.
 After restarting, the P operation decrements s and returns to the caller.

35

Semaphores

* Semaphore: non-negative global integer synchronization variable.
Manipulated by P and V operations.

* P(s)
 |f sis nonzero, then decrement s by 1 and return immediately.
 Test and decrement operations occur atomically (indivisibly)

o If sis zero, then suspend thread until s becomes nonzero and the
thread is restarted by a V operation.

 After restarting, the P operation decrements s and returns to the caller.
* \(s):
e Increment s by 1.
* Increment operation occurs atomically

 |f there are any threads blocked in a P operation waiting for s to
lbecome non-zero, then restart exactly one of those threads, which
then completes its P operation by decrementing s.

35

Semaphores

* Semaphore: non-negative global integer synchronization variable.
Manipulated by P and V operations.

* P(s)
 |f sis nonzero, then decrement s by 1 and return immediately.
 Test and decrement operations occur atomically (indivisibly)

o If sis zero, then suspend thread until s becomes nonzero and the
thread is restarted by a V operation.

 After restarting, the P operation decrements s and returns to the caller.
* \(s):
e Increment s by 1.
* Increment operation occurs atomically

« |f there are any threads blocked in a P operation waiting for s to
lbecome non-zero, then restart exactly one of those threads, which
then completes its P operation by decrementing s.
e Semaphore invariant: (s >= 0)

35

C Semaphore Operations

Pthreads functions:

#include <semaphore.h>
int sem init(sem t *s, 0, unsigned int val);} /* s = val */

int sem wait(sem t *s); /* P(s) */
int sem post(sem t *s); /* V(s) */

Why Mutexes Work

Thread 2
; 1 0 0 0 0 1 1 Provide mutually exclusive
' * * * * * * * access to shared variable by
T, surrounding critical section with
1 1 0 0 0 0 1 1)
' P and V operations on
V(s) Forbidden region semaphore s (initially set to 1)
0 0 0 0
1 -1 1 - . i
S, Semaphore invariant
0 B T T N0 creates a forbidden region
u, that encloses unsafe region and
LA PR O that cannot be entered by any
L trajectory.
2 0 0 -1 -1 1 1 0 0
P(s) 1 1 0 0 0 0 1 1
HZ
1 K 0 0 0 0 1 < Thread 1
ﬂ H, P(s) L, U, S; Vis) T,
Initially

s=1

Mutual Exclusion Summary

* Programmers need a clear model of how variables are shared
by threads.

* Variables shared by multiple threads must be protected to
ensure mutually exclusive access.

* Semaphores are a fundamental mechanism for enforcing mutual
exclusion.

38

Coordinate Access to Shared Resources

* So far we have described how to use binary semaphore to
ensure mutual exclusion

* \We can also use counting (non-binary) semaphore to achieve
more sophisticated coordination of share data accesses

e Basic idea: Use counting semaphores to keep track of
resource state and to notify other threads that some condition
has become true

* Two classic examples:
« The Producer-Consumer Problem

39

Producer-Consumer Problem

Producer Shared Consumer
thread buffer thread

e Common synchronization pattern:
e Producer waits for empty slot, inserts item in buffer, and notifies consumer

e Consumer waits for item, removes it from buffer, and notifies producer

e Examples
e Multimedia processing:
e Producer creates MPEG video frames, consumer renders them
e Graphical user interfaces (GUI) applications:

» Producer detects mouse clicks, mouse movements, and keyboard hits
and inserts corresponding events in buffer

e Consumer retrieves events from buffer and paints the display

40

Producer-Consumer on an n-element Buffer

Producer Shared Consumer
thread buffer thread
rear front

* Consume element by moving front pointer forward. Produce
element by moving rear pointer forward

41

Producer-Consumer on an n-element Buffer

Producer Shared
thread buffer

!

rear front

!

Consumer

thread

* Consume element by moving front pointer forward. Produce

element by moving rear pointer forward

e Requires a mutex (binary semaphore) to ensure mutual

exclusive access to the shared buffer

41

Producer-Consumer on an n-element Buffer

Producer Shared Consumer
thread buffer thread
rear front

* Consume element by moving front pointer forward. Produce
element by moving rear pointer forward

e Requires a mutex (binary semaphore) to ensure mutual
exclusive access to the shared buffer

e But how we know if there are enough space for the producer
and there are available elements for the consumer?

41

Producer-Consumer on an n-element Buffer

Producer Shared Consumer
thread buffer thread
rear front

* Consume element by moving front pointer forward. Produce
element by moving rear pointer forward

e Requires a mutex (binary semaphore) to ensure mutual
exclusive access to the shared buffer

e But how we know if there are enough space for the producer
and there are available elements for the consumer?

* Use two counting semaphores:
e slots: counts the available slots in the buffer
e 1tems: counts the available items in the buffer

41

Implementation

Removing an item from a shared buffer:

Sem_init(&sp—>mutex, 0, 1);

/* Remove and return the first item from buffer sp x/

int sbuf_remove(sbuf_t *sp)

{
int item;
P(&sp—>mutex); /* Lock the buffer x/
item = sp—>buf[(++sp—>front)%(sp—>n)]; /* Remove the item x/
V(&sp—>mutex) ; /* Unlock the buffer x/
return item;

¥

Inserting an item into a shared buffer:

/* Insert item onto the rear of shared buffer
void sbuf_insert(sbuf_t %sp, int item)

{

P(&sp—>mutex) ; /%
sp—>buf [(++sp—>rear)%(sp—>n)] = item; /x*
V(&sp—>mutex) ; /%

sp x/

Lock the buffer x/
Insert the item x/
Unlock the buffer x/

Implementation

Removing an item from a shared buffer:

Sem_init(&sp—>mutex, 0, 1);

Sem_init(&sp—>items, 0, 0);

/* Remove and return the first item from buffer sp x/

int sbuf_remove(sbuf_t *sp)

{
int item;
P(&sp—>items); /%
P(&sp—>mutex); /%
item = sp—>buf[(++sp—>front)%(sp->n)1; /x*
V(&sp—>mutex); /%
return item;

¥

Wait for available item x/

Lock the buffer x/

Remove the item x/

Unlock the buffer x/

Inserting an item into a shared buffer:

/* Insert item onto the rear of shared buffer
void sbuf_insert(sbuf_t %sp, int item)

{

P(&sp—>mutex) ; /%
sp—>buf [(++sp—>rear)%(sp—>n)] = item; /x*
V(&sp—>mutex); /%
V(&sp—>items); /%

sp x/

Lock the buffer x/
Insert the item x/
Unlock the buffer x/

Announce available item x/

Implementation Sem_init (&sp->mutex, 0, 1);

Sem_init(&sp—>items, 0, 0);

Sem_init(&sp—>slots, @, n);

Removing an item from a shared buffer:

/* Remove and return the first item from buffer sp x/
int sbuf_remove(sbuf_t *sp)

{
int item;
P(&sp—>items); /* Wait for available item x/
P(&sp—>mutex); /* Lock the buffer x/
item = sp—>buf[(++sp—>front)%(sp—>n)]; /* Remove the item x/
V(&sp—>mutex) ; /* Unlock the buffer x/
V(&sp—>slots); /* Announce available slot x/
return item;

¥

Inserting an item into a shared buffer:

/* Insert item onto the rear of shared buffer sp *x/
void sbuf_insert(sbuf_t %sp, int item)

{
P(&sp—>slots); /* Wait for available slot x/
P(&sp—>mutex); /* Lock the buffer x/
sp—>buf [(++sp—>rear)%(sp—>n)] = item; /% Insert the item x/
V(&sp—>mutex) ; /* Unlock the buffer x/
V(&sp—>items); /* Announce available item x/

