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Action Items: 
• Programming Assignment 4 grades out 
• Programming Assignment 5 re-grade open 
• Programming Assignment 6 due soon
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Announcement
• Programming assignment 6 is due on 11:59pm, Monday, April 30.

• Programming assignment 5 re-grade is open until 11:59pm, Friday

• Programming assignment 4 grades are out
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Due Last 
Lecture
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Today
• Shared variables in multi-threaded programming


• Mutual exclusion using semaphore 
• Deadlock 

• Thread-level parallelism

• Amdahl’s Law: performance model of parallel programs 

• Hardware support for multi-threading

• Single-core 
• Hyper-threading 
• Multi-core 
• Cache coherence
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Binary Semaphore Protecting Critical Section

• Define and initialize a mutex for the shared variable cnt:
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  volatile long cnt = 0;  /* Counter */ 
  sem_t mutex;            /* Semaphore that protects cnt */ 
  
  Sem_init(&mutex, 0, 1); /* mutex = 1 */

• Surround critical section with P and V:

 for (i = 0; i < niters; i++) { 
     P(&mutex); 
     cnt++; 
     V(&mutex); 
  } goodcnt.c
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Deadlock
• Def: A process/thread is deadlocked if and only if it is waiting for 

a condition that will never be true

• General to concurrent/parallel programming (threads, 

processes)

• Typical Scenario


• Processes	
  1	
  and	
  2	
  needs	
  two	
  resources	
  (A	
  and	
  B)	
  to	
  proceed	
  
• Process	
  1	
  acquires	
  A,	
  waits	
  for	
  B	
  
• Process	
  2	
  acquires	
  B,	
  waits	
  for	
  A	
  
• Both	
  will	
  wait	
  forever!
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Deadlocking With Semaphores
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void *count(void *vargp) 
{ 
    int i; 
    int id = (int) vargp; 
    for (i = 0; i < NITERS; i++) { 
 P(&mutex[id]); P(&mutex[1-id]); 
 cnt++; 
 V(&mutex[id]); V(&mutex[1-id]); 
    } 
    return NULL; 
} 

int main() 
{ 
    pthread_t tid[2]; 
    Sem_init(&mutex[0], 0, 1);  /* mutex[0] = 1 */ 
    Sem_init(&mutex[1], 0, 1);  /* mutex[1] = 1 */ 
    Pthread_create(&tid[0], NULL, count, (void*) 0); 
    Pthread_create(&tid[1], NULL, count, (void*) 1); 
    Pthread_join(tid[0], NULL); 
    Pthread_join(tid[1], NULL); 
    printf("cnt=%d\n", cnt); 
    exit(0); 
}

Tid[0]: 
P(s0); 
P(s1); 
cnt++; 
V(s0); 
V(s1); 

Tid[1]: 
P(s1); 
P(s0); 
cnt++; 
V(s1); 
V(s0); 
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Avoiding Deadlock
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Tid[0]: 
P(s0); 
P(s1); 
cnt++; 
V(s0); 
V(s1);

Tid[1]: 
P(s0); 
P(s1); 
cnt++; 
V(s1); 
V(s0);

Acquire shared resources in same order

Tid[0]: 
P(s0); 
P(s1); 
cnt++; 
V(s0); 
V(s1);

Tid[1]: 
P(s1); 
P(s0); 
cnt++; 
V(s1); 
V(s0);
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Another Deadlock Example: Signal Handling

• Signal handlers are concurrent with main program and may 
share the same global data structures.

8
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Another Deadlock Example: Signal Handling

• Signal handlers are concurrent with main program and may 
share the same global data structures.
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static int x = 5; 
void handler(int sig) 
{ 
    x = 10; 
} 

int main(int argc, char **argv) 
{ 
    int pid; 
    Signal(SIGCHLD, handler); 

    if ((pid = Fork()) == 0) { /* Child */ 
        Execve("/bin/date", argv, NULL); 
    } 

    if (x == 5) 
        y = x * 2; // You’d expect y == 10 
    exit(0); 
}
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Another Deadlock Example: Signal Handling

• Signal handlers are concurrent with main program and may 
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Another Deadlock Example: Signal Handling

• Signal handlers are concurrent with main program and may 
share the same global data structures.

8

static int x = 5; 
void handler(int sig) 
{ 
    x = 10; 
} 

int main(int argc, char **argv) 
{ 
    int pid; 
    Signal(SIGCHLD, handler); 

    if ((pid = Fork()) == 0) { /* Child */ 
        Execve("/bin/date", argv, NULL); 
    } 

    if (x == 5) 
        y = x * 2; // You’d expect y == 10 
    exit(0); 
}

What if the following happens:
• Parent process executes and 

finishes if (x == 5)
• OS decides to take the 

SIGCHLD interrupt and 
executes the handler

• When return to parent 
process, y == 20!
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Fixing the Signal Handling Bug
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static int x = 5; 
void handler(int sig) 
{ 
    x = 10; 
} 

int main(int argc, char **argv) 
{ 
    int pid; 
    sigset_t mask_all, prev_all; 
    sigfillset(&mask_all); 
    signal(SIGCHLD, handler); 

    if ((pid = Fork()) == 0) { /* Child */ 
        Execve("/bin/date", argv, NULL); 
    } 

    Sigprocmask(SIG_BLOCK, &mask_all, &prev_all); 
    if (x == 5) 
        y = x * 2; // You’d expect y == 10 
    Sigprocmask(SIG_SETMASK, &prev_all, NULL); 

    exit(0); 
}

• Block all signals before 
accessing a shared, 
global data structure.
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How About Using a Mutex?

10

static int x = 5; 
void handler(int sig) 
{ 
    P(&mutex); 
    x = 10; 
    V(&mutex); 
} 

int main(int argc, char **argv) 
{ 
    int pid; 
    sigset_t mask_all, prev_all; 
    signal(SIGCHLD, handler); 

    if ((pid = Fork()) == 0) { /* Child */ 
        Execve("/bin/date", argv, NULL); 
    } 

    P(&mutex); 
    if (x == 5) 
        y = x * 2; // You’d expect y == 10 
    V(&mutex); 

    exit(0); 
}
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How About Using a Mutex?

10

static int x = 5; 
void handler(int sig) 
{ 
    P(&mutex); 
    x = 10; 
    V(&mutex); 
} 

int main(int argc, char **argv) 
{ 
    int pid; 
    sigset_t mask_all, prev_all; 
    signal(SIGCHLD, handler); 

    if ((pid = Fork()) == 0) { /* Child */ 
        Execve("/bin/date", argv, NULL); 
    } 

    P(&mutex); 
    if (x == 5) 
        y = x * 2; // You’d expect y == 10 
    V(&mutex); 

    exit(0); 
}

• This implementation 
will get into a deadlock.

• Signal handler wants 
the mutex, which is 
acquired by the main 
program.

• Key: signal handler is in 
the same process as 
the main program. The 
kernel forces the 
handler to finish before 
returning to the main 
program.
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Summary of Multi-threading Programming
• Concurrent/parallel threads access shared variables

• Need to protect concurrent accesses to guarantee correctness

• Semaphores (e.g., mutex) provide a simple solution

• Can lead to deadlock if not careful

• Take CSC 258 to know more about avoiding deadlocks (and 

parallel programming in general)

11



Thinking in Parallel is Hard
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Thinking in Parallel is Hard
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Maybe Thinking is Hard
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Today
• Shared variables in multi-threaded programming


• Mutual exclusion using semaphore 
• Deadlock 

• Thread-level parallelism

• Amdahl’s Law: performance model of parallel programs 

• Hardware support for multi-threading

• Single-core 
• Hyper-threading 
• Multi-core 
• Cache coherence
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Thread-level Parallelism (TLP)
• Thread-Level Parallelism


• Splitting a task into independent sub-tasks 
• Each thread is responsible for a sub-task 

• Example: Parallel summation of N number 
• Should add up to ((n-1)*n)/2 

• Partition values 1, …, n-1 into t ranges

• ⎣n/t⎦ values in each range 
• Each of t threads processes one range (sub-task) 
• Sum all sub-sums in the end

14
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Amdahl’s Law

•Gene Amdahl (1922 – 2015). Giant in computer architecture
•Captures the difficulty of using parallelism to speed things up

15
Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.
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15
Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.



Carnegie Mellon

Amdahl’s Law

•Gene Amdahl (1922 – 2015). Giant in computer architecture
•Captures the difficulty of using parallelism to speed things up
•Amdahl’s Law


• f: Parallelizable fraction of a program 
• N: Number of processors (i.e., maximal achievable speedup)

15

1 - f

Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.



Carnegie Mellon

Amdahl’s Law

•Gene Amdahl (1922 – 2015). Giant in computer architecture
•Captures the difficulty of using parallelism to speed things up
•Amdahl’s Law


• f: Parallelizable fraction of a program 
• N: Number of processors (i.e., maximal achievable speedup)

15

+1 - f

Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.



Carnegie Mellon

Amdahl’s Law

•Gene Amdahl (1922 – 2015). Giant in computer architecture
•Captures the difficulty of using parallelism to speed things up
•Amdahl’s Law


• f: Parallelizable fraction of a program 
• N: Number of processors (i.e., maximal achievable speedup)

15

+1 - f f
N

Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.



Carnegie Mellon

Amdahl’s Law

•Gene Amdahl (1922 – 2015). Giant in computer architecture
•Captures the difficulty of using parallelism to speed things up
•Amdahl’s Law


• f: Parallelizable fraction of a program 
• N: Number of processors (i.e., maximal achievable speedup)

15

Speedup =
1

+1 - f f
N

Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.



Carnegie Mellon

Amdahl’s Law

•Gene Amdahl (1922 – 2015). Giant in computer architecture
•Captures the difficulty of using parallelism to speed things up
•Amdahl’s Law


• f: Parallelizable fraction of a program 
• N: Number of processors (i.e., maximal achievable speedup)

15

Speedup =
1

+1 - f f
N

Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.

•Completely parallelizable (f = 1): Speedup = N



Carnegie Mellon

Amdahl’s Law

•Gene Amdahl (1922 – 2015). Giant in computer architecture
•Captures the difficulty of using parallelism to speed things up
•Amdahl’s Law


• f: Parallelizable fraction of a program 
• N: Number of processors (i.e., maximal achievable speedup)

15

Speedup =
1

+1 - f f
N

Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.

•Completely parallelizable (f = 1): Speedup = N
•Completely sequential (f = 0): Speedup = 1



Carnegie Mellon

Amdahl’s Law

•Gene Amdahl (1922 – 2015). Giant in computer architecture
•Captures the difficulty of using parallelism to speed things up
•Amdahl’s Law


• f: Parallelizable fraction of a program 
• N: Number of processors (i.e., maximal achievable speedup)

15

Speedup =
1

+1 - f f
N

Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.

•Completely parallelizable (f = 1): Speedup = N
•Completely sequential (f = 0): Speedup = 1
•Mostly parallelizable (f = 0.9, N = 1000): Speedup = 9.9
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Sequential Bottleneck

16

f (parallel fraction) 
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Why the Sequential Bottleneck?
• Maximum speedup limited by the 

sequential portion
• Main cause: Non-parallelizable 

operations on data
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     }



Carnegie Mellon

Why the Sequential Bottleneck?
• Maximum speedup limited by the 

sequential portion
• Main cause: Non-parallelizable 

operations on data
• Parallel portion is usually not 

perfectly parallel as well

• e.g., Synchronization overhead

17

Each thread: 
    loop { 
        Compute 
        P(A) 
            Update shared data 
        V(A) 
     }

N



Carnegie Mellon

Why the Sequential Bottleneck?
• Maximum speedup limited by the 

sequential portion
• Main cause: Non-parallelizable 

operations on data
• Parallel portion is usually not 

perfectly parallel as well

• e.g., Synchronization overhead

17

Each thread: 
    loop { 
        Compute 
        P(A) 
            Update shared data 
        V(A) 
     }

N

C



Carnegie Mellon

Why the Sequential Bottleneck?
• Maximum speedup limited by the 

sequential portion
• Main cause: Non-parallelizable 

operations on data
• Parallel portion is usually not 

perfectly parallel as well

• e.g., Synchronization overhead

17

Each thread: 
    loop { 
        Compute 
        P(A) 
            Update shared data 
        V(A) 
     }

N

C



Carnegie Mellon

Today
• Shared variables in multi-threaded programming


• Mutual exclusion using semaphore 
• Deadlock 

• Thread-level parallelism

• Amdahl’s Law: performance model of parallel programs 

• Hardware support for multi-threading

• Single-core 
• Hyper-threading 
• Multi-core 
• Cache coherence
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Can A Single Core Support Multi-threading?

• Need to multiplex between different threads (time slicing)

19

Thread A Thread B Thread C

Sequential Multi-threaded
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Any benefits?
• Can single-core multi-threading provide any performance gains?
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Any benefits?
• Can single-core multi-threading provide any performance gains?
• If Thread A has a cache miss and the pipeline gets stalled, 

switch to Thread C. Improves the overall performance.

20

Thread A Thread B Thread C

Cache

Miss!
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When to Switch?

21

• Coarse grained

• Event based, e.g., switch on L3 cache miss 
• Quantum based (every thousands of cycles)
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• Coarse grained

• Event based, e.g., switch on L3 cache miss 
• Quantum based (every thousands of cycles)

• Fine grained

• Cycle by cycle 
• Thornton, “CDC 6600: Design of a Computer,” 1970. 
• Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP 

1978. Seminal paper that shows that using multi-threading can avoid 
branch prediction.
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When to Switch?

21

• Coarse grained

• Event based, e.g., switch on L3 cache miss 
• Quantum based (every thousands of cycles)

• Fine grained

• Cycle by cycle 
• Thornton, “CDC 6600: Design of a Computer,” 1970. 
• Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP 

1978. Seminal paper that shows that using multi-threading can avoid 
branch prediction.

•Either way, need to save/restore thread context upon 
switching
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Today
• Shared variables in multi-threaded programming


• Mutual exclusion using semaphore 
• Deadlock 

• Thread-level parallelism

• Amdahl’s Law: performance model of parallel programs 

• Hardware support for multi-threading

• Single-core 
• Hyper-threading 
• Multi-core 
• Cache coherence
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Single-Core Internals

23

Instruction	
  Control

Registers

Instruction	
  
Decoder

Inst.	
  Window

Instruction 
Cache

PC

Functional	
  Units

Int	
  
Arith

Int	
  
Arith

FP 
Arith

Load	
  / 
Store Data	
  Cache

• Typically has multiple function units to allow for issuing multiple 
instructions at the same time


• Called “Superscalar” Microarchitecture
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Conventional Multi-threading

24

Thread 1

Context 
Switch

Thread 2
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Conventional Multi-threading

24

Functional Units

Thread 1

Context 
Switch

Thread 2
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Hyper-threading

25

Functional	
  Units

Int	
  
Arith

Int	
  
Arith

FP 
Arith

Load	
  / 
Store

Instruction	
  Control

Instruction	
  
Decoder

Data	
  Cache

Instruction 
Cache

• Intel’s terminology. More commonly known as: Simultaneous Multi-
threading (SMT)


• Replicate enough hardware structures to process K instruction streams

• K copies of all registers. Share functional units

Reg	
  A Inst.	
  Window	
  A

PC	
  A
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Hyper-threading

25

Functional	
  Units

Int	
  
Arith

Int	
  
Arith

FP 
Arith

Load	
  / 
Store

Instruction	
  Control

Instruction	
  
Decoder

Data	
  Cache

Instruction 
Cache

• Intel’s terminology. More commonly known as: Simultaneous Multi-
threading (SMT)


• Replicate enough hardware structures to process K instruction streams

• K copies of all registers. Share functional units

Reg	
  A Inst.	
  Window	
  A

PC	
  A
Reg	
  B Inst.	
  Window	
  B

PC	
  B
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Conventional Multi-threading vs. Hyper-threading
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Thread 1

Context 
Switch

Thread 2

Conventional 
Multi-threading Hyper-threading
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Conventional Multi-threading vs. Hyper-threading
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Switch
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Conventional 
Multi-threading Hyper-threading

Multiple threads 
actually execute in 
parallel (even with 
one single core)
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Conventional Multi-threading vs. Hyper-threading

26

Thread 1

Context 
Switch

Thread 2

Conventional 
Multi-threading Hyper-threading

Multiple threads 
actually execute in 
parallel (even with 
one single core)

No/little context 
switch overhead
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Today
• Shared variables in multi-threaded programming


• Mutual exclusion using semaphore 
• Deadlock 

• Thread-level parallelism

• Amdahl’s Law: performance model of parallel programs 

• Hardware support for multi-threading

• Single-core 
• Hyper-threading 
• Multi-core 
• Cache coherence
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Typical Multi-core Processor

• Traditional 
multiprocessing: 
symmetric 
multiprocessor (SMP)


• Every core is exactly 
the same. Private 
registers, L1/L2 
caches, etc.


• Share L3 (LLC) and 
main memory

28

Regs

L1	
   
d-­‐cache

L1	
   
i-­‐cache

L2	
  unified	
  cache

Core	
  0

Regs

L1	
   
d-­‐cache

L1	
   
i-­‐cache

L2	
  unified	
  cache

Core	
  n-­‐1

…

L3	
  unified	
  cache 
(shared	
  by	
  all	
  cores)

Main	
  memory
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Asymmetric Multiprocessor (AMP)

29

En
er

gy
 C

on
su

m
pt

io
n

Performance

Big Core Small Core

Frequency 
Levels

• Offer a large performance-energy trade-off space
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Asymmetric Chip-Multiprocessor (ACMP)

30

• Already used in commodity devices (e.g., Samsung Galaxy S6, iPhone 7)
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Combine Multi-core with Hyper-threading
• Common for laptop/desktop/server machine. E.g., 2 physical 

cores, each core has 2 hyper-threads => 4 virtual cores.

• Not for mobile processors (Hyper-threading costly to implement)

31
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Today
• Shared variables in multi-threaded programming


• Mutual exclusion using semaphore 
• Deadlock 

• Thread-level parallelism

• Amdahl’s Law: performance model of parallel programs 

• Hardware support for multi-threading

• Single-core 
• Hyper-threading 
• Multi-core 
• Cache coherence
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The Issue
• Assume that we have a multi-core processor. Thread 0 runs on Core 0, 

and Thread 1 runs on Core 1.
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The Issue
• Assume that we have a multi-core processor. Thread 0 runs on Core 0, 

and Thread 1 runs on Core 1.
• Threads share variables: e.g., Thread 0 writes to an address, followed 

by Thread 1 reading.
• Each read should receive the value last written by anyone
• Basic question: If multiple cores access the same data, how do they 

ensure they all see a consistent state?

33

Thread 0 
Mem[A] = 1

Thread 1 
…

Print Mem[A]
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The Issue
• Without cache, the issue is (theoretically) solvable by using mutex.

• …because there is only one copy of x in the entire system. Accesses 

to x in memory are serialized by mutex.

34

C1 C2

x
Main Memory

1000

Bus

Write: x=1000 Read: x
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Readings: Cache Coherence
• Most helpful


• Culler and Singh, Parallel Computer Architecture 
• Chapter 5.1 (pp 269 – 283), Chapter 5.3 (pp 291 – 305) 

• Patterson&Hennessy, Computer Organization and Design 
• Chapter 5.8 (pp 534 – 538 in 4th and 4th revised eds.) 

• Papamarcos and Patel, “A low-overhead coherence solution for multiprocessors 
with private cache memories,” ISCA 1984. 

• Also very useful

• Censier and Feautrier, “A new solution to coherence problems in multicache 

systems,” IEEE Trans. Computers, 1978. 
• Goodman, “Using cache memory to reduce processor-memory traffic,” ISCA 1983. 
• Laudon and Lenoski, “The SGI Origin: a ccNUMA highly scalable server,” ISCA 

1997. 
• Martin et al, “Token coherence: decoupling performance and correctness,” ISCA 

2003. 
• Baer and Wang, “On the inclusion properties for multi-level cache hierarchies,” 

ISCA 1988.
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Take CSC 251/ECE 204 to learn more about 
advanced computer architecture concepts.


