CSC 252: Computer Organization
Spring 2018: Lecture 26

Instructor: Yuhao Zhu

Department of Computer Science
University of Rochester

Action Items:

* Programming Assignment 4 grades out

* Programming Assignment 5 re-grade open
e Programming Assignment 6 due soon

22

29

Announcement

* Programming assignment 6 is due on 11:39pm, Monday, April 30.
* Programming assignment 5 re-grade is open until 11:539pm, Friday
* Programming assignment 4 grades are out

23 24 25 @ 27 28

30 May 1
Last

Due Lecture

Today

* Shared variables in multi-threaded programming

e Deadlock

Binary Semaphore Protecting Critical Section

e Define and initialize a mutex for the shared variable cnt:

volatile long cnt = 0; /% Counter x/
sem_t mutex; /* Semaphore that protects cnt */

Sem_init(&mutex, 0, 1); /x mutex = 1 %/

e Surround critical section with P and V:

for (1 = 0; 1 < niters; i++) {
P(&mutex);
cnt++;
V(&mutex);

}

goodcnt.c

Deadlock

» Def: A process/thread is deadlocked if and only if it is waiting for
a condition that will never be true

* General to concurrent/parallel programming (threads,
Processes)
e Typical Scenario
e Processes 1 and 2 needs two resources (A and B) to proceed
e Process 1 acquires A, waits for B

e Process 2 acquires B, waits for A
o Both will wait forever!

Deadlocking With Semaphores

{

int

void xcount(void *vargp)

int 1i;
int id = (int) vargp;
for (i = @; i < NITERS; i++) {

P(&mutex[id]); P(&mutex[1-id]);
cnt++;
V(&mutex[id]); V(&mutex[1-id]);
}
return NULL;

main()

pthread_t tid[2];
Sem_init(&mutex[0], @, 1); /* mutex[0] = 1 %/
Sem_init(&mutex[1], 0, 1); /% mutex[1l] = 1 %/

Pthread _create(&tid[@], NULL, count, (voidx) 0);
Pthread create(&tid[1], NULL, count, (voidx) 1);

Pthread_join(tid[@], NULL);
Pthread_join(tid[1], NULL);
printf("cnt=%d\n", cnt);
exit(0);

Tid[0]:

P(s,);
P(s,);
cnt++;
V(s,);
V(s,);

Tid[1]:
P(s,);
P(s,);
cnt++;
V(s,);
V(s,);

Avoiding Deadlock

Tid[0]:

P(s,);
P(s;);
cnt++;
V(s,);
V(s,);

Tid[0]:

P(s0Q);
P(sl);
cnt++;
V(s0);
V(sl);

Acquire shared resources in same order

Tid[1]:
P(s;);
P(sy);
cnt++;
V(s,);
V(s,);

Tid[1]:
P(s0Q);
P(s1);
cnt++;
V(sl);
V(s0);

Another Deadlock Example: Signal Handling

e Signal handlers are concurrent with main program and may
share the same global data structures.

Another Deadlock Example: Signal Handling

e Signal handlers are concurrent with main program and may
share the same global data structures.

static int x = 5;
void handler(int sig)

{
}

X = 10;

int main(int argc, char xxargv)
{
int pid;
Signal(SIGCHLD, handler);

if ((pid = Fork()) == 0) { /* Child */
Execve("/bin/date", argv, NULL);

I
if (x == 5)

y = x % 2; // You'd expect y == 10
exit(0);

Another Deadlock Example: Signal Handling

e Signal handlers are concurrent with main program and may
share the same global data structures.

static int x = 5;
void handler(int sig)

{
}

X = 10;

int main(int argc, char xxargv)
{
int pid;
Signal(SIGCHLD, handler);

if ((pid = Fork()) == 0) { /* Child */
Execve("/bin/date", argv, NULL);

I
if (x == 5)

y = x % 2; // You'd expect y == 10
exit(0);

What if the following happens:

Another Deadlock Example: Signal Handling

e Signal handlers are concurrent with main program and may
share the same global data structures.

static int x = 5;
void handler(int sig)

{
}

X = 10;

int main(int argc, char xxargv)
{
int pid;
Signal(SIGCHLD, handler);

if ((pid = Fork()) == 0) { /* Child */
Execve("/bin/date", argv, NULL);

I
if (x == 5)

y = x % 2; // You'd expect y == 10
exit(0);

What if the following happens:

* Parent process executes and
finishes 1f (x == 5)

Another Deadlock Example: Signal Handling

e Signal handlers are concurrent with main program and may
share the same global data structures.

static int x = 5;
void handler(int sig)

{
}

X = 10;

int main(int argc, char xxargv)
{
int pid;
Signal(SIGCHLD, handler);

if ((pid = Fork()) == 0) { /* Child */
Execve("/bin/date", argv, NULL);

I
if (x == 5)

y = x % 2; // You'd expect y == 10
exit(0);

What if the following happens:

* Parent process executes and
finishes 1f (x == 5)

» OS decides to take the
SIGCHLD interrupt and
executes the handler

Another Deadlock Example: Signal Handling

e Signal handlers are concurrent with main program and may
share the same global data structures.

static int x = 5;
void handler(int sig)

{
}

X = 10;

int main(int argc, char xxargv)
{
int pid;
Signal(SIGCHLD, handler);

if ((pid = Fork()) == 0) { /* Child */
Execve("/bin/date", argv, NULL);

I
if (x == 5)

y = x % 2; // You'd expect y == 10
exit(0);

What if the following happens:

* Parent process executes and
finishes 1f (x == 5)

» OS decides to take the
SIGCHLD interrupt and
executes the handler

* \When return to parent
process, y == 20!

Fixing the Signal Handling Bug

static int x = 5;
void handler(int sig)

{
¥

X = 10;

int main(int argc, char *kargv)

{

int pid;

sigset_t mask_all, prev_all;
sigfillset(&mask_all);
signal(SIGCHLD, handler);

if ((pid = Fork()) == 0) { /*x Child *x/
Execve("/bin/date", argv, NULL);
I3

Sigprocmask(SIG_BLOCK, &mask_all, &prev_all);
if (x == 5)

y =X % 2; // You'd expect y == 10
Sigprocmask(SIG_SETMASK, &prev_all, NULL);

exit(0);

+ Block all signals before
accessing a shared,
global data structure.

How About Using a Mutex?

static int x = 5;
void handler(int sig)

{
P(&mutex);
x = 10;
V(&mutex) ;
}
int main(int argc, char xxargv)
{

int pid;
sigset_t mask_all, prev_all;
signal(SIGCHLD, handler);

if ((pid = Fork()) == 0) { /x Child *x/
Execve("/bin/date", argv, NULL);
¥

P(&mutex);
if (x == 5)

y = X % 2; // You'd expect y == 10
V(&mutex);

exit(0);

10

How About Using a Mutex?

{

int

static int x = 5;
void handler(int sig)

P(&mutex);
x = 10;
V(&mutex);

main(int argc, char *xargv)

int pid;
sigset_t mask_all, prev_all;
signal(SIGCHLD, handler);

if ((pid = Fork()) == 0) { /x Child *x/
Execve("/bin/date", argv, NULL);
¥

P(&mutex);
if (x == 5)

y = X % 2; // You'd expect y == 10
V(&mutex);

exit(0);

 This implementation
will get into a deadlock.

10

How About Using a Mutex?

{

int

static int x = 5;
void handler(int sig)

P(&mutex);
X = 10;
V(&mutex);

main(int argc, char *xargv)
int pid;
sigset_t mask_all, prev_all;

signal(SIGCHLD, handler);

if ((pid = Fork()) == 0) { /x Child *x/
Execve("/bin/date", argv, NULL);

}
P(&mutex);
if (x == 5)

y =X *x 2; // You'd expect y == 10
V(&mutex);

exit(0);

 This implementation

will get into a deadlock.

» Signal handler wants
the mutex, which is
acquired by the main
program.

10

How About Using a Mutex?

static int x = 5; J
void handler(int sig)
{
P(&mutex);
X = 10; *
V(&mutex);
}

int main(int argc, char xxargv)

int pid;
sigset_t mask_all, prev_all; .
signal(SIGCHLD, handler);

if ((pid = Fork()) == 0) { /x Child *x/
Execve("/bin/date", argv, NULL);
¥

P(&mutex);
if (x == 5)

y = X % 2; // You'd expect y == 10
V(&mutex);

exit(0);

This implementation
will get into a deadlock.

Signal handler wants
the mutex, which is
acquired by the main
program.

Key: signal handler is in
the same process as
the main program. The
kernel forces the
handler to finish before
returning to the main
program.

10

Summary of Multi-threading Programming

* Concurrent/parallel threads access shared variables

* Need to protect concurrent accesses to guarantee correctness
* Semaphores (e.g., mutex) provide a simple solution

* Can lead to deadlock if not careful

* Take CSC 258 to know more about avoiding deadlocks (and
parallel programming in general)

11

Thinking in Parallel is Hard

Thinking in Parallel is Hard

Maybe Thinking is Hard

Today

* Thread-level parallelism
e Amdahl’s Law: performance model of parallel programs

13

Thread-level Parallelism (TLP)

* Thread-Level Parallelism
 Splitting a task into independent sub-tasks
« Each thread is responsible for a sub-task
* Example: Parallel summation of N number
« Should add up to ((n-1)*n)/2
e Partition values 1, ..., n-7 into t ranges
e Ln/t] values in each range

» Each of t threads processes one range (sub-task)
e Sum all sub-sums in the end

14

Amdahl’s Law

* Gene Amdahl (1922 — 2015). Giant in computer architecture
» Captures the difficulty of using parallelism to speed things up

Amdanhl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.
15

Amdahl’s Law

* Gene Amdahl (1922 — 2015). Giant in computer architecture
» Captures the difficulty of using parallelism to speed things up

* Amdahl’s Law
* f: Parallelizable fraction of a program
* N: Number of processors (i.e., maximal achievable speedup)

Amdanhl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.
15

Amdahl’s Law

* Gene Amdahl (1922 — 2015). Giant in computer architecture
» Captures the difficulty of using parallelism to speed things up

* Amdahl’s Law
* f: Parallelizable fraction of a program
* N: Number of processors (i.e., maximal achievable speedup)

Amdanhl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.
15

Amdahl’s Law

* Gene Amdahl (1922 — 2015). Giant in computer architecture
» Captures the difficulty of using parallelism to speed things up

* Amdahl’s Law
* f: Parallelizable fraction of a program
* N: Number of processors (i.e., maximal achievable speedup)

1-f 4

Amdanhl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.
15

Amdahl’s Law

e Gene Amdahl (1922 - 2015). Giant in computer architecture
» Captures the difficulty of using parallelism to speed things up

* Amdahl’s Law
* f: Parallelizable fraction of a program
* N: Number of processors (i.e., maximal achievable speedup)

Amdanhl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.
15

Amdahl’s Law

* Gene Amdahl (1922 — 2015). Giant in computer architecture
» Captures the difficulty of using parallelism to speed things up

* Amdahl’s Law
* f: Parallelizable fraction of a program
* N: Number of processors (i.e., maximal achievable speedup)

1
Speedup =

1-f 4

Amdanhl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.
15

Amdahl’s Law

* Gene Amdahl (1922 — 2015). Giant in computer architecture
» Captures the difficulty of using parallelism to speed things up

* Amdahl’s Law
* f: Parallelizable fraction of a program
* N: Number of processors (i.e., maximal achievable speedup)

1
Speedup =

1-f 4

* Completely parallelizable (f = 1): Speedup = N

Amdanhl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.
15

Amdahl’s Law

* Gene Amdahl (1922 — 2015). Giant in computer architecture
» Captures the difficulty of using parallelism to speed things up

* Amdahl’s Law
* f: Parallelizable fraction of a program
* N: Number of processors (i.e., maximal achievable speedup)

1
Speedup =

1-f 4

* Completely parallelizable (f = 1): Speedup = N
* Completely sequential (f = 0): Speedup = 1

Amdanhl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.
15

Amdahl’s Law

e Gene Amdahl (1922 - 2015). Giant in computer architecture
» Captures the difficulty of using parallelism to speed things up

* Amdahl’s Law
* f: Parallelizable fraction of a program
* N: Number of processors (i.e., maximal achievable speedup)

1
Speedup =

1-f 4

* Completely parallelizable (f = 1): Speedup = N
e Completely sequential (f = 0): Speedup = 1
* Mostly parallelizable (f = 0.9, N = 1000): Speedup = 9.9

Amdanhl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.
15

Sequential Bottleneck

200

w——N=10
w===N=100
o N = 1000

TBNSNIRNBITIRIRSTIBRNLRIBIYR ™
oo o o o oo Socooc®cocoo oo oo
f (parallel fraction)

16

Why the Sequential Bottleneck?

‘ * Maximum speedup limited by the

8 8 8 8 sequential portion

22 2 Main cause: Non-parallelizable
operations on data

< 8§

L |2 ¢

Why the Sequential Bottleneck?

* Maximum speedup limited by the
§ sequential portion

 Main cause: Non-parallelizable
operations on data

* Parallel portion is usually not
perfectly parallel as well

* e.g., Synchronization overhead

Af—

AVAY EEAVAY

A I AA

—1\"\

17

Why the Sequential Bottleneck?

* Maximum speedup limited by the
sequential portion

 Main cause: Non-parallelizable
operations on data

AVANV

* Parallel portion is usually not
perfectly parallel as well

* e.g., Synchronization overhead

A I A
A YA
eVav

—

Each thread:

loop {
Compute
P(A)
Update shared data
V(A)
by

17

Why the Sequential Bottleneck?

* Maximum speedup limited by the
§ sequential portion

 Main cause: Non-parallelizable
operations on data

* Parallel portion is usually not
perfectly parallel as well

* e.g., Synchronization overhead

A I A
A YA

—

Each thread:

loop {
Compute N
P(A)

Update shared data
V(A)
by

17

Why the Sequential Bottleneck?

* Maximum speedup limited by the
§ sequential portion

 Main cause: Non-parallelizable
operations on data

* Parallel portion is usually not
perfectly parallel as well

* e.g., Synchronization overhead

Af—

AVAY EEAVAY

A I AA

—1\"\

Each thread:

loop {
Compute N
P(A)
Update shared data
V(A) C

}

17

Why the Sequential Bottleneck?

/\/_

AVAV

(N4 (/" \4
N4 [\

— "\
AVAY EEAVAY

AVAVY

Each thread:
loop {

Compute

P(A)
Update shared data

V(A)

}

C

* Maximum speedup limited by the

sequential portion

 Main cause: Non-parallelizable

operations on data

* Parallel portion is usually not

T1¢C
T2

perfectly parallel as well
* e.g., Synchronization overhead

17

Today

* Shared variables in multi-threaded programming

e Mutual exclusion using semaphore

e Deadlock
* Thread-level parallelism

e Amdahl’'s Law: performance model of parallel programs
* Hardware support for multi-threading

e Single-core

e Hyper-threading

e Multi-core

e Cache coherence

18

Can A Single Core Support Multi-threading?

* Need to multiplex between different threads (time slicing)
Sequential Multi-threaded

Thread A Thread B Thread C

19

Any benefits?

* Can single-core multi-threading provide any performance gains?

Thread A Thread B Thread C

20

Any benefits?

* Can single-core multi-threading provide any performance gains?

Thread A Thread B Thread C

20

Any benefits?

* Can single-core multi-threading provide any performance gains?

Thread A Thread B Thread C

20

Any benefits?

* Can single-core multi-threading provide any performance gains?

e If Thread A has a cache miss and the pipeline gets stalled,
switch to Thread C. Improves the overall performance.

Thread A Thread B Thread C

20

When to Switch?

e Coarse grained
* BEvent based, e.g., switch on L3 cache miss
* Quantum based (every thousands of cycles)

21

When to Switch?

e Coarse grained
* BEvent based, e.g., switch on L3 cache miss
* Quantum based (every thousands of cycles)

* Fine grained
» Cycle by cycle
e Thornton, “CDC 6600: Design of a Computer,” 1970.
e Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP
1978. Seminal paper that shows that using multi-threading can avoid
branch prediction.

21

When to Switch?

e Coarse grained
* BEvent based, e.g., switch on L3 cache miss
* Quantum based (every thousands of cycles)

* Fine grained
» Cycle by cycle
e Thornton, “CDC 6600: Design of a Computer,” 1970.
e Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP

1978. Seminal paper that shows that using multi-threading can avoid
branch prediction.

e Either way, need to save/restore thread context upon
switching

21

Today

* Hardware support for multi-threading

e Hyper-threading

22

Single-Core Internals

* Typically has multiple function units to allow for issuing multiple
instructions at the same time

e Called “Superscalar” Microarchitecture

Instruction Control
Instruction
Cache
Registers Inst. Window
A PC
\4 \4
Functional Units
P

Conventional Multi-threading

]
Thread 1
a N
Context
Switch

- Thread 2

24

Conventional Multi-threading

Functional Units

/11N

- Thread 1

Context
Switch

- Thread 2

24

Hyper-threading

e Intel’s terminology. More commonly known as: Simultaneous Multi-
threading (SMT)
* Replicate enough hardware structures to process K instruction streams

» K copies of all registers. Share functional units

Instruction Control
Instruction
Reg A Inst. Window A Cache

1 A

I

PCA
A 4 \ 4
Functional Units

Hyper-threading

e Intel’s terminology. More commonly known as: Simultaneous Multi-
threading (SMT)
* Replicate enough hardware structures to process K instruction streams

» K copies of all registers. Share functional units

Instruction Control
Instruction
Reg A Inst. Window A Cache
A ! I
Reg B Inst. Window B A |
T PCB
A 4 l vV V
Functional Units

Conventional Multi-threading vs. Hyper-threading

Conventional
Multi-threading

- Thread 1 E

Hyper-threading

Context
Switch

- Thread 2

Conventional Multi-threading vs. Hyper-threading

Conventional
Multi-threading

- Thread 1 E

Hyper-threading

Multiple threads
actually execute In
parallel (even with
one single core)

Context
Switch

- Thread 2

26

Conventional Multi-threading vs. Hyper-threading

Conventional
Multi-threading

- Thread 1 E

Hyper-threading

Multiple threads
actually execute In
parallel (even with
one single core)

Context
Switch

- Thread 2

No/little context
switch overhead

26

Today

* Shared variables in multi-threaded programming

e Mutual exclusion using semaphore

e Deadlock
* Thread-level parallelism

e Amdahl’'s Law: performance model of parallel programs
* Hardware support for multi-threading

e Single-core

e Hyper-threading

e Multi-core

e Cache coherence

27

Typical Multi-core Processor

L1 L1
d-cache | |i-cache

L2 unified cache

_____________________________ ,
Core n-1 :
Regs
L1 L1
d-cache | |i-cache

L2 unified cache

L3 unified cache
(shared by all cores)

Main memory

e Traditional
multiprocessing:
symmetric
multiprocessor (SMP)

* Every core is exactly
the same. Private
registers, L1/L2
caches, etc.

e Share L3 (LLC) and
main memory

28

Asymmetric Multiprocessor (AMP)

o Offer a large performance-energy trade-off space
O Big Core O Small Core

Frequency
Levels /§'

;

00O

Performance

Energy Consumption

29

Asymmetric Chip-Multiprocessor (ACMP)

e Already used in commodity devices (e.g., Samsung Galaxy S6, iPhone 7)

30

Combine Multi-core with Hyper-threading

* Common for laptop/desktop/server machine. E.g., 2 physical
cores, each core has 2 hyper-threads => 4 virtual cores.

e Not for mobile processors (Hyper-threading costly to implement)

U | Caches | Manboard | Memory | SPD | Graphics | Bench | About |

Processor
Name Intel Core i3
Code Name Skylake MaxTDP | 65.0W 'D
Package Socket 11511LGA (OR[i3
Technology = 14nm CoreVoltage | 1376V
Speafcation Inted(R) Core(T™) i3-6100 CPU @ 3. 70GMz
Famiy 6 Model E
Ext.Famly | 6 Ext. Model | SE Rensm RO

Instructions MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, EMEAT, VT-x,
AES, AVX, AVX2, FMAZ

Clocks (Core 20) Cache
Core Speed 4439.81 Mz L1Data 2x 32 KBytes 8-way
Mutpher x37.0(8-37) L1Inst 2x 32 KBytes B-way

Bus Speed 120.00 MH2 Llevel2 2x256 KE)Les Sovnay

Selection |Processor #1

£ Ver. 1.76.0.x64

31

Today

* Hardware support for multi-threading

e Cache coherence

32

The Issue

e Assume that we have a multi-core processor. Thread 0 runs on Core 0,
and Thread 1 runs on Core 1.

33

The Issue

e Assume that we have a multi-core processor. Thread 0 runs on Core 0,
and Thread 1 runs on Core 1.

e Threads share variables: e.g., Thread 0 writes to an address, followed
by Thread 1 reading.

33

The Issue

e Assume that we have a multi-core processor. Thread 0 runs on Core 0,
and Thread 1 runs on Core 1.

e Threads share variables: e.g., Thread 0 writes to an address, followed
by Thread 1 reading.

Thread 0 Thread 1
Mem[A] = 1 v

Print Mem[A]

33

The Issue

e Assume that we have a multi-core processor. Thread 0 runs on Core 0,
and Thread 1 runs on Core 1.

e Threads share variables: e.g., Thread 0 writes to an address, followed
by Thread 1 reading.

* Each read should receive the value last written by anyone

Thread 0 Thread 1
Mem[A] = 1 v

Print Mem[A]

33

The Issue

e Assume that we have a multi-core processor. Thread 0 runs on Core 0,
and Thread 1 runs on Core 1.

e Threads share variables: e.g., Thread 0 writes to an address, followed
by Thread 1 reading.

* Each read should receive the value last written by anyone

e Basic question: If multiple cores access the same data, how do they
ensure they all see a consistent state?

Thread 0 Thread 1
Mem[A] = 1 v

Print Mem[A]

33

The Issue

e Without cache, the issue is (theoretically) solvable by using mutex.

e ...because there is only one copy of x in the entire system. Accesses
to x in memory are serialized by mutex.

Write: x=1000 @ @ Read: X
[Bus]

. 1000
Main Memory

34

The Issue

* What if each core cache the same data, how do they ensure they all
see a consistent state? (assuming a write-back cache)

e

« 1000
Main Memory

35

The Issue

* What if each core cache the same data, how do they ensure they all
see a consistent state? (assuming a write-back cache)

e

« 1000
Main Memory

The Issue

* What if each core cache the same data, how do they ensure they all
see a consistent state? (assuming a write-back cache)

© ©-

1000 e

e

« 1000
Main Memory

35

The Issue

* What if each core cache the same data, how do they ensure they all
see a consistent state? (assuming a write-back cache)

Read: x
@ @ Read: X
| |

1000 e

e

« 1000
Main Memory

35

The Issue

* What if each core cache the same data, how do they ensure they all
see a consistent state? (assuming a write-back cache)

Read: x
@ @ Read: X
| |

1000 e 1000 s

e

« 1000
Main Memory

35

The Issue

* What if each core cache the same data, how do they ensure they all
see a consistent state? (assuming a write-back cache)

Read: x _
x=x+1000 Read: x
Write: x | |

1000 e 1000 s

e

« 1000
Main Memory

35

The Issue

* What if each core cache the same data, how do they ensure they all
see a consistent state? (assuming a write-back cache)

Read: x _
x=x+1000 Read: x
Write: x | |

2000 1000 s

e

« 1000
Main Memory

35

The Issue

* What if each core cache the same data, how do they ensure they all
see a consistent state? (assuming a write-back cache)

Read: X |
x=Xx+1000 Read: x
Write: x | | Read: x Should not

return 1000!

2000 jmm— 1000 prmmmeet

e

X 1000
Main Memory

35

Cache Coherence: The Idea

® Key issue: there are multiple copies of the same data in the
system, and they could have different values at the same time.

36

Cache Coherence: The Idea

® Key issue: there are multiple copies of the same data in the
system, and they could have different values at the same time.
e Key idea: ensure multiple copies have same value, i.e., coherent

36

Cache Coherence: The Idea

® Key issue: there are multiple copies of the same data in the
system, and they could have different values at the same time.

e Key idea: ensure multiple copies have same value, i.e., coherent

* How? Two options:

36

Cache Coherence: The Idea

® Key issue: there are multiple copies of the same data in the
system, and they could have different values at the same time.
e Key idea: ensure multiple copies have same value, i.e., coherent
* How? Two options:
* Update: push new value to all copies (in other caches)

36

Cache Coherence: The Idea

® Key issue: there are multiple copies of the same data in the
system, and they could have different values at the same time.
e Key idea: ensure multiple copies have same value, i.e., coherent
* How? Two options:
* Update: push new value to all copies (in other caches)
 |Invalidate: invalidate other copies (in other caches)

36

Invalidate-Based Cache Coherence

Associate each cache line with 3
states: Modified, Invalid, Shared

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

0 () (@
[we

Mo (s

X oo

Main Memory

37

Invalidate-Based Cache Coherence

Associate each cache line with 3 Read: x
states: Modified, Invalid, Shared

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

0 () (@
[we

Mo (s

X oo

Main Memory

37

Invalidate-Based Cache Coherence

Associate each cache line with 3 Read: x
states: Modified, Invalid, Shared

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

. &
(e |
ns

X oo

Main Memory

37

Invalidate-Based Cache Coherence

Associate each cache line with 3 Read: x
states: Modified, Invalid, Shared

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

B &
(e |
ns

X oo

PrRd/BusRd

Main Memory

37

Invalidate-Based Cache Coherence

Associate each cache line with 3 Read: x Read: x
states: Modified, Invalid, Shared

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

B &
(e |
ns

X oo

PrRd/BusRd

Main Memory

37

Invalidate-Based Cache Coherence

Associate each cache line with 3 Read: x Read: x
states: Modified, Invalid, Shared

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

B &
.
™Mo (s)

X oo
BusRd/Supply Data

PrRd/BusRd

Main Memory

37

Invalidate-Based Cache Coherence

Associate each cache line with 3 Read: x Read: x
states: Modified, Invalid, Shared

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

0 () (@
1000 || jemes] 1000
S
M =

X oo
BusRd/Supply Data

PrRd/BusRd

Main Memory

37

Invalidate-Based Cache Coherence

Associate each cache line with 3 Read: x Read: x
states: Modified, Invalid, Shared Read: x

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

0 () (@
1000 || jemes] 1000
S
M =

X oo
BusRd/Supply Data

PrRd/BusRd

Main Memory

37

Invalidate-Based Cache Coherence

Associate each cache line with 3 Read: x Read: x
states: Modified, Invalid, Shared Read: x

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

0 () (@
1000 || jemes] 1000
S
M =

X oo
BusRd/Supply Data
PrRd/—

PrRd/BusRd

Main Memory

37

Invalidate-Based Cache Coherence

Associate each cache line with 3 Read: x Read: x
states: Modified, Invalid, Shared Read: x
Below: State Transition for x in C2’s cache; Write: x = 5000

Syntax: Event/Action

0 () (@
1000 || jemes] 1000
S
M =

X oo
BusRd/Supply Data
PrRd/—

PrRd/BusRd

Main Memory

37

Invalidate-Based Cache Coherence

Associate each cache line with 3 Read: x Read: x
states: Modified, Invalid, Shared Read: x
Below: State Transition for x in C2’s cache; Write: x = 5000

Syntax: Event/Action

(@) (=

@ orRd/Buskd 1000 |—| —|5ooo
e

™o G)

X oo
BusRd/Supply Data
PrRd/—

Main Memory

37

Invalidate-Based Cache Coherence

Associate each cache line with 3 Read: x Read: x
states: Modified, Invalid, Shared Read: x
Below: State Transition for x in C2’s cache; Write: x = 5000

Syntax: Event/Action

@ | |
1000 |s— —l 5000
PrRd/BusRd | | |
[Bus]
@) PrWr/Invd @y} 1000

X oo
BusRd/Supply Data
PrRd/—

Main Memory

37

Invalidate-Based Cache Coherence

Associate each cache line with 3 Read: x Read: x
states: Modified, Invalid, Shared Read: x
Below: State Transition for x in C2’s cache; Write: x = 5000

Syntax: Event/Action

|—| 5000
PrRd/BusRd
[Bus]
M (s)
PrWr/Invd 1000

X oo
BusRd/Supply Data
PrRd/—

Main Memory

37

Invalidate-Based Cache Coherence

Associate each cache line with 3 Read: x Read: x
states: Modified, Invalid, Shared Read: x
Below: State Transition for x in C2’s cache; Write: x = 5000

Syntax: Event/Action

|—| 5000
PrRd/BusRd
[Bus]
(5D
PrWr/Invd 1000

X oo
BusRd/Supply Data
PrRd/—

PrRd/— Main Memory

37

Invalidate-Based Cache Coherence

Associate each cache line with 3 Read: x Read: x
states: Modified, Invalid, Shared Read: x
Below: State Transition for x in C2’s cache; Write: x = 5000

Syntax: Event/Action

|—| 5000
PrRd/BusRd
[Bus]
(5D
PrWr/Invd 1000

X oo
BusRd/Supply Data
PrRd/—

PrRd/—
PrWr/—

Main Memory

37

Invalidate-Based Cache Coherence

Associate each cache line with 3 Read: x Read: x
states: Modified, Invalid, Shared Read: x Read: x

Below: State Transition for x in C2’s cache; Write: x = 5000
Syntax: Event/Action

|—| 5000
PrRd/BusRd
[Bus]
(5D
PrWr/Invd 1000

X oo
BusRd/Supply Data
PrRd/—

PrRd/—
PrWr/—

Main Memory

37

Invalidate-Based Cache Coherence

Associate each cache line with 3 Read: x Read: x
states: Modified, Invalid, Shared Read: x Read: x
Below: State Transition for x in C2’s cache; Write: x = 5000

Syntax: Event/Action

@ | |
5000 —l —|5000
PrRd/BusRd | |
[Bus]
< PrWr/Invd @y} 1000

X oo
BusRd/Supply Data
PrRd/—

PrRd/— Main Memory

PrWr/—

37

Invalidate-Based Cache Coherence

Associate each cache line with 3 Read: x Read: x
states: Modified, Invalid, Shared Read: x Read: x
Below: State Transition for x in C2’s cache; Write: x = 5000

Syntax: Event/Action

@ | |
5000 —l —l 5000
PrRd/BusRd | |
[Bus]
4 @
PrWr/Invd D 5000

X oo
BusRd/Supply Data
PrRd/—

PrRd/— Main Memory

PrWr/—

37

Invalidate-Based Cache Coherence

Associate each cache line with 3 Read: x Read: x
states: Modified, Invalid, Shared Read: x Read: x
Below: State Transition for x in C2’s cache; Write: x = 5000

Syntax: Event/Action

@ | |
5000 —l —|5000
PrRd/BusRd | |
[Bus]
BusRd/Flush @
>
<
PrWr/Invd D y 5000
BusRd/Supply Data
PrRd/—

PrRd/— Main Memory

PrWr/—

37

Invalidate-Based Cache Coherence

Associate each cache line with 3 Write: x = 7000
states: Modified, Invalid, Shared

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

o () (=)

PrRd/BusRd >000 | |

[Bus]
BusRd/Flush @
>
<
PrWr/Invd y) y 1000
BusRd/Supply Data :
PrRd/— PrRA/— PPYY Main Memory

PrWr/— 38

Invalidate-Based Cache Coherence

Associate each cache line with 3 Write: x = 7000
states: Modified, Invalid, Shared

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

o () (=)

e 5000
PrRd/BusRd

BusRd/Flush @
>
<
PrWr/Invd y) y 1000
BusRd/Supply Data -
PrRd/— PrRA/— Main Memory

PrWr/— 38

Invalidate-Based Cache Coherence

Associate each cache line with 3 Write: x = 7000
states: Modified, Invalid, Shared

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

o () (=)

PrRd/BusRd | | 7000

[Bus]
BusRd/Flush @
>
<
PrWr/Invd y) y 1000
BusRd/Supply Data :
PrRd/— PrRA/— PPYY Main Memory

PrWr/— 38

Invalidate-Based Cache Coherence

Associate each cache line with 3 Write: x = 7000
states: Modified, Invalid, Shared

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

o () (=)

|—(7000
PrWr/BusRdX PrRd/BusRd

[Bus]
BusRd/Flush @
>
<
PrWr/Invd y) y 1000
BusRd/Supply Data :
PrRd/— PrRA/— PPYY Main Memory

PrWr/— 38

Invalidate-Based Cache Coherence

Associate each cache line with 3 Write: x = 7000

states: Modified, Invalid, Shared

Below: State Transition for x in C2’s cache;
Syntax: Event/Action
|—(7000
PrWr/BusRdX PrRd/BusRd

BusRdX/Flush [Bus]
BusRd/Flush

>
PrWr/Invd @y} 1000

X oo
BusRd/Supply Data Mai
ain Memor
PrRd/— PrRd/— Y

PrWr/— 38

Invalidate-Based Cache Coherence

Associate each cache line with 3
states: Modified, Invalid, Shared

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

BusRd/—
BustX/—
Invd/—

PrWr/BusRdX PrRd/BusRd

Invd/—
BusRdX/

BusRdX/Flush
Invd/—

BusRd/ Flush

PrWr/Invd

Bust/SuppIy Data

PrWr/—

Write: x = 7000

() (=)

|—(7000

(e

1000

X oo

Main Memory

38

Readings: Cache Coherence

e Most helpful
e Culler and Singh, Parallel Computer Architecture
e Chapter 5.1 (pp 269 — 283), Chapter 5.3 (pp 291 — 305)
¢ Patterson&Hennessy, Computer Organization and Design
e Chapter 5.8 (pp 534 — 538 in 41" and 4" revised eds.)
e Papamarcos and Patel, “A low-overhead coherence solution for multiprocessors
with private cache memories,” ISCA 1984.

e Also very useful
* Censier and Feautrier, “A new solution to coherence problems in multicache
systems,” |IEEE Trans. Computers, 1978.
¢ Goodman, “Using cache memory to reduce processor-memory traffic,” ISCA 1983.
¢ | audon and Lenoski, “The SGI Origin: a ccNUMA highly scalable server,” ISCA

1997.

e Martin et al, “Token coherence: decoupling performance and correctness,” ISCA
2008.

¢ Baer and Wang, “On the inclusion properties for multi-level cache hierarchies,”
ISCA 1988.

39

Does Hardware Have to Keep Cache Coherent?

* Hardware-guaranteed cache coherence is complex to implement.

40

Does Hardware Have to Keep Cache Coherent?

* Hardware-guaranteed cache coherence is complex to implement.
* Can the programmers ensure cache coherence themselves?

40

Does Hardware Have to Keep Cache Coherent?

* Hardware-guaranteed cache coherence is complex to implement.
* Can the programmers ensure cache coherence themselves?

* Key: ISA must provide cache flush/invalidate instructions

* FLUSH-LOCAL A: Flushes/invalidates the cache block containing
address A from a processor’s local cache.

* FLUSH-GLOBAL A: Flushes/invalidates the cache block containing
address A from all other processors’ caches.

 FLUSH-CACHE X: Flushes/invalidates all blocks in cache X.

40

Does Hardware Have to Keep Cache Coherent?

* Hardware-guaranteed cache coherence is complex to implement.
* Can the programmers ensure cache coherence themselves?

* Key: ISA must provide cache flush/invalidate instructions

* FLUSH-LOCAL A: Flushes/invalidates the cache block containing
address A from a processor’s local cache.

* FLUSH-GLOBAL A: Flushes/invalidates the cache block containing
address A from all other processors’ caches.

* FLUSH-CACHE X: Flushes/invalidates all blocks in cache X.
» Classic example: TLB
* Hardware does not guarantee that TLBs of different core are coherent

* |SA provides instructions for OS to flush PTEs
 Called “TLB shootdown”

40

Does Hardware Have to Keep Cache Coherent?

* Hardware-guaranteed cache coherence is complex to implement.
* Can the programmers ensure cache coherence themselves?

* Key: ISA must provide cache flush/invalidate instructions

* FLUSH-LOCAL A: Flushes/invalidates the cache block containing
address A from a processor’s local cache.

* FLUSH-GLOBAL A: Flushes/invalidates the cache block containing
address A from all other processors’ caches.

* FLUSH-CACHE X: Flushes/invalidates all blocks in cache X.
» Classic example: TLB
* Hardware does not guarantee that TLBs of different core are coherent

* |SA provides instructions for OS to flush PTEs
 Called “TLB shootdown”

Take CSC 251/ECE 204 to learn more about
advanced computer architecture concepts. 40

