
CSC 252: Computer Organization 
 Spring 2018: Lecture 26 

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Action Items:
• Programming Assignment 4 grades out
• Programming Assignment 5 re-grade open
• Programming Assignment 6 due soon

Carnegie Mellon

Announcement
• Programming assignment 6 is due on 11:59pm, Monday, April 30.

• Programming assignment 5 re-grade is open until 11:59pm, Friday

• Programming assignment 4 grades are out

2

Due Last
Lecture

Carnegie Mellon

Today
• Shared variables in multi-threaded programming

• Mutual exclusion using semaphore
• Deadlock

• Thread-level parallelism

• Amdahl’s Law: performance model of parallel programs

• Hardware support for multi-threading

• Single-core
• Hyper-threading
• Multi-core
• Cache coherence

3

Carnegie Mellon

Binary Semaphore Protecting Critical Section

• Define and initialize a mutex for the shared variable cnt:

4

 volatile long cnt = 0; /* Counter */
 sem_t mutex; /* Semaphore that protects cnt */

 Sem_init(&mutex, 0, 1); /* mutex = 1 */

• Surround critical section with P and V:

 for (i = 0; i < niters; i++) {
 P(&mutex);
 cnt++;
 V(&mutex);
 } goodcnt.c

Carnegie Mellon

Deadlock
• Def: A process/thread is deadlocked if and only if it is waiting for

a condition that will never be true

• General to concurrent/parallel programming (threads,

processes)

• Typical Scenario

• Processes	
 1	
 and	
 2	
 needs	
 two	
 resources	
 (A	
 and	
 B)	
 to	
 proceed	

• Process	
 1	
 acquires	
 A,	
 waits	
 for	
 B	

• Process	
 2	
 acquires	
 B,	
 waits	
 for	
 A	

• Both	
 will	
 wait	
 forever!

5

Carnegie Mellon

Deadlocking With Semaphores

6

void *count(void *vargp)
{
 int i;
 int id = (int) vargp;
 for (i = 0; i < NITERS; i++) {
 P(&mutex[id]); P(&mutex[1-id]);
 cnt++;
 V(&mutex[id]); V(&mutex[1-id]);
 }
 return NULL;
}

int main()
{
 pthread_t tid[2];
 Sem_init(&mutex[0], 0, 1); /* mutex[0] = 1 */
 Sem_init(&mutex[1], 0, 1); /* mutex[1] = 1 */
 Pthread_create(&tid[0], NULL, count, (void*) 0);
 Pthread_create(&tid[1], NULL, count, (void*) 1);
 Pthread_join(tid[0], NULL);
 Pthread_join(tid[1], NULL);
 printf("cnt=%d\n", cnt);
 exit(0);
}

Tid[0]:
P(s0);
P(s1);
cnt++;
V(s0);
V(s1);

Tid[1]:
P(s1);
P(s0);
cnt++;
V(s1);
V(s0);

Carnegie Mellon

Avoiding Deadlock

7

Tid[0]:
P(s0);
P(s1);
cnt++;
V(s0);
V(s1);

Tid[1]:
P(s0);
P(s1);
cnt++;
V(s1);
V(s0);

Acquire shared resources in same order

Tid[0]:
P(s0);
P(s1);
cnt++;
V(s0);
V(s1);

Tid[1]:
P(s1);
P(s0);
cnt++;
V(s1);
V(s0);

Carnegie Mellon

Another Deadlock Example: Signal Handling

• Signal handlers are concurrent with main program and may
share the same global data structures.

8

Carnegie Mellon

Another Deadlock Example: Signal Handling

• Signal handlers are concurrent with main program and may
share the same global data structures.

8

static int x = 5;
void handler(int sig)
{
 x = 10;
}

int main(int argc, char **argv)
{
 int pid;
 Signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 if (x == 5)
 y = x * 2; // You’d expect y == 10
 exit(0);
}

Carnegie Mellon

Another Deadlock Example: Signal Handling

• Signal handlers are concurrent with main program and may
share the same global data structures.

8

static int x = 5;
void handler(int sig)
{
 x = 10;
}

int main(int argc, char **argv)
{
 int pid;
 Signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 if (x == 5)
 y = x * 2; // You’d expect y == 10
 exit(0);
}

What if the following happens:

Carnegie Mellon

Another Deadlock Example: Signal Handling

• Signal handlers are concurrent with main program and may
share the same global data structures.

8

static int x = 5;
void handler(int sig)
{
 x = 10;
}

int main(int argc, char **argv)
{
 int pid;
 Signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 if (x == 5)
 y = x * 2; // You’d expect y == 10
 exit(0);
}

What if the following happens:
• Parent process executes and

finishes if (x == 5)

Carnegie Mellon

Another Deadlock Example: Signal Handling

• Signal handlers are concurrent with main program and may
share the same global data structures.

8

static int x = 5;
void handler(int sig)
{
 x = 10;
}

int main(int argc, char **argv)
{
 int pid;
 Signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 if (x == 5)
 y = x * 2; // You’d expect y == 10
 exit(0);
}

What if the following happens:
• Parent process executes and

finishes if (x == 5)
• OS decides to take the

SIGCHLD interrupt and
executes the handler

Carnegie Mellon

Another Deadlock Example: Signal Handling

• Signal handlers are concurrent with main program and may
share the same global data structures.

8

static int x = 5;
void handler(int sig)
{
 x = 10;
}

int main(int argc, char **argv)
{
 int pid;
 Signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 if (x == 5)
 y = x * 2; // You’d expect y == 10
 exit(0);
}

What if the following happens:
• Parent process executes and

finishes if (x == 5)
• OS decides to take the

SIGCHLD interrupt and
executes the handler

• When return to parent
process, y == 20!

Carnegie Mellon

Fixing the Signal Handling Bug

9

static int x = 5;
void handler(int sig)
{
 x = 10;
}

int main(int argc, char **argv)
{
 int pid;
 sigset_t mask_all, prev_all;
 sigfillset(&mask_all);
 signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 Sigprocmask(SIG_BLOCK, &mask_all, &prev_all);
 if (x == 5)
 y = x * 2; // You’d expect y == 10
 Sigprocmask(SIG_SETMASK, &prev_all, NULL);

 exit(0);
}

• Block all signals before
accessing a shared,
global data structure.

Carnegie Mellon

How About Using a Mutex?

10

static int x = 5;
void handler(int sig)
{
 P(&mutex);
 x = 10;
 V(&mutex);
}

int main(int argc, char **argv)
{
 int pid;
 sigset_t mask_all, prev_all;
 signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 P(&mutex);
 if (x == 5)
 y = x * 2; // You’d expect y == 10
 V(&mutex);

 exit(0);
}

Carnegie Mellon

How About Using a Mutex?

10

static int x = 5;
void handler(int sig)
{
 P(&mutex);
 x = 10;
 V(&mutex);
}

int main(int argc, char **argv)
{
 int pid;
 sigset_t mask_all, prev_all;
 signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 P(&mutex);
 if (x == 5)
 y = x * 2; // You’d expect y == 10
 V(&mutex);

 exit(0);
}

• This implementation
will get into a deadlock.

Carnegie Mellon

How About Using a Mutex?

10

static int x = 5;
void handler(int sig)
{
 P(&mutex);
 x = 10;
 V(&mutex);
}

int main(int argc, char **argv)
{
 int pid;
 sigset_t mask_all, prev_all;
 signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 P(&mutex);
 if (x == 5)
 y = x * 2; // You’d expect y == 10
 V(&mutex);

 exit(0);
}

• This implementation
will get into a deadlock.

• Signal handler wants
the mutex, which is
acquired by the main
program.

Carnegie Mellon

How About Using a Mutex?

10

static int x = 5;
void handler(int sig)
{
 P(&mutex);
 x = 10;
 V(&mutex);
}

int main(int argc, char **argv)
{
 int pid;
 sigset_t mask_all, prev_all;
 signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 P(&mutex);
 if (x == 5)
 y = x * 2; // You’d expect y == 10
 V(&mutex);

 exit(0);
}

• This implementation
will get into a deadlock.

• Signal handler wants
the mutex, which is
acquired by the main
program.

• Key: signal handler is in
the same process as
the main program. The
kernel forces the
handler to finish before
returning to the main
program.

Carnegie Mellon

Summary of Multi-threading Programming
• Concurrent/parallel threads access shared variables

• Need to protect concurrent accesses to guarantee correctness

• Semaphores (e.g., mutex) provide a simple solution

• Can lead to deadlock if not careful

• Take CSC 258 to know more about avoiding deadlocks (and

parallel programming in general)

11

Thinking in Parallel is Hard

12

Thinking in Parallel is Hard

12

Maybe Thinking is Hard

Carnegie Mellon

Today
• Shared variables in multi-threaded programming

• Mutual exclusion using semaphore
• Deadlock

• Thread-level parallelism

• Amdahl’s Law: performance model of parallel programs

• Hardware support for multi-threading

• Single-core
• Hyper-threading
• Multi-core
• Cache coherence

13

Carnegie Mellon

Thread-level Parallelism (TLP)
• Thread-Level Parallelism

• Splitting a task into independent sub-tasks
• Each thread is responsible for a sub-task

• Example: Parallel summation of N number
• Should add up to ((n-1)*n)/2

• Partition values 1, …, n-1 into t ranges

• ⎣n/t⎦ values in each range
• Each of t threads processes one range (sub-task)
• Sum all sub-sums in the end

14

Carnegie Mellon

Amdahl’s Law

•Gene Amdahl (1922 – 2015). Giant in computer architecture
•Captures the difficulty of using parallelism to speed things up

15
Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.

Carnegie Mellon

Amdahl’s Law

•Gene Amdahl (1922 – 2015). Giant in computer architecture
•Captures the difficulty of using parallelism to speed things up
•Amdahl’s Law

• f: Parallelizable fraction of a program
• N: Number of processors (i.e., maximal achievable speedup)

15
Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.

Carnegie Mellon

Amdahl’s Law

•Gene Amdahl (1922 – 2015). Giant in computer architecture
•Captures the difficulty of using parallelism to speed things up
•Amdahl’s Law

• f: Parallelizable fraction of a program
• N: Number of processors (i.e., maximal achievable speedup)

15

1 - f

Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.

Carnegie Mellon

Amdahl’s Law

•Gene Amdahl (1922 – 2015). Giant in computer architecture
•Captures the difficulty of using parallelism to speed things up
•Amdahl’s Law

• f: Parallelizable fraction of a program
• N: Number of processors (i.e., maximal achievable speedup)

15

+1 - f

Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.

Carnegie Mellon

Amdahl’s Law

•Gene Amdahl (1922 – 2015). Giant in computer architecture
•Captures the difficulty of using parallelism to speed things up
•Amdahl’s Law

• f: Parallelizable fraction of a program
• N: Number of processors (i.e., maximal achievable speedup)

15

+1 - f f
N

Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.

Carnegie Mellon

Amdahl’s Law

•Gene Amdahl (1922 – 2015). Giant in computer architecture
•Captures the difficulty of using parallelism to speed things up
•Amdahl’s Law

• f: Parallelizable fraction of a program
• N: Number of processors (i.e., maximal achievable speedup)

15

Speedup =
1

+1 - f f
N

Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.

Carnegie Mellon

Amdahl’s Law

•Gene Amdahl (1922 – 2015). Giant in computer architecture
•Captures the difficulty of using parallelism to speed things up
•Amdahl’s Law

• f: Parallelizable fraction of a program
• N: Number of processors (i.e., maximal achievable speedup)

15

Speedup =
1

+1 - f f
N

Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.

•Completely parallelizable (f = 1): Speedup = N

Carnegie Mellon

Amdahl’s Law

•Gene Amdahl (1922 – 2015). Giant in computer architecture
•Captures the difficulty of using parallelism to speed things up
•Amdahl’s Law

• f: Parallelizable fraction of a program
• N: Number of processors (i.e., maximal achievable speedup)

15

Speedup =
1

+1 - f f
N

Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.

•Completely parallelizable (f = 1): Speedup = N
•Completely sequential (f = 0): Speedup = 1

Carnegie Mellon

Amdahl’s Law

•Gene Amdahl (1922 – 2015). Giant in computer architecture
•Captures the difficulty of using parallelism to speed things up
•Amdahl’s Law

• f: Parallelizable fraction of a program
• N: Number of processors (i.e., maximal achievable speedup)

15

Speedup =
1

+1 - f f
N

Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.

•Completely parallelizable (f = 1): Speedup = N
•Completely sequential (f = 0): Speedup = 1
•Mostly parallelizable (f = 0.9, N = 1000): Speedup = 9.9

Carnegie Mellon

Sequential Bottleneck

16

f (parallel fraction)

Carnegie Mellon

Why the Sequential Bottleneck?
• Maximum speedup limited by the

sequential portion
• Main cause: Non-parallelizable

operations on data

17

Carnegie Mellon

Why the Sequential Bottleneck?
• Maximum speedup limited by the

sequential portion
• Main cause: Non-parallelizable

operations on data
• Parallel portion is usually not

perfectly parallel as well

• e.g., Synchronization overhead

17

Carnegie Mellon

Why the Sequential Bottleneck?
• Maximum speedup limited by the

sequential portion
• Main cause: Non-parallelizable

operations on data
• Parallel portion is usually not

perfectly parallel as well

• e.g., Synchronization overhead

17

Each thread:
 loop {
 Compute
 P(A)
 Update shared data
 V(A)
 }

Carnegie Mellon

Why the Sequential Bottleneck?
• Maximum speedup limited by the

sequential portion
• Main cause: Non-parallelizable

operations on data
• Parallel portion is usually not

perfectly parallel as well

• e.g., Synchronization overhead

17

Each thread:
 loop {
 Compute
 P(A)
 Update shared data
 V(A)
 }

N

Carnegie Mellon

Why the Sequential Bottleneck?
• Maximum speedup limited by the

sequential portion
• Main cause: Non-parallelizable

operations on data
• Parallel portion is usually not

perfectly parallel as well

• e.g., Synchronization overhead

17

Each thread:
 loop {
 Compute
 P(A)
 Update shared data
 V(A)
 }

N

C

Carnegie Mellon

Why the Sequential Bottleneck?
• Maximum speedup limited by the

sequential portion
• Main cause: Non-parallelizable

operations on data
• Parallel portion is usually not

perfectly parallel as well

• e.g., Synchronization overhead

17

Each thread:
 loop {
 Compute
 P(A)
 Update shared data
 V(A)
 }

N

C

Carnegie Mellon

Today
• Shared variables in multi-threaded programming

• Mutual exclusion using semaphore
• Deadlock

• Thread-level parallelism

• Amdahl’s Law: performance model of parallel programs

• Hardware support for multi-threading

• Single-core
• Hyper-threading
• Multi-core
• Cache coherence

18

Carnegie Mellon

Can A Single Core Support Multi-threading?

• Need to multiplex between different threads (time slicing)

19

Thread A Thread B Thread C

Sequential Multi-threaded

Carnegie Mellon

Any benefits?
• Can single-core multi-threading provide any performance gains?

20

Thread A Thread B Thread C

Carnegie Mellon

Any benefits?
• Can single-core multi-threading provide any performance gains?

20

Thread A Thread B Thread C

Cache

Miss!

Carnegie Mellon

Any benefits?
• Can single-core multi-threading provide any performance gains?

20

Thread A Thread B Thread C

Cache

Miss!

Carnegie Mellon

Any benefits?
• Can single-core multi-threading provide any performance gains?
• If Thread A has a cache miss and the pipeline gets stalled,

switch to Thread C. Improves the overall performance.

20

Thread A Thread B Thread C

Cache

Miss!

Carnegie Mellon

When to Switch?

21

• Coarse grained

• Event based, e.g., switch on L3 cache miss
• Quantum based (every thousands of cycles)

Carnegie Mellon

When to Switch?

21

• Coarse grained

• Event based, e.g., switch on L3 cache miss
• Quantum based (every thousands of cycles)

• Fine grained

• Cycle by cycle
• Thornton, “CDC 6600: Design of a Computer,” 1970.
• Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP

1978. Seminal paper that shows that using multi-threading can avoid
branch prediction.

Carnegie Mellon

When to Switch?

21

• Coarse grained

• Event based, e.g., switch on L3 cache miss
• Quantum based (every thousands of cycles)

• Fine grained

• Cycle by cycle
• Thornton, “CDC 6600: Design of a Computer,” 1970.
• Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP

1978. Seminal paper that shows that using multi-threading can avoid
branch prediction.

•Either way, need to save/restore thread context upon
switching

Carnegie Mellon

Today
• Shared variables in multi-threaded programming

• Mutual exclusion using semaphore
• Deadlock

• Thread-level parallelism

• Amdahl’s Law: performance model of parallel programs

• Hardware support for multi-threading

• Single-core
• Hyper-threading
• Multi-core
• Cache coherence

22

Carnegie Mellon

Single-Core Internals

23

Instruction	
 Control

Registers

Instruction	

Decoder

Inst.	
 Window

Instruction
Cache

PC

Functional	
 Units

Int	

Arith

Int	

Arith

FP
Arith

Load	
 /
Store Data	
 Cache

• Typically has multiple function units to allow for issuing multiple
instructions at the same time

• Called “Superscalar” Microarchitecture

Carnegie Mellon

Conventional Multi-threading

24

Thread 1

Context
Switch

Thread 2

Carnegie Mellon

Conventional Multi-threading

24

Functional Units

Thread 1

Context
Switch

Thread 2

Carnegie Mellon

Hyper-threading

25

Functional	
 Units

Int	

Arith

Int	

Arith

FP
Arith

Load	
 /
Store

Instruction	
 Control

Instruction	

Decoder

Data	
 Cache

Instruction
Cache

• Intel’s terminology. More commonly known as: Simultaneous Multi-
threading (SMT)

• Replicate enough hardware structures to process K instruction streams

• K copies of all registers. Share functional units

Reg	
 A Inst.	
 Window	
 A

PC	
 A

Carnegie Mellon

Hyper-threading

25

Functional	
 Units

Int	

Arith

Int	

Arith

FP
Arith

Load	
 /
Store

Instruction	
 Control

Instruction	

Decoder

Data	
 Cache

Instruction
Cache

• Intel’s terminology. More commonly known as: Simultaneous Multi-
threading (SMT)

• Replicate enough hardware structures to process K instruction streams

• K copies of all registers. Share functional units

Reg	
 A Inst.	
 Window	
 A

PC	
 A
Reg	
 B Inst.	
 Window	
 B

PC	
 B

Carnegie Mellon

Conventional Multi-threading vs. Hyper-threading

26

Thread 1

Context
Switch

Thread 2

Conventional
Multi-threading Hyper-threading

Carnegie Mellon

Conventional Multi-threading vs. Hyper-threading

26

Thread 1

Context
Switch

Thread 2

Conventional
Multi-threading Hyper-threading

Multiple threads
actually execute in
parallel (even with
one single core)

Carnegie Mellon

Conventional Multi-threading vs. Hyper-threading

26

Thread 1

Context
Switch

Thread 2

Conventional
Multi-threading Hyper-threading

Multiple threads
actually execute in
parallel (even with
one single core)

No/little context
switch overhead

Carnegie Mellon

Today
• Shared variables in multi-threaded programming

• Mutual exclusion using semaphore
• Deadlock

• Thread-level parallelism

• Amdahl’s Law: performance model of parallel programs

• Hardware support for multi-threading

• Single-core
• Hyper-threading
• Multi-core
• Cache coherence

27

Carnegie Mellon

Typical Multi-core Processor

• Traditional
multiprocessing:
symmetric
multiprocessor (SMP)

• Every core is exactly
the same. Private
registers, L1/L2
caches, etc.

• Share L3 (LLC) and
main memory

28

Regs

L1	

d-­‐cache

L1	

i-­‐cache

L2	
 unified	
 cache

Core	
 0

Regs

L1	

d-­‐cache

L1	

i-­‐cache

L2	
 unified	
 cache

Core	
 n-­‐1

…

L3	
 unified	
 cache
(shared	
 by	
 all	
 cores)

Main	
 memory

Carnegie Mellon

Asymmetric Multiprocessor (AMP)

29

En
er

gy
 C

on
su

m
pt

io
n

Performance

Big Core Small Core

Frequency
Levels

• Offer a large performance-energy trade-off space

Carnegie Mellon

Asymmetric Chip-Multiprocessor (ACMP)

30

• Already used in commodity devices (e.g., Samsung Galaxy S6, iPhone 7)

Carnegie Mellon

Combine Multi-core with Hyper-threading
• Common for laptop/desktop/server machine. E.g., 2 physical

cores, each core has 2 hyper-threads => 4 virtual cores.

• Not for mobile processors (Hyper-threading costly to implement)

31

Carnegie Mellon

Today
• Shared variables in multi-threaded programming

• Mutual exclusion using semaphore
• Deadlock

• Thread-level parallelism

• Amdahl’s Law: performance model of parallel programs

• Hardware support for multi-threading

• Single-core
• Hyper-threading
• Multi-core
• Cache coherence

32

Carnegie Mellon

The Issue
• Assume that we have a multi-core processor. Thread 0 runs on Core 0,

and Thread 1 runs on Core 1.

33

Carnegie Mellon

The Issue
• Assume that we have a multi-core processor. Thread 0 runs on Core 0,

and Thread 1 runs on Core 1.
• Threads share variables: e.g., Thread 0 writes to an address, followed

by Thread 1 reading.

33

Carnegie Mellon

The Issue
• Assume that we have a multi-core processor. Thread 0 runs on Core 0,

and Thread 1 runs on Core 1.
• Threads share variables: e.g., Thread 0 writes to an address, followed

by Thread 1 reading.

33

Thread 0
Mem[A] = 1

Thread 1
…

Print Mem[A]

Carnegie Mellon

The Issue
• Assume that we have a multi-core processor. Thread 0 runs on Core 0,

and Thread 1 runs on Core 1.
• Threads share variables: e.g., Thread 0 writes to an address, followed

by Thread 1 reading.
• Each read should receive the value last written by anyone

33

Thread 0
Mem[A] = 1

Thread 1
…

Print Mem[A]

Carnegie Mellon

The Issue
• Assume that we have a multi-core processor. Thread 0 runs on Core 0,

and Thread 1 runs on Core 1.
• Threads share variables: e.g., Thread 0 writes to an address, followed

by Thread 1 reading.
• Each read should receive the value last written by anyone
• Basic question: If multiple cores access the same data, how do they

ensure they all see a consistent state?

33

Thread 0
Mem[A] = 1

Thread 1
…

Print Mem[A]

Carnegie Mellon

The Issue
• Without cache, the issue is (theoretically) solvable by using mutex.

• …because there is only one copy of x in the entire system. Accesses

to x in memory are serialized by mutex.

34

C1 C2

x
Main Memory

1000

Bus

Write: x=1000 Read: x

Carnegie Mellon

The Issue
• What if each core cache the same data, how do they ensure they all

see a consistent state? (assuming a write-back cache)

35

C1 C2

Bus

x
Main Memory

1000

Carnegie Mellon

The Issue
• What if each core cache the same data, how do they ensure they all

see a consistent state? (assuming a write-back cache)

35

C1 C2

Bus

x
Main Memory

1000

Read: x

Carnegie Mellon

The Issue
• What if each core cache the same data, how do they ensure they all

see a consistent state? (assuming a write-back cache)

35

C1 C2

Bus

1000

x
Main Memory

1000

Read: x

Carnegie Mellon

The Issue
• What if each core cache the same data, how do they ensure they all

see a consistent state? (assuming a write-back cache)

35

C1 C2

Bus

1000

x
Main Memory

1000

Read: x
Read: x

Carnegie Mellon

The Issue
• What if each core cache the same data, how do they ensure they all

see a consistent state? (assuming a write-back cache)

35

C1 C2

Bus

10001000

x
Main Memory

1000

Read: x
Read: x

Carnegie Mellon

The Issue
• What if each core cache the same data, how do they ensure they all

see a consistent state? (assuming a write-back cache)

35

C1 C2

Bus

10001000

x
Main Memory

1000

Read: x
Read: x
x=x+1000
Write: x

Carnegie Mellon

The Issue
• What if each core cache the same data, how do they ensure they all

see a consistent state? (assuming a write-back cache)

35

C1 C2

Bus

1000

x
Main Memory

1000

Read: x
Read: x
x=x+1000
Write: x

2000

Carnegie Mellon

The Issue
• What if each core cache the same data, how do they ensure they all

see a consistent state? (assuming a write-back cache)

35

C1 C2

Bus

1000

x
Main Memory

1000

Read: x
Read: x
x=x+1000
Write: x Read: x Should not

return 1000!
2000

Carnegie Mellon

Cache Coherence: The Idea
• Key issue: there are multiple copies of the same data in the

system, and they could have different values at the same time.

36

Carnegie Mellon

Cache Coherence: The Idea
• Key issue: there are multiple copies of the same data in the

system, and they could have different values at the same time.
• Key idea: ensure multiple copies have same value, i.e., coherent

36

Carnegie Mellon

Cache Coherence: The Idea
• Key issue: there are multiple copies of the same data in the

system, and they could have different values at the same time.
• Key idea: ensure multiple copies have same value, i.e., coherent
• How? Two options:

36

Carnegie Mellon

Cache Coherence: The Idea
• Key issue: there are multiple copies of the same data in the

system, and they could have different values at the same time.
• Key idea: ensure multiple copies have same value, i.e., coherent
• How? Two options:

• Update: push new value to all copies (in other caches)

36

Carnegie Mellon

Cache Coherence: The Idea
• Key issue: there are multiple copies of the same data in the

system, and they could have different values at the same time.
• Key idea: ensure multiple copies have same value, i.e., coherent
• How? Two options:

• Update: push new value to all copies (in other caches)
• Invalidate: invalidate other copies (in other caches)

36

Carnegie Mellon

Invalidate-Based Cache Coherence

37

C1 C2

Bus

x
Main Memory

1000

I

M S

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared

Carnegie Mellon

Invalidate-Based Cache Coherence

37

C1 C2

Bus

x
Main Memory

1000

Read: x

I

M S

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared

Carnegie Mellon

Invalidate-Based Cache Coherence

37

C1 C2

Bus

1000

x
Main Memory

1000

Read: x

I

M S

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared

Carnegie Mellon

Invalidate-Based Cache Coherence

37

C1 C2

Bus

1000

x
Main Memory

1000

Read: x

I

M S

PrRd/BusRd

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared

Carnegie Mellon

Invalidate-Based Cache Coherence

37

C1 C2

Bus

1000

x
Main Memory

1000

Read: xRead: x

I

M S

PrRd/BusRd

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared

Carnegie Mellon

Invalidate-Based Cache Coherence

37

C1 C2

Bus

1000

x
Main Memory

1000

Read: xRead: x

I

M S

PrRd/BusRd

BusRd/Supply Data

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared

Carnegie Mellon

Invalidate-Based Cache Coherence

37

C1 C2

Bus

10001000

x
Main Memory

1000

Read: xRead: x

I

M S

PrRd/BusRd

BusRd/Supply Data

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared

Carnegie Mellon

Invalidate-Based Cache Coherence

37

C1 C2

Bus

10001000

x
Main Memory

1000

Read: xRead: x

I

M S

PrRd/BusRd

BusRd/Supply Data

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared Read: x

Carnegie Mellon

Invalidate-Based Cache Coherence

37

C1 C2

Bus

10001000

x
Main Memory

1000

Read: xRead: x

I

M S

PrRd/BusRd

BusRd/Supply Data
PrRd/—

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared Read: x

Carnegie Mellon

Invalidate-Based Cache Coherence

37

C1 C2

Bus

10001000

x
Main Memory

1000

Read: xRead: x

Write: x = 5000

I

M S

PrRd/BusRd

BusRd/Supply Data
PrRd/—

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared Read: x

Carnegie Mellon

Invalidate-Based Cache Coherence

37

C1 C2

Bus

1000

x
Main Memory

1000

Read: xRead: x

Write: x = 5000

5000

I

M S

PrRd/BusRd

BusRd/Supply Data
PrRd/—

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared Read: x

Carnegie Mellon

Invalidate-Based Cache Coherence

37

C1 C2

Bus

1000

x
Main Memory

1000

Read: xRead: x

Write: x = 5000

5000

I

M S

PrRd/BusRd

PrWr/Invd
BusRd/Supply Data
PrRd/—

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared Read: x

Carnegie Mellon

Invalidate-Based Cache Coherence

37

C1 C2

Bus

x
Main Memory

1000

Read: xRead: x

Write: x = 5000

5000

I

M S

PrRd/BusRd

PrWr/Invd
BusRd/Supply Data
PrRd/—

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared Read: x

Carnegie Mellon

Invalidate-Based Cache Coherence

37

C1 C2

Bus

x
Main Memory

1000

Read: xRead: x

Write: x = 5000

5000

I

M S

PrRd/BusRd

PrWr/Invd
BusRd/Supply Data
PrRd/—

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared Read: x

PrRd/—

Carnegie Mellon

Invalidate-Based Cache Coherence

37

C1 C2

Bus

x
Main Memory

1000

Read: xRead: x

Write: x = 5000

5000

I

M S

PrRd/BusRd

PrWr/Invd
BusRd/Supply Data
PrRd/—

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared Read: x

PrRd/—
PrWr/—

Carnegie Mellon

Invalidate-Based Cache Coherence

37

C1 C2

Bus

x
Main Memory

1000

Read: xRead: x

Write: x = 5000

5000

I

M S

PrRd/BusRd

PrWr/Invd
BusRd/Supply Data
PrRd/—

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared Read: x

PrRd/—
PrWr/—

Read: x

Carnegie Mellon

Invalidate-Based Cache Coherence

37

C1 C2

Bus

x
Main Memory

1000

Read: xRead: x

Write: x = 5000

5000

I

M S

PrRd/BusRd

PrWr/Invd
BusRd/Supply Data
PrRd/—

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared Read: x

PrRd/—
PrWr/—

Read: x

5000

Carnegie Mellon

Invalidate-Based Cache Coherence

37

C1 C2

Bus

x
Main Memory

Read: xRead: x

Write: x = 5000

5000

I

M S

PrRd/BusRd

PrWr/Invd
BusRd/Supply Data
PrRd/—

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared Read: x

PrRd/—
PrWr/—

Read: x

5000

5000

Carnegie Mellon

Invalidate-Based Cache Coherence

37

C1 C2

Bus

x
Main Memory

Read: xRead: x

Write: x = 5000

5000

I

M S

PrRd/BusRd

PrWr/Invd
BusRd/Supply Data
PrRd/—

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared Read: x

PrRd/—
PrWr/—

Read: x

BusRd/Flush

5000

5000

Carnegie Mellon

5000

Write: x = 7000

Invalidate-Based Cache Coherence

38

C1 C2

Bus

x
Main Memory

1000

5000

I

M S

PrRd/BusRd

PrWr/Invd
BusRd/Supply Data
PrRd/—

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared

PrRd/—
PrWr/—

BusRd/Flush

Carnegie Mellon

5000

Write: x = 7000

Invalidate-Based Cache Coherence

38

C1 C2

Bus

x
Main Memory

1000

I

M S

PrRd/BusRd

PrWr/Invd
BusRd/Supply Data
PrRd/—

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared

PrRd/—
PrWr/—

BusRd/Flush

5000

Carnegie Mellon

5000

Write: x = 7000

Invalidate-Based Cache Coherence

38

C1 C2

Bus

x
Main Memory

1000

I

M S

PrRd/BusRd

PrWr/Invd
BusRd/Supply Data
PrRd/—

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared

PrRd/—
PrWr/—

BusRd/Flush

7000

Carnegie Mellon

5000

Write: x = 7000

Invalidate-Based Cache Coherence

38

C1 C2

Bus

x
Main Memory

1000

I

M S

PrRd/BusRd

PrWr/Invd
BusRd/Supply Data
PrRd/—

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared

PrRd/—
PrWr/—

BusRd/Flush

PrWr/BusRdX
7000

Carnegie Mellon

5000

Write: x = 7000

Invalidate-Based Cache Coherence

38

C1 C2

Bus

x
Main Memory

1000

I

M S

PrRd/BusRd

PrWr/Invd
BusRd/Supply Data
PrRd/—

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared

PrRd/—
PrWr/—

BusRd/Flush

PrWr/BusRdX
7000

BusRdX/Flush

Carnegie Mellon

5000

Write: x = 7000

Invalidate-Based Cache Coherence

38

C1 C2

Bus

x
Main Memory

1000

I

M S

PrRd/BusRd

PrWr/Invd
BusRd/Supply Data
PrRd/—

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared

Invd/—

PrRd/—
PrWr/—

BusRd/Flush

PrWr/BusRdX
7000

BusRd/—
BusRdX/—
Invd/—

Invd/—
BusRdX/Flush

BusRdX/Flush

Carnegie Mellon

Readings: Cache Coherence
• Most helpful

• Culler and Singh, Parallel Computer Architecture
• Chapter 5.1 (pp 269 – 283), Chapter 5.3 (pp 291 – 305)

• Patterson&Hennessy, Computer Organization and Design
• Chapter 5.8 (pp 534 – 538 in 4th and 4th revised eds.)

• Papamarcos and Patel, “A low-overhead coherence solution for multiprocessors
with private cache memories,” ISCA 1984.

• Also very useful

• Censier and Feautrier, “A new solution to coherence problems in multicache

systems,” IEEE Trans. Computers, 1978.
• Goodman, “Using cache memory to reduce processor-memory traffic,” ISCA 1983.
• Laudon and Lenoski, “The SGI Origin: a ccNUMA highly scalable server,” ISCA

1997.
• Martin et al, “Token coherence: decoupling performance and correctness,” ISCA

2003.
• Baer and Wang, “On the inclusion properties for multi-level cache hierarchies,”

ISCA 1988.

39

Carnegie Mellon

Does Hardware Have to Keep Cache Coherent?

• Hardware-guaranteed cache coherence is complex to implement.

40

Carnegie Mellon

Does Hardware Have to Keep Cache Coherent?

• Hardware-guaranteed cache coherence is complex to implement.
• Can the programmers ensure cache coherence themselves?

40

Carnegie Mellon

Does Hardware Have to Keep Cache Coherent?

• Hardware-guaranteed cache coherence is complex to implement.
• Can the programmers ensure cache coherence themselves?
• Key: ISA must provide cache flush/invalidate instructions

• FLUSH-LOCAL A: Flushes/invalidates the cache block containing
address A from a processor’s local cache.

• FLUSH-GLOBAL A: Flushes/invalidates the cache block containing
address A from all other processors’ caches.

• FLUSH-CACHE X: Flushes/invalidates all blocks in cache X.

40

Carnegie Mellon

Does Hardware Have to Keep Cache Coherent?

• Hardware-guaranteed cache coherence is complex to implement.
• Can the programmers ensure cache coherence themselves?
• Key: ISA must provide cache flush/invalidate instructions

• FLUSH-LOCAL A: Flushes/invalidates the cache block containing
address A from a processor’s local cache.

• FLUSH-GLOBAL A: Flushes/invalidates the cache block containing
address A from all other processors’ caches.

• FLUSH-CACHE X: Flushes/invalidates all blocks in cache X.
•Classic example: TLB

• Hardware does not guarantee that TLBs of different core are coherent
• ISA provides instructions for OS to flush PTEs
• Called “TLB shootdown”

40

Carnegie Mellon

Does Hardware Have to Keep Cache Coherent?

• Hardware-guaranteed cache coherence is complex to implement.
• Can the programmers ensure cache coherence themselves?
• Key: ISA must provide cache flush/invalidate instructions

• FLUSH-LOCAL A: Flushes/invalidates the cache block containing
address A from a processor’s local cache.

• FLUSH-GLOBAL A: Flushes/invalidates the cache block containing
address A from all other processors’ caches.

• FLUSH-CACHE X: Flushes/invalidates all blocks in cache X.
•Classic example: TLB

• Hardware does not guarantee that TLBs of different core are coherent
• ISA provides instructions for OS to flush PTEs
• Called “TLB shootdown”

40

Take CSC 251/ECE 204 to learn more about
advanced computer architecture concepts.

