CSC 252: Computer Organization
Spring 2018: Lecture 3

Instructor: Yuhao Zhu

Department of Computer Science
University of Rochester

Action Items:
* Trivia 1 is due tomorrow, midnight
* Main assighment due Feb. 2, midnight

Slide Credits: Bryant, O’Hallaron, Patt, Patel

Announcement

* Programming Assignment 1 is out

 Details: http://cs.rochester.edu/courses/252/spring2018/
labs/assignmenti.html

* Due on Feb 2, 11:59 PM
 Trivia due Friday, 1/26, 11:59 PM
* You have 3 slip days (not for trivia)

* TAs are better positioned to answer questions regarding
assignments

http://cs.rochester.edu/courses/252/spring2018/labs/assignment1.html

Previously in 252...

e Computers are built to understand bits: 0 and 1
* O: low (no) voltage; 1: high voltage
* Hexdecimal Notation: 0-9 and A-F

111101110
F E
* Integer representations (Fixed-point really)

* 1111 isreally 1111,
* Unsigned vs. Signed Integers

Encoding Negative Numbers

e Two’s Complement

Encoding Negative Numbers

e Two’s Complement

nsigned Binary
000
001
010
011
100
101
110
111

~NoO oM WN =2 OC

Encoding Negative Numbers

e Two’s Complement

+——
-4 -3 -2 -1 0 1 2 3

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Encoding Negative Numbers

e Two’s Complement

+——
-4 -3 -2 -1 0 1 2 3

Signed Unsigned Binary

0 0 000
1 1 001
p p 010
3 3 011
-4 4 100
-3 5 101
-2 6 110
1 7 111

Encoding Negative Numbers

e Two’s Complement

+——
-4 -3 -2 -1 0 1 2 3

b2b1bo Signed Unsigned Binary
/ﬁ T P\ 0 0 000
Weights in 1 1)
Unsigned 22 21 20 2 2 010
o o 011
-4 4 100
-3) 101
-2 6 110
-1 7 111

Encoding Negative Numbers

e Two’s Complement

+——
-4 -3 -2 -1 0 1 2 3

b2b1bo Signed Unsigned Binary
/ﬂ T \ 0 0 000
. . 1 1 001
Weights in
2 1 0
Unsigned 2¢ 2! 2 2 2 010
3 3 011
. . -4 4 100
Weightsin 92 91 g0 -3 5 101
Signed 2 6 110
-1 7 111

Encoding Negative Numbers

e Two’s Complement

+——
-4 -3 -2 -1 0 1 2 3

b2b1bo Signed Unsigned Binary
/ﬂ T \ 0 0 000
. . 1 1 001
Weights in
2 1 0
Unsigned 2¢ 2! 2 2 2 010
3 3 011
. . -4 4 100
Weightsin 92 91 g0 -3 5 101
Signed 2 6 110
-1 7 111

1012 = 1*20 4+ 0*27 + (-1*22) = -39

Encoding Negative Numbers

e Two’s Complement

+——
-4 -3 -2 -1 0 1 2 3

b2b1bo Signed Unsigned Binary
/ﬂ T i\ 0 0 000
. . 1 1 001
Weights in
2 1 0
Unsigned 2¢ 2! 2 2 2 010
3 3 011
. . -4 4 100
Weightsin 92 91 g0 -3 5 101
Signed 2 6 110
-1 7 111

1072 = 1°20k 027 4 (-1%22) = -3¢

!

Encoding Negative Numbers

e Two’s Complement

+——
-4 -3 -2 -1 0 1 2 3

b2b1bo Signed Unsigned Binary
/ﬂ T i\ 0 0 000
. . 1 1 001
Weights in
2 1 0
Unsigned 2¢ 2! 2 2 2 010
3 3 011
. . -4 4 100
Weightsin 92 91 g0 -3 5 101
Signed 2 6 110
T -1 7 111

1012 = 17204 0°27 b+ (-1*22) = -34

1

Encoding Negative Numbers

e Two’s Complement

+——
-4 -3 -2 -1 0 1 2 3

bob1bo Signed
Weights in f T K (1)
2 1 0
Unsigned ¢ 20 2 g
Weightsin = 02 91 o0 g
Signed -
-1

1015 = 120+ 0*27 + (-1

!

Unsigned Binary

0 000
1 001
2 010
3 011
4 100
5 101
6 110
14 111

Two-Complement Implications

e Only 1 zero
* Unsigned arithmetic still works

* Almost all C implementations use this

 |f you define a signed variable, it’s internally
represented using 2’s complement

Signed

Binary
000
001
010
011
100
101
110
111

Two-Complement Implications

e Only 1 zero
* Unsigned arithmetic still works

* Almost all C implementations use this

 |f you define a signed variable, it’s internally
represented using 2’s complement

010
+) 101

111

Signed

Binary
000
001
010
011
100
101
110
111

Two-Complement Implications

e Only 1 zero Signed
. . : . 0
* Unsigned arithmetic still works]
* Almost all C implementations use this 2
* |f you define a signed variable, it’s internally 34
represented using 2’s complement :3
010 2)
+) 101 +) -3 1

111 -1

Binary
000
001
010
011
100
101
110
111

Two-Complement Implications

e Only 1 zero
* Unsigned arithmetic still works

* Almost all C implementations use this

 |f you define a signed variable, it’s internally
represented using 2’s complement

010 2
+) 101 +) -3
111 -1

e There is a bit that represents sign!

Signed

Binary
000
001
010
011
100
101
110
111

e 3 + 1 becomes -4 (called overflow. More on it later.)

Today: Representing Information in Binary

* |[ntegers

« Conversion, casting

Signed vs. Unsigned in C

* What happens when we convert between signed and
unsigned numbers?

e Casting (In C terminology)
 Explicit casting between signed & unsigned

int tx, ty;

unsigned ux, uy;

tx = (int) ux; // U2T

uy = (unsigned) ty; // T2U

 Implicit casting also occurs via assignments and procedure calls
Tx = ux;

uy = tyy;

Mapping Between Signed & Unsigned

* Mappings between unsigned and two’s complement
numbers: Keep bit representations and reinterpret

Two’s Complement

IX

Unsigned

»| T2B

T2U
X

>

B2U

Unsigned

Maintain Same Bit Pattern

ux

> U2B

U2T

X

> B2T

> UX

Two’s Complement

Maintain Same Bit Pattern

» IX

Mapping Signed <= Unsigned

Bits

0000

Signed

0001

Unsigned

0010

@)

0011

0100

0101

0110

0111

1000

1001

1010

OIN|O|OO ||| —

1011

O

1100

—
O

1101

—L
—L

1110

—
N

1111

—
w

—
N

—
Ol

Mapping Signed <= Unsigned

Bits

0000

Signed

0001

0010

0011

0100

0101

0110

0111

T2U

1000

1001

1010

1011

1100

1101

1110

1111

>

Unsigned

@)

OIN|O|OO ||| —

O

—
O

—L
—L

—
N

—
w

—
N

—
Ol

Mapping Signed <= Unsigned

Bits

0000

Signed

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

T2U

>

U2t

Unsigned

@)

OIN|O|OO ||| —

O

—
O

—L
—L

—
N

—
w

—
N

—
Ol

Mapping Signed <= Unsigned

Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 = 3
0100 4 4+ 4
0101 5 5
0110 6 6
0111 7 7
1000 -8 8
1001 -7 9
1010 -6 10
1011 -5 11
1100 -4 12
1101 -3 13
1110 -2 14
1111 -1 15

Mapping Signed <= Unsigned

Bits

0000

Signed

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

OIN|O|OO ||| —

+/- 16

Unsigned

@)

O

—
O

—L
—L

—
N

—
w

—
N

—
Ol

Mapping Signed <= Unsigned

Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 — 3
0100 4 <4“—> 4
0101 5 5
0110 6 6
1 o111 7 7
1000 8 8
~ 1001 -7 9
1010 -6 10
1011 5 +/- 16 11
1100 -4 12
1101 -3 13
1110 2 14

1111

—
Ol

Conversion Visualized

e 2’s Comp. — Unsigned
« Ordering Inversion
* Negative — Big Positive

2’s Complement
Range

" TMax

UMax
UMax — 1

TMax + 1
TMax

Unsigned
Range

10

Conversion Visualized

e 2’s Comp. — Unsigned
« Ordering Inversion
* Negative — Big Positive

UMax
UMax — 1

TMax + 1

*® TMax

-~ TMax @

2’s Complement 0 ®
Range 1
—2
- TMin

Unsigned
Range

10

Conversion Visualized

e 2’s Comp. — Unsigned

»@ UMax
 Ordering Inversion »® UMax — 1
* Negative — Big Positive
- /7® TMax + 1
TMax @ *® TMax

2’s Complement 0
Range 1
2

TMin

1y

Unsigned
Range

10

Today: Representing Information in Binary

* |[ntegers

« Expanding, truncating

11

Sighed Extension

short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;

12

Sighed Extension

e Task:

« Given w-bit signed integer x
« Convert it to (w+k)-bit integer with same value

12

Sighed Extension

e Task:

« Given w-bit signed integer x

« Convert it to (w+k)-bit integer with same value
e Rule:

« Make k copies of sign Dbit:
« X' =X coy Xt s Xyq s X o Xo

w—1 W—1" w—19 w23

k copies of MSB

12

Sighed Extension

e Task:

« Given w-bit signed integer x

« Convert it to (w+k)-bit integer with same value
e Rule:

« Make k copies of sign Dbit:
« X' =X coy Xt s Xyq s X o Xo

w—1 W—1" w—19 w23

k copies of MSB < w

12

Signed Extension Example

short int x = 15213;

int ix = (int) x;

short int y = -15213;

int iy = (int) y;

Decimal Hex Binary

X 15213 3B 6D 00111011 01101101
ix 15213 | 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213| FF FF C4 93 111111171 11111111 11000100 10010011

* Converting from smaller to larger integer data type
e C automatically performs sign extension

13

Unsigned Extension

e Task:

« Given w-bit unsigned integer x
« Convert it to (w+k)-bit integer with same value

e Rule:

e Simply pad zeros:
e X'=20,...,0,x X 0 X

» AMw-T10 Mw=2
| I—|

k copies of 0 < w
X o0 0
X, oo o0 0 oo)

14

Unsigned Extension Example

unsigned short x = 47981;
unsigned int ux = x;
Decimal Hex Binary
p 4 47981 BB 6D 10111011 01101101
ux 47981 | 00 00 BB 6D 00000000 00000000 10111011 01101101

Unsigned Extension is sometimes also called zero extension

Truncating

e Truncating (e.g., int to short)
» Leading bits are truncated, results reinterpreted

int x = 53191;
short sx = (short) x;
Decimal Hex Binary
X 53191 00 00 CF C7 00000000 00000000 11001111 11000111
sSxX -12345 CF C7 11001111 11000111

16

Truncating

e Truncating (e.g., int to short)
» Leading bits are truncated, results reinterpreted

int x = 53191;
short sx = (short) x;
Decimal Hex Binary
X 53191 00 00 CF C7 00000000 00000000 11001111 11000111
sSxX -12345 CF C7 11001111 11000111

Questions!?

16

Today: Representing Information in Binary

* |[ntegers

« Addition, negation, multiplication, shifting

17

Unsigned Addition

Signed

~N O O &AW N 2+ O

Binary
000
001
010
011
100
101
110
111

18

Unsigned Addition

e Similar to Decimal Addition

Signed

~N O O &AW N 2+ O

Binary
000
001
010
011
100
101
110
111

18

Unsigned Addition

e Similar to Decimal Addition Signed Binary

0 000

* Suppose we have a new data type that | 001
is 3-bit wide (c.f., short has 16 bits) o 010

3 011

4 100

5 101

010 5 6 110

Normal +) 101 +) 5 / L

Case 111 7

18

Unsigned Addition

e Similar to Decimal Addition

e Suppose we have a new data type that
is 3-bit wide (c.f., short has 16 bits)

* Might overflow: result can’t fit within the

size of the data type

010
Normal +) 101
Case 111

110
Overflow +) 101
Case

1011

N

+)

(o))

11

Signed

~N O O &AW N 2+ O

Binary
000
001
010
011
100
101
110
111

18

Unsigned Addition

e Similar to Decimal Addition

e Suppose we have a new data type that
is 3-bit wide (c.f., short has 16 bits)

* Might overflow: result can’t fit within the
size of the data type

010
Normal +) 101
Case 111
110
Overflow +) 101
Case o011

N

+)

()}

11

Signed

~N O O &AW N 2+ O

4 True Sum

Binary
000
001
010
011
100
101
110
111

18

Unsigned Addition

e Similar to Decimal Addition

e Suppose we have a new data type that
is 3-bit wide (c.f., short has 16 bits)

* Might overflow: result can’t fit within the

size of the data type

010
Normal +) 101
Case 111
110
Overflow +) 101
Case o1l
011

N

+)

+) 5

Signed Binary

0 000
1 001
2 010
3 011
4 100
5 101
6 110
[111

4 True Sum
44— Sum with same bits

18

Unsigned Addition in C

Operands: w bits U
+ v

True Sum: w+1 bits U+ v

Discard Carry: w bits UAdd (u ,v)

19

Two’s Complement Addition

Signed
0

y
2
3

Ll A

Binary
000
001
010
011
100
101
110
111

20

Two’s Complement Addition

e Has Identical Bit-Level behavior as
unsigned addition (a big advantage
over sign-magnitude)

Signed
0

y
2
3

Ll A

Binary
000
001
010
011
100
101
110
111

20

Two’s Complement Addition

e Has Identical Bit-Level behavior as
unsigned addition (a big advantage
over sign-magnitude)

Normal
Case

010
+) 101

111

2
+) -3

-1

Signed
0

y
2
3

Ll A

Binary
000
001
010
011
100
101
110
111

20

Two’s Complement Addition

* Has ldentical Bit-Level behavior as Signed Binary
unsigned addition (a big advantage (1) 88?
over sign-magnitude) 5 010

* Overflow can also occur 3 011

-4 100
010 2 -3 101
Normal — +) 101+ -3 2 110
Case 111 1 -1 111
110 -2
Overflow +) 101 +) -3
Case

1011 -5

20

Two’s Complement Addition

e Has Identical Bit-Level behavior as
unsigned addition (a big advantage

over sign-magnitude)

e Overflow can also occur

010
Normal +) 101
Case 111
110

Overflow +) 101
Case

1011
011

2
+) -3

Signed
0

y
2
3

Ll A

Binary
000
001
010
011
100
101
110
111

20

Two’s Complement Addition

* Has Identical Bit-Level behavior as Signed Binary
unsigned addition (a big advantage (1) 88?
over sign-magnitude) 5 010

e Overflow can also occur 3 011

Min —¥% 4 100

010 2 -3 101

Normal — +) 101+ -3 2 110

Case 111 1 -1 111
110 -2
Overflow +) 101 +) -3
Case 1011 -5
011 3

Negative Overflow

20

Two’s Complement Addition

* Has Identical Bit-Level behavior as Signed
unsigned addition (a big advantage ?
over sign-magnitude) 5

e Overflow can also occur 3

Min —% -4
010 2 -3
Normal +) 101 +) -3 2
Case 111) 1
110 -2 011
Overflow 4 101 +) -3 +) 001
Case 1011 -5 0100
011 3

Negative Overflow

+)

Binary
000
001
010
011
100
101
110
111

R W

20

Two’s Complement Addition

* Has Identical Bit-Level behavior as Signed
unsigned addition (a big advantage ?
over sign-magnitude) 5

e Overflow can also occur 3

Min —% -4

010 2 -3

Normal +) 101 +) -3 2

Case 111 -1 3
110 -2 011
Overflow 4 101 +) -3 +) 001
Case 1011 -5 0100
011 3 100

Negative Overflow

+)

Binary
000
001
010
011
100
101
110
111

> B R W

20

Two’s Complement Addition

e Has Identical Bit-Level behavior as Signed Binary
unsigned addition (a big advantage (1) 88?
over sign-magnitude) 5 010

e Overflow can also occur Max —#% 3 011

Min —¥% 4 100

010 2 -3 101

Normal — +) 101+ -3 2 110
Case 111 1 -1 111
110 -2 011 3

Overflow 1) 101 +) -3 +) 001 +) 1
Case 1011 -5 0100 4
011 3 100 -4

Negative Overflow Positive Overflow

Two’s Complement Addition in C

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits

u
v

u-+yv

TAdd, (u ,v)

21

How is Addition Implemented in Hardware?

29

How is Addition Implemented in Hardware?

MOS = Metal Oxide Semiconductor
e two types: n-type and p-type

29

How is Addition Implemented in Hardware?

MOS = Metal Oxide Semiconductor
e two types: n-type and p-type

n-type (NMOS)

Terminal #2 must be
connected to GND (0V).

29

How is Addition Implemented in Hardware?

MOS = Metal Oxide Semiconductor
e two types: n-type and p-type

n-type (NMOS)
* when Gate has positive voltage,

short circuit between #1 and #2
(switch closed)

Gate=1

Terminal #2 must be
connected to GND (0V).

29

How is Addition Implemented in Hardware?

MOS = Metal Oxide Semiconductor
e two types: n-type and p-type

n-type (NMOS)
* when Gate has positive voltage,
short circuit between #1 and #2
(switch closed)
* when Gate has zero voltage,
open circuit between #1 and #2 Gate = 1
(switch open)

#1

Gate =0 (

#2

Terminal #2 must be
connected to GND (0V).

29

How is Addition Implemented in Hardware?

p-type is complementary to n-type (PMOS)

* when Gate has positive voltage, >

open circuit between #1 and #2
(switch open) l
« when Gate has zero voltage,
short circuit between #1 and #2
(switch closed) #2
Gate =1

Gate =0

Terminal #1 must be
connected to +1.2V

22

CMOS Circuit

e Complementary MOS

e Uses both n-type and p-type MOS transistors
* p-type
« Attached to + voltage
« Pulls output voltage UP when input is zero
* n-type
« Attached to GND
 Pulls output voltage DOWN when input is one

24

Inverter (NOT Gate)
- +1.2V

In — QUL

S +0.0V

2B

Inverter (NOT Gate)

25

Inverter (NOT Gate)

25

Inverter (NOT Gate)

In

- +1.2V

— QUL

S +0.0V

2B

Inverter (NOT Gate)

In

— 1.2V
5
— QUL

L

S +0.0V

2B

Inverter (NOT Gate)

In

In

— 1.2V
5
— QUL

L

S +0.0V

Out

2B

NOR Gate (NOT + OR)

A=0

B=1-H—

A4 v

=
- -
I
- a2 o ofl>»

Note: Serial structure on top, parallel on bottom.

— I~
v
B| C
0 1
1 0
0 0
1 0

7R

Basic Logic Gates

A—{>O—K

w >

~(A|B)

OR NOR

Q:D—A 8B g:}~(A 8 B)

AND NAND

27

Full (1-bit) Adder

Add two bits and carry-in,
produce one-bit sum and carry-out.

ABC,sSc,

t
00 0[0 O
00 1|1 0
01 0/[1 0
01 1[0 1
10 0|1 0
10 1|0 1
11 0|0 1
11 1]1 1

2

Full (1-bit) Adder

Add two bits and carry-in,

produce one-bit sum and carry-out.

S = (""A&"'B &Cin)

A B C,|s c,

t
00 0o o
00 1[1]0
01 0|1 0
01 1|0 1
1.0 0[1 0
10 1]|0 1
11 0]0 1
11 1)1 1

2

Full (1-bit) Adder

Add two bits and carry-in,

produce one-bit sum and carry-out.

S = (""A & ~B & Cin)
| ("'A & B & "'Cin)

A B C,|S C,,

t
00 0[0 O
00 1]1 0
01 0[1]0
01 1(0 1
10 0[1 0
10 1|0 1
11 0]0 1
11 1|1 1

2

Full (1-bit) Adder

Add two bits and carry-in,

produce one-bit sum and carry-out.

S = (""A & ~B & Cin)
| ("'A & B & "'Cin)
| (A & ~B & ~Cin)

ABC.Sc,

t
00 0|0 O
00 11 o
01 01 o
0.1 1|0 1
Woo?@o
10 1|0 1
11 0|0 1
11 1|1 1

2

Full (1-bit) Adder

Add two bits and carry-in,

produce one-bit sum and carry-out.

S=(~A&~B &Cin

= ()
| (~A & B & ~Cin)
| (A & ~B & ~Cin)

(A& B& Ci)

ABC.ls c,

t
00 0[0 O
00 11 o
01 01 o
01 1[0 1
10 0|1 0
10 1|0 1
11 0]0 1
11 1[1]1

2

Full (1-bit) Adder

Add two bits and carry-in,

produce one-bit sum and carry-out. A B C,|S C,
t

00 0|0 O

S=(~A&~B&Cin) 00 111 o

| (~A & B & ~Cin) 01 01 0

| (A & ~B & ~Cin) 01 1|0 1

| (A& B& Ci) 10 01 0

10 1|0 1

Cou = (~A & B & Cin 11 0|0 1

11 1|1 1

(A & B & ""Cin

)
(A & ~B & Cin)
)
(A& B& Ci)

2

Full (1-bit) Adder

Add two bits and carry-in,
produce one-bit sum and carry-out.

Cou = (~A & B & Cin)
(A & ~B & Cin)
(A & B & ~Cin)
(A& B& Cin)

20

Full (1-bit) Adder

Add two bits and carry-in,
produce one-bit sum and carry-out.

B

2

Cou = (~A & B & Cin)
(A & ~B & Cin)
(A & B & ~Cin)
(A& B& Cin)

[

v

Ot

out

JOUC

4—— OR Gates

20

Full (1-bit) Adder

)
Add two bits aljd carry-in, (A & B & ~Cin)
produce one-bit sum and carry-out.
A o (A& B & Cin)
/ i » 4 . 4 > 2 » 4

‘ l »> 1 * + ° Cm
| {)E 4—— AND Gates

4—— OR Gates

20

Four-bit Adder

A B A, B,
| |]
A B A B
Full ¢ Full
Adder Adder
G S Gl S
Cou! S3 Sz

20

Four-bit Adder

* Ripple-carry Adder
* Simple, but performance linear to bit width

A, B, A, B, A, B,
|| | |

A B A B A B
Full € Full € Full €

Adder Adder Adder

G S Gl S C S

Cot Ss S, S,

20

Four-bit Adder

* Ripple-carry Adder

* Simple, but performance linear to bit width
e Carry look-ahead adder (CLA)
* Generate all carriers simultaneously

A, B, A, B, A, B,
|| || |

A B A B A B
Full €. Full €. Full ©C.

Adder Adder Adder

G S C.. S G S

Cout S3 S2 Si

20

Four-bit Adder Questions?

* Ripple-carry Adder

* Simple, but performance linear to bit width
e Carry look-ahead adder (CLA)
* Generate all carriers simultaneously

A3 83 A2 Bz A1 Bl
| | |

A B A B A B
Full €. Full €. Full C.

Adder Adder Adder

& S C. S G S

Cout S3 S2 S|

20

Multiplication

Multiplication

e Goal: Computing Product of w-bit numbers x, y

31

Multiplication

e Goal: Computing Product of w-bit numbers x, y
* But, exact results can be bigger than w bits

31

Multiplication

e Goal: Computing Product of w-bit numbers x, y
* But, exact results can be bigger than w bits

Original Number (w bits)

OMax 2v1-1 T

0

OMin -2w-t +

31

Multiplication

e Goal: Computing Product of w-bit numbers x, y
* But, exact results can be bigger than w bits

Original Number (w bits) Product
OMax 2v-1-1 T
2W—1_1 -+
0
0
OMin -2w— -
_2W—1 -+

Multiplication

e Goal: Computing Product of w-bit numbers x, y
* But, exact results can be bigger than w bits

Original Number (w bits) Product
PMax

OMax 2v-1-1 T

2W—1_1 -+
0
0

OMin -2w— -

_2W—1 -+

PMin

Multiplication

e Goal: Computing Product of w-bit numbers x, y

* But, exact results can be bigger than w bits

Original Number (w bits)

OMax 2v1-1 T

0

OMin -2w-t +

PMax

PMin

Product

22W-2 -

2W—1_1 -+

0

_2W—1 -+

OMin?

31

Multiplication

e Goal: Computing Product of w-bit numbers x, y
* But, exact results can be bigger than w bits

Original Number (w bits) Product
PMax 222+ OMin?

OMax 2v-1-1 T

2W—1_1 -+
0
0

OMin -2w— -

_2W—1 -+

PMin —22-2+2v1t1 OMin * OMax

31

Multiplication

e Goal: Computing Product of w-bit numbers x, y
* But, exact results can be bigger than w bits

Original Number (w bits) Product (2w bits)
PMax 222+ OMin?
OMax 2v-1-1 T
2W—1_1 -+
0
0
OMin -2w— -
_2W—1 -+

PMin —22-2+2v1t1 OMin * OMax

31

Multiplication

e Goal: Computing Product of w-bit numbers x, y
* But, exact results can be bigger than w bits
« Up to 2w bits (both signed and unsigned)

Original Number (w bits) Product (2w bits)

PMax 22v2 = OMin?

OMax 2v1-1 T
2W—L_1 -

0
0

OMin -2w-t +

_2W—1 -+

PMin —22-2+2v1t1 OMin * OMax

31

Unsigned Multiplication in C

u
Operands: w bits
* o000
\%
True Product: 2*w bits u -V XK ° oo
UMUltw(l/l . V) o0 0

Discard w bits: w bits

e Standard Multiplication Function
 Ignores high order w bits

* Implements Modular Arithmetic
UMult (u,v) = u -v mod2%

32

Signhed Multiplication in C

u o 00
Operands: w bits
* o 00
Y
True Product: 2*w bits U -V ° o0 oo
TMUltw(l/l \ V) o0 0

Discard w bits: w bits

e Standard Multiplication Function
 Ignores high order w bits
« Some of which are different for signed vs. unsigned multiplication
e Lower bits are the same

33

Power-of-2 Multiply with Shift

e Operation
e u << kgivesu* 2K
« 0012 << 2 =100z (1 * 22 = 4)
« Both signed and unsigned

34

Power-of-2 Multiply with Shift

e Operation
e u << kgivesu* 2K

e« 0012 << 2 =1002 (1 *22 = 4)

« Both signed and unsigned

34

Power-of-2 Multiply with Shift

e Operation

e u << kgivesu* 2K

< w

« 0012 << 2 =1002 (1 * 22 = 4)

« Both signed and unsigned) . k
<<

True Product: wt+k bits u - 2k ®oo0 Of eee

Power-of-2 Multiply with Shift

e Operation
e u << kgivesu* 2K
« 0012 << 2 =100z (1 * 22 = 4)
« Both signed and unsigned

True Product: w+k bits u:

Discard k bits (if overflow)

2k

34

Power-of-2 Multiply with Shift

e Operation
e u << kgivesu* 2K

< w
¢« 0012<<2=1002(1*22=4)
- Both signed and unsigned " == ;
<
True Product: wt+k bits u - 2k ®oo0 Of eee
Discard k bits (if overflow) oo O] eee

* Most machines shift and add faster than multiply

* Compiler generates this code automatically
e U <K 3 == u * 8
e (U << b5) = (u <K 3) == u * 24

Unsigned Power-of-2 Divide with Shift

* Implement power-of-2 divide with shift
e u >> kgives Lu/2k](l2.34]=2)

« Uses logical shift

35

Unsigned Power-of-2 Divide with Shift

* Implement power-of-2 divide with shift
e u >> kgives Lu/2k](l2.34]=2)

« Uses logical shift < k >

35

Unsigned Power-of-2 Divide with Shift

* Implement power-of-2 divide with shift
e u >> kgives Lu/2k](l2.34]=2)

« Uses logical shift < k >

u

True Product: w+k bits u/ 2k 10 o]0

AN

Binary Point

Unsigned Power-of-2 Divide with Shift

* Implement power-of-2 divide with shift
e u >> kgives Lu/2k](l2.34]=2)

« Uses logical shift <
u
True Product: w+k bits u/ 2k [0 0]0
Discard k bits |_ y/ 2kJ) oTo

after binary point

N

Binary Point

35

Unsigned Power-of-2 Divide with Shift

* Implement power-of-2 divide with shift
e u >> kgives Lu/2k](l2.34]=2)

« Uses logical shift —f—
U
True Product: w+k bits u / 2k [0 o]0 .
Discard k bits Lu/2k] [0 010 \ Binary Point

after binary point

¢ 23410 >> 2 = 2.3449, truncated result is 2 ([2.34_] = 2)
e 11012 >> 2 = 00112 (true result: 11.012. L 13/4 | = 3)

35

Today: Representing Information in Binary

e Representations in memory, pointers, strings

36

Byte-Oriented Memory Organization

QQ. QQ.

e Programs refer to data by address
« Conceptually, envision it as a very large array of bytes: byte-addressable
 In reality, it’s not, but can think of it that way
« An address is like an index into that array
e and, a pointer variable stores an address

37

Machine Words

e Any given computer has a “Word Size”
« Nominal size of a memory address

 Until recently, most machines used 32 bits (4 bytes) as word size
 Limits addresses to 4GB (232 bytes)

« Increasingly, machines have 64-bit word size
« Potentially, could have 18 EB (exabytes) of addressable memory
e That’s 18.4 X 108

38

Machine Words

/o S
Q. QQ.

Q

e Any given computer has a “Word Size”
« Nominal size of a memory address

 Until recently, most machines used 32 bits (4 bytes) as word size
 Limits addresses to 4GB (232 bytes)

« Increasingly, machines have 64-bit word size

« Potentially, could have 18 EB (exabytes) of addressable memory
e That’s 18.4 X 1018

38

Example Data Representations (in Bytes)

Word Size 4 8
char 1 1
short 2 2
int 4 4
long 4 3
float 4 4
double 8 8

pointer 4 8

Example Data Representations (in Bytes)

Word Size (4) (8
C Data Type

char 1 1
short) 2
int 4 4
long 4 3
float 4 1

double) g

pointer (:E:) (:g:)

39

Word-Oriented Memory Organization

32-bit 64-bit

* Addresses Specify Byte Variables Variables =Y °° Add"
Locations 0000
Add
. Address of first byte in word n 0001
. 0000 0002
e Addresses of successive words Addr 00
differ by 4 (32-bit) or 8 (64-bit) o 004
Addr 0005
OO_O4 0006
0007
0008
Addr 0009
oo_oe 0010
Addr
- 0011
0008 0012
Addr 0013
OO_12 0014
0015

Byte Ordering

Byte Ordering

* How are the bytes within a multi-byte word ordered in memory?

41

Byte Ordering

* How are the bytes within a multi-byte word ordered in memory?

* Example

 Variable x has 4-byte value of 0x01234567
« Address given by &x is 0x100

0x100 0x101 0x102 0x103

41

Byte Ordering

* How are the bytes within a multi-byte word ordered in memory?

* Example
 Variable x has 4-byte value of 0x01234567
« Address given by &x is 0x100
* Conventions
e Big Endian: Sun, PPC Mac, IBM z, Internet
« Most significant byte has lowest address (MSB first)
e Little Endian: x86, ARM
 Least significant byte has lowest address (LSB first)

0x100 0x101 0x102 0x103

41

Byte Ordering

* How are the bytes within a multi-byte word ordered in memory?

* Example

 Variable x has 4-byte value of 0x01234567
« Address given by &x is 0x100

* Conventions
e Big Endian: Sun, PPC Mac, IBM z, Internet
« Most significant byte has lowest address (MSB first)
e Little Endian: x86, ARM
 Least significant byte has lowest address (LSB first)

Big Endian 0x100 0x101 0x102 0x103
01 23 45 67

Byte Ordering

* How are the bytes within a multi-byte word ordered in memory?

* Example
 Variable x has 4-byte value of 0x01234567
« Address given by &x is 0x100
* Conventions
e Big Endian: Sun, PPC Mac, IBM z, Internet
« Most significant byte has lowest address (MSB first)
e Little Endian: x86, ARM
 Least significant byte has lowest address (LSB first)

Big Endian 0x100 0x101 0x102 0x103

01 23 45 67

Little Endian 0x100 0x101 0x102 0x103

41

Byte Ordering

* How are the bytes within a multi-byte word ordered in memory?

* Example
 Variable x has 4-byte value of 0x01234567
« Address given by &x is 0x100
* Conventions
e Big Endian: Sun, PPC Mac, IBM z, Internet
« Most significant byte has lowest address (MSB first)
e Little Endian: x86, ARM
 Least significant byte has lowest address (LSB first)

Big Endian 0x100 0x101 0x102 0x103

01 23 45 67

Little Endian 0x100 0x101 0x102 0x103

67 45 23 01

41

Representing Integers

Address Increase

<4

Hex:

00003B6D

int A = 15213;

Little-E

6D
3B
00
00

Big-E
00
00

3B
6D

Hex: FFFFC493
int B = -15213;
Little-E Big-E
93 FF
c4 FF
FF c4
FF 93

42

Representing Integers

Address Increase

<4

Hex:

00003B6D

int A = 15213;

Little-E

6D
3B |«
00 |«
00

Big-E
00

» 00
» 3B
6D

Hex: FFFFC493
int B = -15213;
Little-E Big-E
93 FF
c4 FF
FF c4
FF 93

42

Representing Integers

Address Increase

Hex:

00003B6D

int A = 15213;

Little-E

6D
3B |«
00 |«
00

Big-E
00

» 00
» 3B
6D

Hex: FFFFC493
int B = -15213;
Little-E Big-E

42

