CSC 252: Computer Organization Spring 2018: Lecture 3

Instructor: Yuhao Zhu

Department of Computer Science University of Rochester

Action Items:

- Trivia 1 is due tomorrow, midnight
- Main assignment due Feb. 2, midnight

Slide Credits: Bryant, O'Hallaron, Patt, Patel

Announcement

- Programming Assignment 1 is out
 - Details: http://cs.rochester.edu/courses/252/spring2018/
 labs/assignment1.html
 - Due on Feb 2, 11:59 PM
 - Trivia due Friday, 1/26, 11:59 PM
 - You have 3 slip days (not for trivia)
- TAs are better positioned to answer questions regarding assignments

Previously in 252...

- Computers are built to understand bits: 0 and 1
 - 0: low (no) voltage; 1: high voltage
- Hexdecimal Notation: 0-9 and A-F

- Integer representations (Fixed-point really)
 - 1111 is really 1111.
 - Unsigned vs. Signed Integers

Unsigned	Binary
0	000
1	001
2	010
3	011
4	100
5 6	101
	110
7	111

Unsigned	Binary
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
3	3	011
-4	4	100
-4 -3 -2	5	101
-2	6	110
-1	7	111

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
3	3	011
-4 -3 -2	4	100
-3	5	101
-2	6	110
-1	7	111

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
3	3	011
-4 -3 -2	4	100
-3	5	101
-2	6	110
-1	7	111

$$101_2 = 1^*2^0 + 0^*2^1 + (-1^*2^2) = -3_{10}$$

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
3	3	011
-4	4	100
-4 -3 -2	5	101
-2	6	110
-1	7	111

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
	3	011
-4 -3 -2	4	100
-3	5	101
-2	6	110
-1	7	111

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
3	3	011
-4	4	100
-4 -3 -2	5	101
-2	6	110
-1	7	111

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
3	3	011
-4 -3 -2	4	100
-3	5	101
-2	6	110
-1	7	111

1012 =	$1*2^{0} +$	$0*2^{1}$	+	(-1*2 ²)	=	-310
A						

- Only 1 zero
- Unsigned arithmetic still works
- Almost all C implementations use this
 - If you define a signed variable, it's internally represented using 2's complement

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3 -2	101
-2	110
-1	111

- Only 1 zero
- Unsigned arithmetic still works
- Almost all C implementations use this
 - If you define a signed variable, it's internally represented using 2's complement

	010
+)	101
	111

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

- Only 1 zero
- Unsigned arithmetic still works
- Almost all C implementations use this
 - If you define a signed variable, it's internally represented using 2's complement

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-4 -3 -2	101
-2	110
-1	111

- Only 1 zero
- Unsigned arithmetic still works
- Almost all C implementations use this
 - If you define a signed variable, it's internally represented using 2's complement

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

- There is a bit that represents sign!
- 3 + 1 becomes -4 (called overflow. More on it later.)

Today: Representing Information in Binary

- Why Binary (bits)?
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Signed vs. Unsigned in C

- What happens when we convert between signed and unsigned numbers?
- Casting (In C terminology)
 - Explicit casting between signed & unsigned

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux; // U2T
uy = (unsigned) ty; // T2U
```

Implicit casting also occurs via assignments and procedure calls

```
tx = ux;

uy = ty;
```

Mapping Between Signed & Unsigned

 Mappings between unsigned and two's complement numbers: Keep bit representations and reinterpret

Maintain Same Bit Pattern

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0:
Signed
0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

Unsigned
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Unsigned
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Unsigned
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Signed
0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

Unsigned
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Signed	
0	
1	
2	
3	
4	
5	
6	
7	
-8	
-7	
-6	
-5	
-4	
-3	
-2	
-1	

Bits	Signed		Unsigned
0000	0		0
0001	1		1
0010	2		2
0011	3	_ = _	3
0100	4		4
0101	5		5
0110	6		6
0111	7		7
1000	-8		8
1001	-7		9
1010	-6		10
1011	-5	+/- 16	11
1100	-4		12
1101	-3		13
1110	-2		14
1111	-1		15

Conversion Visualized

- 2's Comp. → Unsigned
 - Ordering Inversion
 - Negative → Big Positive

Conversion Visualized

Conversion Visualized

Today: Representing Information in Binary

- Why Binary (bits)?
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

```
short int x = 15213;
int     ix = (int) x;
short int y = -15213;
int     iy = (int) y;
```

- Task:
 - Given w-bit signed integer x
 - Convert it to (w+k)-bit integer with same value

- Task:
 - Given w-bit signed integer x
 - Convert it to (w+k)-bit integer with same value
- Rule:
 - Make *k* copies of sign bit:

•
$$X' = X_{w-1}, ..., X_{w-1}, X_{w-1}, X_{w-2}, ..., X_0$$

k copies of MSB

- Task:
 - Given w-bit signed integer x
 - Convert it to (w+k)-bit integer with same value
- Rule:
 - Make k copies of sign bit:

Signed Extension Example

```
short int x = 15213;
int     ix = (int) x;
short int y = -15213;
int     iy = (int) y;
```

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101
У	-15213	C4 93	11000100 10010011
iy	-15213	FF FF C4 93	1111111 1111111 11000100 10010011

- Converting from smaller to larger integer data type
- C automatically performs sign extension

Unsigned Extension

- Task:
 - Given w-bit unsigned integer x
 - Convert it to (w+k)-bit integer with same value
- Rule:
 - Simply pad zeros:

Unsigned Extension Example

```
unsigned short x = 47981;
unsigned int ux = x;
```

	Decimal	Hex	Binary
x	47981	BB 6D	10111011 01101101
ux	47981	00 00 BB 6D	00000000 00000000 10111011 01101101

Unsigned Extension is sometimes also called zero extension

Truncating

- Truncating (e.g., int to short)
 - Leading bits are truncated, results reinterpreted

```
int x = 53191;
short sx = (short) x;
```

	Decimal	Hex	Binary
x	53191	00 00 CF C7	00000000 00000000 11001111 11000111
sx	-12345	CF C7	11001111 11000111

Truncating

- Truncating (e.g., int to short)
 - Leading bits are truncated, results reinterpreted

```
int x = 53191;
short sx = (short) x;
```

	Decimal	Hex	Binary
x	53191	00 00 CF C7	00000000 00000000 11001111 11000111
sx	-12345	CF C7	11001111 11000111

Questions?

Today: Representing Information in Binary

- Why Binary (bits)?
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Signed	Binary
0	000
1	001
2	010
3	011
4 5 6	100
5	101
	110
7	111

• Similar to Decimal Addition

Signed	Binary
0	000
1 2	001
	010
3	011
4 5	100
5	101
6	110
7	111

- Similar to Decimal Addition
- Suppose we have a new data type that is 3-bit wide (c.f., short has 16 bits)

Normal
Case

Signed	Binary
0	000
1	001
2	010
3	011
4 5	100
5	101
6	110
7	111

- Similar to Decimal Addition
- Suppose we have a new data type that is 3-bit wide (c.f., short has 16 bits)
- Might overflow: result can't fit within the size of the data type

Normal
Case

Overflow Case

Signed	Binary
0	000
1	001
2	010
3	011
4	100
4 5 6	101
	110
7	111

- Similar to Decimal Addition
- Suppose we have a new data type that is 3-bit wide (c.f., short has 16 bits)
- Might overflow: result can't fit within the size of the data type

Normal
Case

Signed	Binary
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Overflow Case

True Sum

- Similar to Decimal Addition
- Suppose we have a new data type that is 3-bit wide (c.f., short has 16 bits)
- Might overflow: result can't fit within the size of the data type

Normal
Case

Signed	Binary
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

3

True Sum
Sum with same bits

Unsigned Addition in C

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

 Has Identical Bit-Level behavior as unsigned addition (a big advantage over sign-magnitude)

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

 Has Identical Bit-Level behavior as unsigned addition (a big advantage over sign-magnitude)

Normal Case

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3 -2	101
-2	110
-1	111

- Has Identical Bit-Level behavior as unsigned addition (a big advantage over sign-magnitude)
- Overflow can also occur

Normal
Case

Overflow Case

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-4 -3	101
-2	110
-1	111

- Has Identical Bit-Level behavior as unsigned addition (a big advantage over sign-magnitude)
- Overflow can also occur

Normal
Case

Overflow Case

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3 -2	101
-2	110
-1	111

- Has Identical Bit-Level behavior as unsigned addition (a big advantage over sign-magnitude)
- Overflow can also occur

-

Signed

-3

Binary

000

001

010

011

100

101

110

111

Min	******

Normal
Case

Overflow Case

Negative Overflow

- Has Identical Bit-Level behavior as unsigned addition (a big advantage over sign-magnitude)
- Overflow can also occur

0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

Binary

Signed

Normal Case

Overflow Case

Negative Overflow

- Has Identical Bit-Level behavior as unsigned addition (a big advantage over sign-magnitude)
- Overflow can also occur

M	in	

0	000
1	001
2	010
3	011
-4	100
-3 -2	101
-2	110
-1	111

Binary

Signed

Normal Case

Negative Overflow

- Has Identical Bit-Level behavior as unsigned addition (a big advantage over sign-magnitude)
- Overflow can also occur

Max	
Min	

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

Overflow Case

Negative Overflow

Positive Overflow

MOS = Metal Oxide Semiconductor

two types: n-type and p-type

MOS = Metal Oxide Semiconductor

two types: n-type and p-type

n-type (NMOS)

Terminal #2 must be connected to GND (0V).

MOS = Metal Oxide Semiconductor

two types: n-type and p-type

n-type (NMOS)

 when Gate has <u>positive</u> voltage, short circuit between #1 and #2 (switch <u>closed</u>)

Terminal #2 must be connected to GND (0V).

MOS = Metal Oxide Semiconductor

two types: n-type and p-type

n-type (NMOS)

 when Gate has <u>positive</u> voltage, short circuit between #1 and #2 (switch <u>closed</u>)

 when Gate has <u>zero</u> voltage, open circuit between #1 and #2 (switch <u>open</u>)

Terminal #2 must be connected to GND (0V).

p-type is complementary to n-type (PMOS)

- when Gate has <u>positive</u> voltage, open circuit between #1 and #2 (switch <u>open</u>)
- when Gate has <u>zero</u> voltage, short circuit between #1 and #2 (switch <u>closed</u>)

Terminal #1 must be connected to +1.2V

CMOS Circuit

- Complementary MOS
- Uses both n-type and p-type MOS transistors
 - p-type
 - Attached to + voltage
 - Pulls output voltage UP when input is zero
 - n-type
 - Attached to GND
 - Pulls output voltage DOWN when input is one

In	Out
0	1
1	0

NOR Gate (NOT + OR)

Α	В	С
0	0	1
0	1	0
1	0	0
1	1	0

Note: Serial structure on top, parallel on bottom.

Basic Logic Gates

A	В	C _{in}	S	C _{ou}
				t
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S = (A \& B \& C_{in})$$

В	C _{in}	S	C _{ou}
			<u>t</u>
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1
0	0	1	0
0	1	0	1
1	0	0	1
1	1	1	1
	0 0 1 1 0	0 0 0 1 1 0 1 1 0 0 0 1	0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0 1 0

$$S = (\text{~A \& ~B \& C}_{in})$$

| (\times A & B & \times C_{in})

A	В	C _{in}	S	C _{ou}
				t
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S = (\text{~A \& ~B \& C}_{in})$$

| (\tau A & B & \tau C_{in})
| (A & \tau B & \tau C_{in})

A	В	C _{in}	S	C _{ou}
				t
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	, 1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

A	В	\mathbf{C}_{in}	S	\mathbf{C}_{ou}
				t
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

A	В	C _{in}	S	C _{ou}
				t
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Add two bits and carry-in, produce one-bit sum and carry-out.

- Ripple-carry Adder
 - Simple, but performance linear to bit width

- Ripple-carry Adder
 - Simple, but performance linear to bit width
- Carry look-ahead adder (CLA)
 - Generate all carriers simultaneously

Questions?

- Ripple-carry Adder
 - Simple, but performance linear to bit width
- Carry look-ahead adder (CLA)
 - Generate all carriers simultaneously

• Goal: Computing Product of w-bit numbers x, y

- Goal: Computing Product of w-bit numbers x, y
- But, exact results can be bigger than w bits

- Goal: Computing Product of w-bit numbers x, y
- But, exact results can be bigger than w bits

Original Number (w bits)

- Goal: Computing Product of w-bit numbers x, y
- But, exact results can be bigger than w bits

Original Number (w bits)

OMax $2^{w-1}-1$ $\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$

Product

- Goal: Computing Product of w-bit numbers x, y
- But, exact results can be bigger than w bits

- Goal: Computing Product of w-bit numbers x, y
- But, exact results can be bigger than w bits

- Goal: Computing Product of w-bit numbers x, y
- But, exact results can be bigger than w bits

OMax $2^{w-1}-1$ T

Original Number (w bits)

- Goal: Computing Product of w-bit numbers x, y
- But, exact results can be bigger than w bits

Original Number (w bits)

OMax 2^{w-1}-1 | 0 | OMin -2^{w-1}

Product (2w bits)

- Goal: Computing Product of w-bit numbers x, y
- But, exact results can be bigger than w bits
 - Up to 2w bits (both signed and unsigned)

Original Number (w bits)

Product (2w bits)

Unsigned Multiplication in C

- Standard Multiplication Function
 - Ignores high order w bits
- Implements Modular Arithmetic

$$UMult_{w}(u, v) = u \cdot v \mod 2^{w}$$

Signed Multiplication in C

- Standard Multiplication Function
 - Ignores high order w bits
 - Some of which are different for signed vs. unsigned multiplication
 - Lower bits are the same

- Operation
 - u << k gives u * 2^k
 - $001_2 << 2 = 100_2 (1 * 2^2 = 4)$
 - Both signed and unsigned

Operation

- u << k gives u * 2^k
- $001_2 << 2 = 100_2 (1 * 2^2 = 4)$
- Both signed and unsigned

Operation

- u << k gives u * 2^k
- $001_2 << 2 = 100_2 (1 * 2^2 = 4)$
- Both signed and unsigned

True Product: w+k bits $u \cdot 2^k$ ••• 0 0 ••• 0 0

 \mathcal{U}

Operation

• u << k gives $u * 2^k$ • $001_2 << 2 = 100_2$ ($1 * 2^2 = 4$) • Both signed and unsigned

True Product: w+k bits $u \cdot 2^k$ Discard k bits (if overflow)

Operation

- Most machines shift and add faster than multiply
 - Compiler generates this code automatically
 - u << 3 == u * 8

Discard *k* bits (if overflow)

• (u << 5) - (u << 3) == u * 24

- Implement power-of-2 divide with shift
 - u $>> k \text{ gives } \lfloor u / 2^k \rfloor (\lfloor 2.34 \rfloor = 2)$
 - Uses logical shift

- Implement power-of-2 divide with shift
 - u \Rightarrow k gives $\lfloor u / 2^k \rfloor$ ($\lfloor 2.34 \rfloor = 2$)
 - Uses logical shift

- Implement power-of-2 divide with shift
 - u \Rightarrow k gives $\lfloor u / 2^k \rfloor$ ($\lfloor 2.34 \rfloor = 2$)
 - Uses logical shift

True Product: w+k bits $u/2^k$

- Implement power-of-2 divide with shift
 - u >> k gives $\lfloor u / 2^k \rfloor$ ($\lfloor 2.34 \rfloor = 2$)
 - Uses logical shift

True Product: w+k bits

Discard *k* bits after binary point

$$\lfloor u/2^k \rfloor$$
 O O Binary Poin

- Implement power-of-2 divide with shift
 - u \Rightarrow k gives $\lfloor u / 2^k \rfloor$ ($\lfloor 2.34 \rfloor = 2$)
 - Uses logical shift

True Product: w+k bits

Discard *k* bits after binary point

$$\lfloor u/2^k \rfloor$$
 O O Binary Point

- $234_{10} >> 2 = 2.34_{10}$, truncated result is 2 ($\lfloor 2.34 \rfloor = 2$)
- $1101_2 >> 2 = 0011_2$ (true result: 11.01_2 . $\lfloor 13 / 4 \rfloor = 3$)

Today: Representing Information in Binary

- Why Binary (bits)?
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Byte-Oriented Memory Organization

- Programs refer to data by address
 - Conceptually, envision it as a very large array of bytes: byte-addressable
 - In reality, it's not, but can think of it that way
 - An address is like an index into that array
 - and, a pointer variable stores an address

Machine Words

- Any given computer has a "Word Size"
 - Nominal size of a memory address
 - Until recently, most machines used 32 bits (4 bytes) as word size
 - Limits addresses to 4GB (2³² bytes)
 - Increasingly, machines have 64-bit word size
 - Potentially, could have 18 EB (exabytes) of addressable memory
 - That's 18.4 X 10¹⁸

Machine Words

- Any given computer has a "Word Size"
 - Nominal size of a memory address
 - Until recently, most machines used 32 bits (4 bytes) as word size
 - Limits addresses to 4GB (2³² bytes)
 - Increasingly, machines have 64-bit word size
 - Potentially, could have 18 EB (exabytes) of addressable memory
 - That's 18.4 X 10¹⁸

Example Data Representations (in Bytes)

Word Size

4

8

C Data Type	3 2 -bit	64-bit		
char	1	1		
short	2	2		
int	4	4		
long	4	8		
float	4	4		
double	8	8		
pointer	4	8		

Example Data Representations (in Bytes)

Word Size	4	8	
C Data Type	32-bit	64-bit	
char	1	1	
short	2	2	
int	4	4	
long	4	8	
float	4	4	
double	8	8	
pointer	4	8	

Word-Oriented Memory Organization

- Addresses Specify Byte Locations
 - Address of first byte in word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

• How are the bytes within a multi-byte word ordered in memory?

- How are the bytes within a multi-byte word ordered in memory?
- Example
 - Variable x has 4-byte value of 0x01234567
 - Address given by &x is 0x100

 0x100	0x101	0x102	0x103	

- How are the bytes within a multi-byte word ordered in memory?
- Example
 - Variable x has 4-byte value of 0x01234567
 - Address given by &x is 0x100
- Conventions
 - Big Endian: Sun, PPC Mac, IBM z, Internet
 - Most significant byte has lowest address (MSB first)
 - Little Endian: x86, ARM
 - Least significant byte has lowest address (LSB first)

- How are the bytes within a multi-byte word ordered in memory?
- Example
 - Variable x has 4-byte value of 0x01234567
 - Address given by &x is 0x100
- Conventions
 - Big Endian: Sun, PPC Mac, IBM z, Internet
 - Most significant byte has lowest address (MSB first)
 - Little Endian: x86, ARM
 - Least significant byte has lowest address (LSB first)

- How are the bytes within a multi-byte word ordered in memory?
- Example
 - Variable x has 4-byte value of 0x01234567
 - Address given by &x is 0x100
- Conventions
 - Big Endian: Sun, PPC Mac, IBM z, Internet
 - Most significant byte has lowest address (MSB first)
 - Little Endian: x86, ARM
 - Least significant byte has lowest address (LSB first)

- How are the bytes within a multi-byte word ordered in memory?
- Example
 - Variable x has 4-byte value of 0x01234567
 - Address given by &x is 0x100
- Conventions
 - Big Endian: Sun, PPC Mac, IBM z, Internet
 - Most significant byte has lowest address (MSB first)
 - Little Endian: x86, ARM
 - Least significant byte has lowest address (LSB first)

Representing Integers

Representing Integers

Hex: 00003B6D

Hex: FFFFC493

int A = 15213;

Address Increase

int B = -15213;

Representing Integers

Hex: 00003B6D

Hex: FFFFC493

int A = 15213;

Address Increase

