CSC 252: Computer Organization
Spring 2018: Lecture 4

Instructor: Yuhao Zhu

Department of Computer Science
University of Rochester

Action Items:
* Assignment 1 due Feb. 2, midnight



Announcement

* Programming Assignment 1 is out
e Due on Feb 2, 11:59 PM
* You have 3 slip days
e Try to submit once to make sure you can submit
* \We count only the latest submission before the deadline
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Announcement

* Programming Assignment 1 is out
e Due on Feb 2, 11:59 PM
* You have 3 slip days
e Try to submit once to make sure you can submit
* \We count only the latest submission before the deadline

e TAs are better positioned to answer questions regarding
assignments
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* Integer is a special case of fixed-point

* Fractions can also be represented In fixed-point
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Previously in 252...  Google "Hexspeak”™

— L —

e Signed vs. Unsigned Integer

* Integer is a special case of fixed-point

* Fractions can also be represented In fixed-point
e |_east significant bit (byte)

 Bit (byte) that is least significant to the numerical value of
the bit stream — always the rightmost!

e Has nothing to do with which endianness you choose

Most significant bit @1 OOO @ Least significant bit
Most significant byte D B @ Least significant byte



Today: Floating Point

e Background: Fractional binary numbers and fixed-point
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Can We Represent Fractions in Binary?

e \What does 10.01> mean?
e C.f., Decimal
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Can We Represent Fractions in Binary?

e \What does 10.01> mean?
e C.f., Decimal

12.45 =1*10" + 2"10° + 410" + 5104

10.012 = 12T + 0*20 + 0271 4+ 1*2=°
= 2.2510



Fractional Binary Numbers
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Fractional Binary Numbers: Examples

Decimal Binary

Value Representation
5 3/4 101.17
2 (/8 10.117
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Fractional Binary Numbers: Examples

Decimal Binary

Value _Representation

0 3/4 Exact Same Raw
21/8 Bit Stream!
17/16 —= —

e The raw bit stream
* \Where the binary point is

* Makes calculations (e.g. addition) hard, and not very elegant
e Need to first align numbers according to the binary point
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Fixed-Point Representation

e Binary point stays fixed

Decimal Binary

0 00.00
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1.5 01.10
1.75 01.11
2 10.00
2.25 10.01
2.5 10.10
2.75 10.11
3 11.00
3.25 11.01
3.5 11.10

3.75 11.11



Fixed-Point Representation

Decimal Binary

e Binary point stays fixed 0 00.00
* Fixed interval between representable numbers 8'25 88'?;
e Each bit represents 0.251¢ 0.75 00.11
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O 1 2 3 1.5 01.10
1.75 01.11

2 10.00

2.25 10.01
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Fixed-Point Representation

e Binary point stays fixed
* Fixed interval between representable numbers
e Each bit represents 0.251¢

HHHHHHHH
O 1 2 3

e Still need to remember the binary point, but
just once for all numbers

* No need to align (already aligned)

* C uses fixed-point encoding only for integral
data types (long, int, short, etc.)

 Effectively, implicitly assumes the binary point
IS at the rightmost
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e Can exactly represent numbers only of the form x/2X
« Other rational numbers have repeating bit representations
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Limitations of Fixed-Point (#7)

e Can exactly represent numbers only of the form x/2X
« Other rational numbers have repeating bit representations

Decimal Value Binary Representation

1/3 0.0101010101[01]...
1/5 0.001100110011[0011]...
1/10 0.0001100110011[0011]...

T —— bsba.bbo
0 1/4 1/2 3/4 5/4 3/2 7/4 2 ... 15/4 — —
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Limitations of Fixed-Point (#2)

e Can’t represent very small and very large numbers at
the same time

 To represent very large numbers, the (fixed) interval needs
to be large, making it hard to represent small numbers

* To represent very small numbers, the (fixed) interval needs
to be small, making it hard to represent large numbers
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Limitations of Fixed-Point (#2)

e Can’t represent very small and very large numbers at
the same time

 To represent very large numbers, the (fixed) interval needs
to be large, making it hard to represent small numbers

* To represent very small numbers, the (fixed) interval needs
to be small, making it hard to represent large numbers
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Today: Floating Point

e Floating point representation
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Primer: (Normalized) Scientific Notation

e In decimal: M x 10F
e £ is an integer
« Normalized form: 1<= |[M| < 10

M x 10E

!

Significand
Decimal Value Scientific Notation
2 2x100

-4,321.768 -4.321768x10°
0.000 000 007 51 7.51x1079
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Primer: (Normalized) Scientific Notation

e In decimal: M x 10F
e £ is an integer
« Normalized form: 1<= |[M| < 10

M x 10E

T
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Primer: (Normalized) Scientific Notation

e In decimal: M x 10F
e £ is an integer
« Normalized form: 1<= |[M| < 10

M X 1OE4--—- Exponent

T

Significand Base

Decimal Value Scientific Notation
2 2x100
-4 321.768 -4.321768x10°

0.000 000 007 51 7.51x1079

12
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Primer: (Normalized) Scientific Notation

e In binary: (-1)° M 2¢

Exponent
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I
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Primer: (Normalized) Scientific Notation

e In binary: (-1)° M 2¢
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e Normalized form: Jv #
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_4\s E
e M =1.bobibsbs... ( 1) M X 2
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Primer: (Normalized) Scientific Notation

e In binary: (-1)° M 2¢
* Normalized form:

e 1<=M< 10

e M =1.bob1b2bs...

Fraction

Binary Value
1110110110110
-101.11

0.00101

Exponent
. .
(-1)5 M x 2F

T

Significand Base

Scientific Notation
(-1)°1.110110110110 x 212
(-1)11.0111 x 22

(-1)°1.01 x 23

13



Primer: Floating Point Representation

e In binary: (-1)° M 2¢

Sign Exponent
e Normalized form: wL ¢
e l<=M< 2 1)5 M 2E
« M =1.bobibsbs... (-1) X

Fraction T T

Significand Base

14



Primer: Floating Point Representation

e In binary: (-1)° M 2¢

Sign Exponent
e Normalized form: Jv #
e l<=M<?2 1 S M 2E
e M =1.bob1bsbs (_ ) X

Fraction. i T T

e Encoding Significand Base

14



Primer: Floating Point Representation

e In binary: (-1)° M 2¢

Exponent
e Normalized form: vL ¢
e l<=M<?2 1 S M 2E
e M =1.bob1bsbs (_ ) X

Fraction. i T T

e Encoding Significand Base

14



Primer: Floating Point Representation

e In binary: (-1)° M 2¢

Sign Exponent
e Normalized form: wL ¢
e l<=M< 2 1)5 M 2E
e M =1.bobibzsbs. .. (-1) X
Fraction T T
* Encoding Significand Base

« MSB s is sign bit s

14



Primer: Floating Point Representation

e In binary: (-1)° M 2¢

Sign Exponent
e Normalized form: ,L $
e l<=M< 2 1)5 M 2E
e M =1.bobibzsbs. .. (-1) X
Fraction T T
* Encoding Significand Base

« MSB s is sign bit s
» exp field encodes Exponent (but not exactly the same as E)

14



Primer: Floating Point Representation

e In binary: (-1)° M 2¢

Sign Exponent
e Normalized form: i i
¢ 1<=M< 2 1)5 M x OF
« M =1.bobibsbs... (-1) X
Fraction T T
* Encoding Significand Base

« MSB s is sign bit s
» exp field encodes Exponent (but not exactly the same as E)
e frac field encodes Fraction (but not exactly the same as Fraction)

14
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« How about negative exponent?
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* bias is always 2k - 1, where k is number of exponent bits
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e exp has 3 bits, interpreted as an unsigned value
* |f exp were E, we could represent exponents from 0 to 7

« How about negative exponent?
 Add a bias term: £ = exp - bias (i.e., exp = E + bias)
* bias is always 2k - 1, where k is number of exponent bits

* Example when k = 3:
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6-bit Floating Point Example

cerws DT

1 3 2
e exp has 3 bits, interpreted as an unsigned value
* |f exp were E, we could represent exponents from 0 to 7

« How about negative exponent?
 Add a bias term: £ = exp - bias (i.e., exp = E + bias)
* bias is always 2k - 1, where k is number of exponent bits

* Example when k = 3:
e bias =3
e fE=-2,expis 1 (0012

exp
000
001
010
011
100
101
110
111
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6-bit Floating Point Example

cerws DT

1 3 2
e exp has 3 bits, interpreted as an unsigned value
* |f exp were E, we could represent exponents from 0 to 7
« How about negative exponent?
 Add a bias term: £ = exp - bias (i.e., exp = E + bias)
 bias is always 2«1 - 1, where k is number of exponent bits

* Example when k = 3:

e bias =3 TR —

e fE=-2,expis 1 (0012
* Reserve 000 and 111 for other purposes (more on this later)
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6-bit Floating Point Example

cerws DT

1 3 2
e exp has 3 bits, interpreted as an unsigned value
* |f exp were E, we could represent exponents from 0 to 7
« How about negative exponent?
 Add a bias term: £ = exp - bias (i.e., exp = E + bias)
 bias is always 2«1 - 1, where k is number of exponent bits

1100
* Example when k = 3: 523 1?2)

e fE=-2,expis 1 (0012
* Reserve 000 and 111 for other purposes (more on this later)
* We can now represent exponents from -2 (exp 001) to 3 (exp 110)

15
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6-bit Floating Point Example

v=(=l)>M?2* s exp frac

1 3 2

e frac has 2 bits, append them after “1.” to form M
e frac = 10 implies M =1.10
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6-bit Floating Point Example
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e frac has 2 bits, append them after “1.” to form M
e frac = 10 implies M =1.10
* Putting it Together: An Example:

10.12 = (-1)' 1.01 x 2
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e frac = 10 implies M =1.10
* Putting it Together: An Example:

’
10.12 = (1)1 1.01 x 2
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1 3 2
e frac has 2 bits, append them after “1.” to form M
e frac = 10 implies M =1.10
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‘
10.12 = (-1)' 1.01 x 2
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e frac has 2 bits, append them after “1.” to form M
e frac = 10 implies M =1.10

* Putting it Together: An Example: -2 001

.
1012 =(-1)11.01 x21 2 ©
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1 3 2

e frac has 2 bits, append them after “1.” to form M
e frac = 10 implies M =1.10

* Putting it Together: An Example: -2 001
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|

Representable Numbers (Positive Only)

E exp E exp

v=(=1)s M2 0 exp 00 #3000~ 1 100

— B -2 001 2 101

-1 010 3 110
O  O11 shemmenspspufon

0 +o00

17



|

Representable Numbers (Positive Only)

E exp E exp

v=(=1)s M2 0 00| 00 #3000~ 1 100

— B -2 001 2 101

-1 010 3 110
O  O11 shemmenspspufon

0 +o00

17



Representable Numbers (Positive Only)

E exp E exp

v=(=1)s M2 0 00| 00 #3000~ 1 100

p— —— -2 001 2 101

-1 010 3 110
O  O11 shemmenspspufon

0 +o00
1/4

17



Representable Numbers (Positive Only)

E exp E exp

v=(=1)s M2 0 010 00 #3000~ 1 100

p— —— -2 001 2 101

-1 010 3 110
O  O11 shemmenspspufon

0 +o00
1/4

17



Representable Numbers (Positive Only)

E exp E exp

v=(=1)s M2 0 010 00 #3000~ 1 100

p— —— -2 001 2 101

-1 010 3 110
O  O11 shemmenspspufon

1/2

0 +o00
1/4

17



Representable Numbers (Positive Only)

E exp E exp

v=(=1)s M2 0 ol 00 #3000~ 1 100

p— —— -2 001 2 101

-1 010 3 110
O  O11 shemmenspspufon

1/2

0 +o00
1/4

17



Representable Numbers (Positive Only)

E exp E exp

v=(=1)s M2 0 ol 00 #3000~ 1 100

p— —— -2 001 2 101

-1 010 3 110
O  O11 shemmenspspufon

:
1 oo

17



Representable Numbers (Positive Only)

E exp E exp

v=(=1)s M2 0 100 00 #3000~ 1 100

p— —— -2 001 2 101

-1 010 3 110
O  O11 shemmenspspufon

:
1 oo

17



Representable Numbers (Positive Only)

E exp E exp

v=(=1)s M2 0 100 00 #3000~ 1 100

p— —— -2 001 2 101

-1 010 3 110
O  O11 shemmenspspufon

)
1 2 +oo

17



Representable Numbers (Positive Only)

E exp E exp

v=(=1)s M2 0 10| 00 #3000~ 1 100

p— —— -2 001 2 101

-1 010 3 110
O  O11 shemmenspspufon

)
1 2 +oo

17



Representable Numbers (Positive Only)

E exp E exp

v=(=1)s M2 0 10| 00 #3000~ 1 100

p— —— -2 001 2 101

-1 010 3 110
O  O11 shemmenspspufon

i
1 2 4 400

17



Representable Numbers (Positive Only)

E exp E exp

v=(=1)s M2 0 110 00 #3000~ 1 100

p— —— -2 001 2 101

-1 010 3 110
O  O11 shemmenspspufon

i
1 2 4 400

17



Representable Numbers (Positive Only)

E exp E exp

v=(=1)s M2 0 110 00 #3000~ 1 100

p— —— -2 001 2 101

-1 010 3 110
O  O11 shemmenspspufon

17



Representable Numbers (Positive Only)

E exp E exp

v=(=1)s M2 #3000 1 100
—_— 2 001 2 101
4 010 3 110
0 011  shmmmrmduptens
1/2
H—1— i I
of 1 2 4 8 +00
1/4

17



Representable Numbers (Positive Only)

E exp E exp

v=(=1)s M2 #3000 1 100
_ — -2 001 2 101
-1 010 3 110
0 011 thommepspspons
1/2
+H1+— i | |
oT 1 2 4 8 1.01x23 +00
1/4

17



Representable Numbers (Positive Only)

E exp E exp

v=(=1)s M2 #3000 1 100
—_— 2 001 2 101
4 010 3 110
0 011  shmmmrmduptens
1/2
H— i I |
of 1 2 4 8 10 +00
1/4

17



Representable Numbers (Positive Only)

E exp E exp

v=(=1)s M2 #3000 1 100
—_— 2 001 2 101
4 010 3 110
0 011  shmmmrmduptens
1/2
H— i I |
of 1 2 4 8 10 +00
1/4

17



Representable Numbers (Positive Only)

E exp E exp

v=(=1)s M2 #3000 1 100
—_— 2 001 2 101
4 010 3 110
0 011  shmmmrmduptens
1/2 1.10 x 23
H— i : | |
of 1 2 4 8 10 +00
1/4

17



Representable Numbers (Positive Only)

E exp E exp

v=(=1)s M2 #3000 1 100
—_— 2 001 2 101
4 010 3 110
0 011  shmmmrmduptens
1/2 12
H— i : | |
of 1 2 4 8 10 +00
1/4

17



Representable Numbers (Positive Only)

E exp E exp

v=(=1)s M2 #3000 1 100
—_— 2 001 2 101
4 010 3 110
0 011  shmmmrmduptens
1/2 12
H— i : | |
of 1 2 4 8 10 +00
1/4

17



Representable Numbers (Positive Only)

E exp E exp

v=(=1)s M2 #3000 1 100
—_— 2 001 2 101
4 010 3 110
0 011  shmmmrmduptens
1/2 12
H— i : | | |
of 1 2 4 8 10 14 +oo
1/4

17



Representable Numbers (Positive Only)

E exp E exp

v=(=1)s M2 #3000 1 100
—_— 2 001 2 101
4 010 3 110
0 011  shmmmrmduptens
1/2 12
H— i : | | |
of 1 2 4 8 10 14 +oo
1/4

17



Representable Numbers (Positive Only)

E exp E exp

v=(=1)s M2 #3000 1 100
—_— 2 001 2 101
4 010 3 110
0 011  shmmmrmduptens
1/2 12
H— i : | | |
of 1 2 4 8 10 14 +oo
1/4

17



Representable Numbers (Positive Only)

E exp E exp

v=(=1)s M2 #3000 1 100
—_——— 2 001 2 101
4 010 3 110
0 011  shmmmrmduptens
1/2 1.01 x 22 12
H— — : | | |
of 1 2 4 8 10 14 +oo
1/4

17



Representable Numbers (Positive Only)

E exp E exp

v=(=1)s M2 #3000 1 100
p— B -2 001 2 101
-1 010 3 110
O 011 shemmeniupupons
1/2 5 12
HH—— — 1 | | |
oT 1 2 4 8 10 14 4+
1/4

17



Representable Numbers (Positive Only)

E exp E exp

v=(=1)s M2 #3000 1 100
p— B -2 001 2 101
-1 010 3 110
O 011 shemmeniupupons
1/2 5 12
HH—— — 1 | | |
oT 1 2 4 8 10 14 4+
1/4

17



Representable Numbers (Positive Only)

E exp E exp

v=(=1)s M2 #3000 1 100
S — -2 001 2 101
-1 010 3 110
0 011 thommepspspons
1/2 5 12
+H1+— —— | | | |
oT 1 2 4 1.10x22 8 10 14 +oo
1/4

17



Representable Numbers (Positive Only)

E exp E exp

v=(=1)s M2 #3000 1 100
—_——— 2 001 2 101
4 010 3 110
0 011  shmmmrmduptens
1/2 5 12
H— —— I | | |
of 1 2 4 6 8 10 14 +oo
1/4

17



Representable Numbers (Positive Only)

E exp E exp

v=(=1)s M2 #3000 1 100
—_——— 2 001 2 101
4 010 3 110
0 011  shmmmrmduptens
1/2 5 12
H— —— I | | |
of 1 2 4 6 8 10 14 +oo
1/4

17



Representable Numbers (Positive Only)

E exp E exp

v=(=1)s M2 #3000 1 100
—_——— 2 001 2 101
4 010 3 110
0 011  shmmmrmduptens
1/2 5 1.11x2° 12
H— —— I | | |
of 1 2 4 6 8 10 14 +oo
1/4

17



Representable Numbers (Positive Only)

E exp E exp

v=(=1)s M2 #3000 1 100
—_——— 2 001 2 101
4 010 3 110
0 011  shmmmrmduptens
1/2 5 7 12
H— F——T— | | |
of 1 2 4 6 8 10 14 +oo
1/4

17



Representable Numbers (Positive Only)

E exp E exp

v=(=1)s M2 #3000 1 100
—_——— 2 001 2 101
4 010 3 110
0 011  shmmmrmduptens
1/2 5 7 12
H— F——T— | | |
of 1 2 4 6 8 10 14 +oo
1/4

17



Representable Numbers (Positive Only)

E exp E exp

v=(=1)s M2 #3000 1 100
—_——— 2 001 2 101
4 010 3 110
0 011  shmmmrmduptens
1/2 5 7 12
H+——F"—F——FA | | |
of 1 2 4 6 8 10 14 +oo
1/4

17



Representable Numbers (Positive Only)

E exp E exp

v=(=1)s M2 #3000 1 100
—_——— 2 001 2 101
4 010 3 110
0 011  shmmmrmduptens
1/2 5 7 12
H+——F"—F——FA | | |
of 1 2 4 6 8 10 14 +oo
1/4

17



Representable Numbers (Positive Only)

E exp E exp
eZrHO0= 1 100
-2 001 2 101
-1 010 3 110
O 011  demmmasiioiionm

v=(=1)s M 2E

] |
2 4 6 8 10 14  +oo

17



Representable Numbers (Positive Only)

E exp E exp
eZrHO0= 1 100
-2 001 2 101
-1 010 3 110
O 011  demmmasiioiionm

v=(=1)s M 2E

] |
2 4 6 8 10 14  +oo

17



Representable Numbers (Positive Only)

E exp E exp

v=(=1)s M2 #3000 1 100
—_——— 2 001 2 101
-4 010 3 110
0 011  shommepipspon
1/2 5 7 12
Ht | | |
o 1 2 4 6 8 10 14 +oo

17



Representable Numbers (Positive Only)

E exp E exp

v=(=1)s M2 #3000 1 100
—_——— 2 001 2 101
-4 010 3 110
0 011  shommepipspon
1/2 5 7 12
Ht | | |
o 1 2 4 6 8 10 14 +oo

17



Representable Numbers (Positive Only)

E exp E exp

v=(=1)s M2 #3000 1 100
—_——— 2 001 2 101
-4 010 3 110
0 011  shommepipspon
1/2 5 7 12
HibtH | | |
o 1 2 4 6 8 10 14 +oo

17



Representable Numbers (Positive Only)

E exp E exp
-2 001 2 101
-1 010 3 110
O 011  demmmasiioiionm

v=(=1)>M 2t

L —

e Uneven interval (c.f., fixed interval in fixed-point)
* More dense toward O, sparser toward infinite
* Allow encoding small and large numbers at the same time

1/2 5 7 12
HHHH+H—TT—1t—T—T—1 I I I

oT 1 2 4 6 8 10 14 4+
1/4

17



Representable Numbers (Positive Only)

E exp E exp
eZrHO0= 1 100
-2 001 2 101
-1 010 3 110
O 011  demmmasiioiionm

v=(=1)>M 2t

L —

e Uneven interval (c.f., fixed interval in fixed-point)
* More dense toward O, sparser toward infinite
* Allow encoding small and large numbers at the same time

—
4 6 8 10 14 +oo

17



|

Representable Numbers (Positive Only)

E exp E exp

v=(=1)>M 2t s exp oy B=900= 1 100

_ — -2 001 2 101

-1 010 3 110
0 011 siemenpupupons

1/4 3/8 1/2

0 5/16 7/16

18



Representable Numbers (Positive Only)

E exp E exp

v=(=1)s M2 #3000 1 100
-2 001 2 101
4 010 3 110
O 011 cheenpupuion
Unrepresented
small numbers 1/4 3/8 1/2
4

0 5/16 7/16 1

18



Representable Numbers (Positive Only)

E exp E exp
eZrHO0= 1 100
-2 001 2 101
-1 010 3 110

e Underflow: always round to O is inelegant 0 011 sew=sisse

v=(=1)s M 2E

— ——

Unrepresented
small numbers 1/4 3/8 1/2
—

0 5/16 7/16 1

18



Representable Numbers (Positive Only)

v=(=1)>M 2t 0 {1 100
|

— ——

-1 010 3 110
e Underflow: always round to O is inelegant 0 011 sew=sisse

Unrepresented
small numbers 1/4 3/8 1/2
—

0 5/16 7/16 1

18



Representable Numbers (Positive Only)

v=(=1)>M 2t 0 {1 100
— |

| —

-1 010 3 110
e Underflow: always round to O is inelegant 0 011 s

Unrepresented

small numbers 1/4 3/8 1/2
+— ———— | | | b
0 1/8 5/16 7/16 1

18



Representable Numbers (Positive Only)

v=(=1)>M 2t exp frac L ; 100

-1 010 3 110
e Underflow: always round to O is inelegant 0 011 sew=sisse

e Using 000 for exp would only postpone
the problem rather than solving it

Unrepresented
small numbers 1/4 3/8 1/2
+— ———— | | —t

0 1/8 5/16 7/16 1

18



Subnormal (De-normalized) Numbers

A0¥%p-ny E  exp
=ermr EECEE
m— — =2 00T 2 101

010 3 110

-1
* Idea: Evenly divide between 0 and 1/4 rather 5 11 geemepueon

than exponentially decreasing when exp =0
(subnormal numbers)

1/4 3/8 1/2

|

F——T— | | |
0 5/16 7/16

19



Subnormal (De-normalized) Numbers

A0¥%p-ny E  exp
=ermr EECEE
— =2 00T 2 101

o -1 010 3 110
* Idea: Evenly divide between 0 and 1/4 rather 5 11 geemepueon

than exponentially decreasing when exp =0
(subnormal numbers)

1/8 1/4 3/8 1/2

T | | |
0 1/16 3/16 5/16 7/16



Subnormal (De-normalized) Numbers

A0¥%p-ny E  exp
=ermr EECEE
— =2 00T 2 101

-1 010 3 110
0 011 iommegupupons

e |dea: Evenly divide between 0 and 1/4 rather

than exponentially decreasing when exp =0
(subnormal numbers)

e £ =(exp + 1) — bias (instead of exp - bias)
e VM = 0.frac (instead of 1.frac)

1/8 1/4 3/8 1/2
T | | |

0 1/16 3/16 5/16 7/16



_|

Subnormal (De-normalized) Numbers

A0¥%p-ny E  exp
=ermr EECEE
p— — 2007 2 101
010 3 110

e |dea: Evenly divide between 0 and 1/4 rather

than exponentially decreasing when exp =0
(subnormal numbers)

e £ =(exp + 1) — bias (instead of exp - bias)
e VM = 0.frac (instead of 1.frac)

1/8 1/4 3/8 1/2

0 011 iommegupupons

I
0 1/16 3/16 5/16 7/16

= (-1)°0.01 x 20+13) = 1/16

19



_|

Subnormal (De-normalized) Numbers

A0¥%p-ny E  exp
v= (=) M2k exp fRcim VOB i
) | 101

. -1 010 3 110
e |dea: Evenly divide between 0 and 1/4 rather

than exponentially decreasing when exp =0
(subnormal numbers)

e £ =(exp + 1) — bias (instead of exp - bias)
e VM = 0.frac (instead of 1.frac)

e Subnormal numbers allow graceful underflow

1/8 1/4 3/8 1/2

0 011 iommegupupons

0 1/16 3/16 5/16 7/16

= (-1)°0.01 x 20+13) = 1/16

19



Special Values

v=(=1)s M 2E

exp E exp
000 1 100
001 2 101
010 3 110
011  sesenhjshuns

20



Special Values

E exp E exp
-2 000 1 100
-2 001 2 101
-1 010 3 110
O 011 sheeseniupapos

v=(=1)s M 2E

| —

e There are many special values in scientific computing
e +/-00, NaNs (0/ 0, O/ o0, o0/ o0, ...), €tC.

20



Special Values

E exp
-2 000
-2 001
-1 010
0O 011

v=(=1)s M 2E

E exp
1 100
2 101
3 110

e There are many special values in scientific computing

e +/-00, NaNs (0/ 0, O/ o0, o0/ o0, ...), €tC.
e exp = 111 is reserved to represent these numbers

20



Special Values

E exp E exp
-2 000 1 100
-2 001 2 101
-1 010 3 110

0O 011 111

e There are many special values in scientific computing
e +/-00, NaNs (0/ 0, O/ o0, o0/ o0, ...), €tC.

e exp = 111 is reserved to represent these numbers

v=(=1)s M 2E

20



Special Values
E exp E exp

— ——— -2 001 2 101
-1 010 3 110

0O 011 111

e There are many special values in scientific computing
e +/-00, NaNs (0/ 0, O/ o0, o0/ o0, ...), €tC.
e exp = 111 is reserved to represent these numbers
e exp =111, frac = 000
e +/- oo (depending on the s bit). Overflow results.
e Arithmetic on « is exact: 1.0/0.0 = —=1.0/-0.0 = + =, 1.0/-0.0 = -

20



Special Values
E exp E exp

p— — -2 001 2 101
-1 010 3 110

0O 011 111

e There are many special values in scientific computing
e +/-00, NaNs (0/ 0, O/ o0, o0/ o0, ...), €tC.
e exp = 111 is reserved to represent these numbers
e exp =111, frac = 000
e +/- oo (depending on the s bit). Overflow results.
e Arithmetic on « is exact: 1.0/0.0 = —=1.0/-0.0 = + =, 1.0/-0.0 = -

e exp =111, frac = 000

e Represent Not-a-Numbers (e.g., sqri(—1), oo - o0, o0 X 0)

20



Visualization: Floating Point Encodings

NaN

-0 —Normalized —Denorm +Denorm +Normalized + o0
| | | | |
| | /4 | >\ | |
NaN
-0 +0 _I

21



Visualization: Floating Point Encodings

NaN

-0 —Normalized —Denorm +Denorm +Normalized + o0
| | | | |
| | /4 | >\ | |
NaN
0 +0 —

Infinite Amount of Real Numbers

21



Visualization: Floating Point Encodings

—00 —Normalized —Denorm +Denorm +Normalized + o0

| | | | |
| | <l | |

// \\ NaN

NaN 0

Infinite Amount of Real Numbers

Finite Amount of Floating Point Numbers

21



Visualization: Floating Point Encodings

-0 —Normalized —Denorm +Denorm +Normalized + o0
| | | | |
| | /4 | >\ | |

NaN
+0 —

NaN 0

Infinite Amount of Real Numbers

L Sparse

[T

Finite Amount of Floating Point Numbers

21



Visualization: Floating Point Encodings

-0 —Normalized —Denorm +Denorm +Normalized + o0
| | | | |
| | /4 | >\ | |

NaN
+0 —

NaN 0

Infinite Amount of Real Numbers

Finite Amount of Floating Point Numbers

21



Visualization: Floating Point Encodings

—00 —Normalized —Denorm +Denorm +Normalized + o0
| | | |
| | | |

<|>

/ \ NaN

NaN | |

Infinite Amount of Real Numbers

hesz§ion§7 /

P A A

Finite Amount of Floating Point Numbers

21



Today: Floating Point

e |EEE 754 standard



IEEE Floating Point

e |EEE Standard 754

 Established in 1985 as uniform standard for floating point arithmetic
« Before that, many idiosyncratic formats
« Supported by all major CPUs (and even GPUs and other processors)

e Driven by numerical concerns
 Nice standards for rounding, overflow, underflow
« Hard to make fast in hardware

« Numerical analysts predominated over hardware designers in
defining standard

23



|[EEE 754 Standard Precision Options

e Single precision: 32 bits

S exp frac

1 8-bit 23-bit

e Double precision: 64 bits

S exp frac

1 11-bit 52-bit

24



Single Precision (32-bit) Example
v=(EI1)M2 bigs = 26-1)-1 = 127

S exp frac

1 8-bit 23-bit

25



Single Precision (32-bit) Example
v=(EI1)M2 bigs = 26-1)-1 = 127

S exp frac

1 8-bit 23-bit

1521319 =11101101101101,
=(-1)°1.1101101101101, x 273

25



Single Precision (32-bit) Example
v=(EI1)M2 bigs = 26-1)-1 = 127

0 exp frac

1 8-bit 23-bit

1521319 =11101101101101,
=(-1)°1.1101101101101, x 273

25



Single Precision (32-bit) Example
v=(EI1)M2 bigs = 26-1)-1 = 127

0 exp frac

1 8-bit 23-bit

1521319 =11101101101101, -
= (-1)01.11011011011012Xﬂ

25



Single Precision (32-bit) Example
v=(EI1)M2 bigs = 26-1)-1 = 127

0 exp frac

1 8-bit 23-bit

1521319 =11101101101101, -
= (-1)01.11011011011012XM

exp = E + bias = 14010

25



Single Precision (32-bit) Example
v=(EI1)M2 bigs = 26-1)-1 = 127

0 10001 100 frac
1 8-bit 23-bit

1521319 =11101101101101, -
= (-1)01.11011011011012XM

exp = E + bias = 14010

25



Single Precision (32-bit) Example
v=(EI1)M2 bigs = 26-1)-1 = 127

0 10001 100 frac
1 8-bit 23-bit

1521340 =11101101101101,
= (-1)°1. 1101101101101

exp = E + bias = 14010

x 213]

25



Single Precision (32-bit) Example
v=(EI1)M2 bigs = 26-1)-1 = 127

0 10001100 11011011011010000000000
1 8-bit 23-bit

1521340 =11101101101101,
= (-1)°1. 1101101101101

exp = E + bias = 14010

x 213]

25



Today: Floating Point

e Rounding, addition, multiplication

26



Floating Point Operations: Basic Idea

e Basic idea
« We perform the operation & produce the infinitely precise result
« Make it fit into desired precision
« Possibly overflow if exponent too large
e Possibly round to fit into frac

®x +r y = Round(x + vVy)

®x xXr y = Round(x X v)

27



Rounding Modes



Rounding Modes

e Default: To nearest; if equally near, then to the one having
an even least significant digit (bit)

28



Rounding Modes

e Default: To nearest; if equally near, then to the one having
an even least significant digit (bit)

e Directed rounding:
e Towards zero (chop)

* Round down (-)
* Round up (+e0)

28



Rounding Modes

e Default: To nearest; if equally near, then to the one having
an even least significant digit (bit)
e Directed rounding:
e Towards zero (chop)
e Round down (-e)
* Round up (+e0)

Rounding Mode 140 160 150 250 -1.50

Towards zero 1 1 1 2 -1
Round down (-eo) 1 1 1 2 -2
Round up (+) 2 2 2 3 -1
Nearest even (default) 1 2 2 2 -2

28



Rounding Modes (Binary Example)

e Default: To nearest; if equally near, then to the one having
an even least significant digit (bit)

e Assuming 3 bits for frac

29



Rounding Modes (Binary Example)

e Default: To nearest; if equally near, then to the one having
an even least significant digit (bit)

e Assuming 3 bits for frac

Precise Value Rounded Value Notes

1.000071 1.000 1.000 is the nearest (down)
1.000110 1.001 1.001 is the nearest (up)
1.000100 1.000 1.000 is the nearest even (down)

1.001100 1.010 1.010 is the nearest even (up)

29



Rounding Modes (Binary Example)

e Default: To nearest; if equally near, then to the one having
an even least significant digit (bit)

e Assuming 3 bits for frac
even odd even
1.000 1.001 1.010

Precise Value Rounded Value Notes

1.000071 1.000 1.000 is the nearest (down)
1.000110 1.001 1.001 is the nearest (up)
1.000100 1.000 1.000 is the nearest even (down)

1.001100 1.010 1.010 is the nearest even (up)

29



Rounding Modes (Binary Example)

e Default: To nearest; if equally near, then to the one having
an even least significant digit (bit)

e Assuming 3 bits for frac

even odd even
1.000 1.001 1.010
: | \ :
1.00001 1
Precise Value Rounded Value Notes
wwlly  1.000071 1.000 1.000 is the nearest (down)

1.000110 1.001 1.001 is the nearest (up)
1.000100 1.000 1.000 is the nearest even (down)

1.001100 1.010 1.010 is the nearest even (up)

29



Rounding Modes (Binary Example)

e Default: To nearest; if equally near, then to the one having
an even least significant digit (bit)

e Assuming 3 bits for frac

even odd even
1.000 1.001 1.010
| | : |
1.000110

Precise Value Rounded Value Notes

1.000071 1.000 1.000 is the nearest (down)
wellp 1.000110 1.001 1.001 is the nearest (up)
1.000100 1.000 1.000 is the nearest even (down)

1.001100 1.010 1.010 is the nearest even (up)

29



Rounding Modes (Binary Example)

e Default: To nearest; if equally near, then to the one having
an even least significant digit (bit)

e Assuming 3 bits for frac
even odd even
1.000 1.001 1.010

I | ; I
1.000100

Precise Value Rounded Value Notes

1.000071 1.000 1.000 is the nearest (down)
1.000110 1.001 1.001 is the nearest (up)
wwslfy 1.000100 1.000 1.000 is the nearest even (down)

1.001100 1.010 1.010 is the nearest even (up)
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Rounding Modes (Binary Example)

e Default: To nearest; if equally near, then to the one having
an even least significant digit (bit)

e Assuming 3 bits for frac
even odd even
1.000 1.001 1.010

I ; | I
1.001100

Precise Value Rounded Value Notes

1.000071 1.000 1.000 is the nearest (down)
1.000110 1.001 1.001 is the nearest (up)
1.000100 1.000 1.000 is the nearest even (down)

—$ 1.001100 1.010 1.010 is the nearest even (up)
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Floating Point Addition

o (_1)51 M1 2E1 4 (_1)52 M2 9E2

1.000 x 2" + 1.10 x 2°3
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Floating Point Addition

o (_1)51 M1 2E1 4 (_1)52 M2 9E2

add

1.000 x 2" + 1.10 x 2°3

|

1.000 x 2-" + 0.111 x 2!

l

111 x 27!
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Floating Point Addition

o (1)t M1 288 + (-1)2 M2 2F2
e Exact Result: (-1)° M 2°¢
 Sign s, significand M:
« Result of signed align & add

e Exponent E: E1
e Assume E1 > E2

1.000 x 2" + 1.10 x 2°3

|

1.000 x 2-" + 0.111 x 2!

l

111 x 27!

30



Floating Point Addition

o ((1¥1 M1 281 4 (-1)2 M2 2%

e Exact Result: (1) M 2f 1.000 x 2-' + 11.10 x 23
 Sign s, significand M: $
e Result of signed align & add ’
« Exponent E: E1 1.000 x 27" +0.111 x 2
e Assume E1 > E2 $
e Fixing v
e If M > 2, shift M right, increment £ LI x 27!

o [f M < 1, shift M left k positions, decrement £ by k
« Overflow if E out of range
« Round M to fit frac precision
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« Associative? No

« Overflow and inexactness of rounding
e (3.14+1e10)-1e10 = 0, 3.14+(1el0-1e10) = 3.14
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e (3.14+1e10)-1e10 = 0, 3.14+(lel0-1el0) = 3.14
0 is additive identity? Yes

« Every element has additive inverse (negation)? Almost
« Except for infinities & NaNs

« Monotonicity: a = b = a+c = b+c?
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Mathematical Properties of FP Add

« Commutative? Yes
« Associative? No
« Overflow and inexactness of rounding
e (3.14+1e10)-1e10 = 0, 3.14+(lel0-1el0) = 3.14
0 is additive identity? Yes

« Every element has additive inverse (negation)? Almost
« Except for infinities & NaNs

« Monotonicity: a = b = a+c = b+c? Almost

« Except for infinities & NaNs
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Floating Point Multiplication

o (-1)5T M1 267 x (-1)2 M2 2F2
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Floating Point Multiplication

o (1) M1 287 x (~1)2 M2 2F2
e Exact Result: (-1)s M 2F

e Sign s: s1 "Ns2

« Significand M: M1 x M2

e Exponent E: E1+ E2
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Floating Point Multiplication

o (1)1 M7 2E1 x (-1)2 M2 2F2
e Exact Result: (-1)s M 2F

e Sign s: s1 "Ns2

« Significand M: M1 x M2

e Exponent E: E1+E2
e Fixing

e If M= 2, shift M right, increment E
« If E out of range, overflow
« Round M to fit frac precision
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Floating Point Multiplication

o (1)1 M7 2E1 x (-1)2 M2 2F2
e Exact Result: (-1)s M 2F

e Sign s: s1 "Ns2

« Significand M: M1 x M2

e Exponent E: E1+E2
e Fixing

e If M= 2, shift M right, increment E
« If E out of range, overflow
« Round M to fit frac precision

e |[mplementation
» Biggest chore is multiplying significands
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« Multiplication is Associative? No
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Mathematical Properties of FP Mult

* Multiplication Commutative? Yes

« Multiplication is Associative? No
 Possibility of overflow, inexactness of rounding
« Ex: (1e20*1e20) *1e-20= inf, 1e20* (1e20*1e-20)= 1e20
1 is multiplicative identity? Yes
« Multiplication distributes over addition? No

« Possibility of overflow, inexactness of rounding
e 1e20* (1e20-1e20)= 0.0, 1e20*1e20 - 1e20*1e20 = NaN
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Mathematical Properties of FP Mult

« Multiplication Commutative? Yes
« Multiplication is Associative? No
 Possibility of overflow, inexactness of rounding
« Ex: (1e20*1e20) *1e-20= inf, 1e20* (1e20*1e-20)= 1e20
1 is multiplicative identity? Yes
« Multiplication distributes over addition? No

« Possibility of overflow, inexactness of rounding
e 1e20* (1e20-1e20)= 0.0, 1e20*1e20 - 1e20*1e20 = NaN

 Monotonicity:a=b &c=>=0 =a*c=Db*c?
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Mathematical Properties of FP Mult

« Multiplication Commutative? Yes
« Multiplication is Associative? No
 Possibility of overflow, inexactness of rounding
« Ex: (1e20*1e20) *1e-20= inf, 1e20* (1e20*1e-20)= 1e20
1 is multiplicative identity? Yes
« Multiplication distributes over addition? No

« Possibility of overflow, inexactness of rounding
e 1e20* (1e20-1e20)= 0.0, 1e20*1e20 - 1e20*1e20 = NaN

« Monotonicity:a=b &c=0 =a*c=b*c? Almost

« Except for infinities & NaNs
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Today: Floating Point

e Floating point in C



Floating Point in C
64-bit Machine

, Max Value
C DataType Bits Max Value (Decimal)
char 8 27 -1 127
. . short 16 215 -1 32767
Fixed point
(implicit binary point) int 32 2% -1 2147483647
long 64 231 - 1 ~9.2 x 1078
SP floating point float 32 (2-22%)x2'2" ~3.4x10%

DP floating point double 64 (2 - 2°52) x 21028 ~1 8 x 10308
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Floating Point in C

e C Guarantees Two Levels
efloat single precision
edouble double precision

e Conversions/Casting
 Casting between int, £loat, and double changes bit representation
e double/float — int
 Truncates fractional part
« Like rounding toward zero
« Not defined when out of range or NaN: Generally sets to TMin
e int & double
e Exact conversion, as long as int has < 53 bit word size
eint » float

« Will round according to rounding mode
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