CSC 252: Computer Organization
Spring 2018: Lecture 5

Instructor: Yuhao Zhu

Department of Computer Science
University of Rochester

Action ltems:

* Assignment 1 is due tomorrow, midnight
* Assignment 2 is out

* Trivia 2 is due on the coming Tues, noon

Announcement

Announcement

* Programming Assignment 2 is out
e Due on Feb 16, 11:59 PM
* Trivia due Feb 6, noon
e You have 3 slip days

vio

4 5 6 7 8
Trivia
1 12 13 14 15

& Fy

16

Due

10

17

Announcement

* Programming Assignment 2 is out
e Due on Feb 16, 11:59 PM
* Trivia due Feb 6, noon
e You have 3 slip days

e Read the instructions before getting started!!!
* You get 1/4 point off for every wrong answer
* Maxed out at 10

Floating Point Review

v=(=1)x 1.frac x 2F

————

s exp frac

Floating Point Review

_ . £ s exp frac Value Value
v= (1) x 1fracx 2 000000 0.00x22 0

Denormalized | 550 11 0.11x22 3/16

———

s exp frac

e Denormalized
e E=(exp + 1) — bias
M = 0.frac

Floating Point Review

v=(=1)x 1.frac x 2F

| —

exp frac

e Denormalized
e E=(exp + 1) — bias
e M= 0.frac
e Normalized
e E=exp-Dbias
« M=1.frac

Denormalized

Normalized

s exp frac Value

0 000 00

0 000 11
+ 0001 00
0 001 11
0 010 00
0010 11
0 100 OO0
0100 11
0101 00
0101 11
0110 00
+ 0110 11

0.00 x 22
0.11 x 272
1.00 x 272
1.11 x 2%
1.00 x 271
1.11 x 27
1.00 x 2¢
1.11 x 20
1.00 x 2
1.11 x 21
1.00 x 22
1.11x 22

Value
0
3/16
1/4
7/16
1/2
7/8

13/4

31/2

Floating Point Review

v=(=1)x 1.frac x 2F

| —

frac

exp

e Denormalized
e E=(exp + 1) — bias
e M= 0.frac
e Normalized
e E=exp-Dbias
« M=1.frac

Denormalized

Normalized

Special Value

s exp frac Value

0 000 00 0.00 x 22
0.11 x 22
1.00 x 272
1.11 x 2%
1.00 x 271
1.11 x 27
1.00 x 2¢
1.11 x 20
1.00 x 2
1.11 x 2
1.00 x 22
1.11x 22

0 000 11
+ 0001 00
0 001 11
0 010 00
0010 11
0 100 OO0
0100 11
0101 00
0101 11
0110 00
+ 0110 11

0111 00

0111 11

infinite
NaN

Value
0
3/16
1/4
7/16
1/2
7/8

13/4

31/2
4

2
infinite
NaN

Floating Point Review

Denormalized

Normalized

Special Value

s exp frac Value

0000 00 0.00x 22
0.11 x 22
1.00 x 22
1.11 x 272
1.00 x 21
1.11 x 271
1.00 x 29
1.11 x 20
1.00 x 21
1.11 x 21
1.00 x 22
1.11 x 22

0 000 11
+ 0001 00
0 001 11
0 010 00
0010 11
0 100 OO0
0100 11
0101 00
0101 11
0110 00
+ 0110 11

0111 00

0111 11

infinite
NaN

Value
0
3/16
1/4
7/16
1/2
7/8

13/4

31/2
4

-
Infinite
NaN

Floating Point Review

* If you do an integer increment
on a positive FP number, you
get the next larger FP number.

Denormalized

Normalized

Special Value

s exp frac Value

0 000 00
I 0 000 11
+ 0001 00
0 001 11
0 010 00
0010 11
0 100 OO0
0100 11
0101 00
0101 11
0110 00
+ 0110 11

0111 00

0111 11

0.00 x 22
0.11 x 22
1.00 x 22
1.11x 272
1.00 x 21
1.11 x 21
1.00 x 2°
1.11x 20
1.00 x 21
1.11 x 21
1.00 x 22
1.11 x 22
infinite
NaN

Value
0
3/16
1/4
7/16
1/2
7/8

13/4

31/2
4

-
Infinite
NaN

Floating Point Review

* If you do an integer increment
on a positive FP number, you
get the next larger FP number.

* Bit patterns representing non-
negative numbers are ordered
the same way as integers, so
could use regular integer
comparison.

Denormalized

Normalized

Special Value

s exp frac Value

4 0000 00

0 001 11
0 010 00
0010 11
0 100 OO0
0100 11
0101 00
0101 11
0110 00
+ 0110 11
0111 00
0111 11

0.00 x 22
0.11 x 22
1.00 x 22
1.11x 272
1.00 x 21
1.11 x 21
1.00 x 2°
1.11x 20
1.00 x 21
1.11 x 21
1.00 x 22
1.11 x 22
infinite
NaN

Value
0
3/16
1/4
7/16
1/2
7/8

13/4

31/2
4

-
Infinite
NaN

Floating Point Review

* If you do an integer increment
on a positive FP number, you
get the next larger FP number.

* Bit patterns representing non-
negative numbers are ordered
the same way as integers, so
could use regular integer
comparison.

* You don’t get this property if:

* exp Is interpreted as signed
* exp and frac are swapped

Denormalized

Normalized

Special Value

s exp frac Value

4 0000 00

0 001 11
0 010 00
0010 11
0 100 OO0
0100 11
0101 00
0101 11
0110 00
+ 0110 11
0111 00
0111 11

0.00 x 22
0.11 x 22
1.00 x 22
1.11x 272
1.00 x 21
1.11 x 21
1.00 x 2°
1.11x 20
1.00 x 21
1.11 x 21
1.00 x 22
1.11 x 22
infinite
NaN

Value
0
3/16
1/4
7/16
1/2
7/8

13/4

31/2
4

-
Infinite
NaN

Floating Point in C

Fixed point
(implicit binary point)

SP floating point
DP floating point

C Data Type

char

short
int
long
float

double

Bits

8
16

32
64
32
64

Max Value
Max Value (Decimal)
27 - 1 127
215 - 1 32767

231 - 1 2147483647
231 - 1 ~9.2 x 1018

(2 -22%) x 2127 ~3.4 x 1038
(2 - 2°52) x 21023 ~1 8 x 10308

Floating Point in C

, Max Value
C DataType Bits Max Value (Decimal)
char 8 27 _ 1 127
: : short 16 215 - 1 32767
Fixed point 8
. int -
(implicit binary point) = 32 2=t 2147483647
long 64 231 - 1 ~9.2 x 1018
SP floating point float 32 (2-22)x2127 ~3.4x10%
DP floating point double 64 (2 -252) x 21028 ~q 8 x 10308

* To represent 237 in fixed-point, you need at least 32 bits
« Because fixed-point is a weighted positional representation

* |n floating-point, we directly encode the exponent

* Floating point is based on scientific notation
e Encoding 31 only needs 7 bits in the exp field

Floating Point Conversions/Casting in C

e double/float — int
 Truncates fractional part
 Like rounding toward zero
» Not defined when out of range or NaN: Generally sets to TMin

Floating Point Conversions/Casting in C

e double/float — int
 Truncates fractional part
 Like rounding toward zero
» Not defined when out of range or NaN: Generally sets to TMin
e int @ float
« Can’t guarantee exact casting. Will round according to rounding mode

S exp frac

1 8-bit 23-bit

Floating Point Conversions/Casting in C

e double/float — int
 Truncates fractional part
 Like rounding toward zero
 Not defined when out of range or NaN: Generally sets to TMin
e int @ float
« Can’t guarantee exact casting. Will round according to rounding mode

s exp frac

1 8-bit 23-bit
e int @ double

e Exact conversion

S exp

1 11-bit 52-bit

So far in 252...

int, float

C Program if, else
+, -, >>

So far in 252...

C Program

v
Machine
Code

int, float
if, else
+, -, >>

)

00001111
01010101
11110000

So far in 252...

C Program

v
Machine
Code

!

Processor

int, float
if, else
+, =, >>

))

00001111
01010101
11110000

Ripple-carry
Adder

So far in 252...

C Program

v
Machine
Code

!

Processor

’

Transistor

int, float
if, else
+, =, >>

))

00001111
01010101
11110000

Ripple-carry
Adder

NAND Gate
NOR Gate

So far in 252...

C Program

Compilerl

Assembly
Program

Machine
Code

’

Processor

’

Transistor

int, float
if, else
+, =, >>

))

ret, call
movqg, addg

jmp, jne

00001111
01010101
11110000

Ripple-carry
Adder

NAND Gate
NOR Gate

So far in 252...

C Program
Compilerl > Semantically

Equivalent

Assembly
Program

Machine
Code

’

Processor

’

Transistor

int, float
if, else
+, =, >>

’ ’

ret, call
movg, addq

jmp, jne

00001111
01010101
11110000

Ripple-carry
Adder

NAND Gate
NOR Gate

So far in 252...

C Program

Compilerl

Assembly
Program

Assembleri

Machine
Code

’

Processor

’

Transistor

)

Semantically
Equivalent

int, float
if, else
+, =, >>

))

ret, call
movqg, addg

jmp, jne

00001111
01010101
11110000

Ripple-carry
Adder

NAND Gate
NOR Gate

So far in 252...

C Program
Compilerl) Semantically

Equivalent

Assembly
Program >

Semantically
Equivalent

Assembleri

Machine
Code

’

Processor

’

Transistor

int, float
if, else
+, =, >>

’ ’

ret, call
movg, addq

jmp, jne

00001111
01010101
11110000

Ripple-carry
Adder

NAND Gate
NOR Gate

So far in 252...

High-Level

Language C Program

’

Assembly
Program

!

Machine
Code

!

Processor

’

Transistor

So far in 252...

High-Level C Program * |SA: Assembly programmers’
Language view of a computer
l * Provide all info for someone wants
Assembly to write assembly/machine code
Instruction Set Program * “Contract” between assembly/
Architecture l machine code and processor
(ISA) Machine
Code
Processor

’

Transistor

So far in 252...

High-Level C Program * |SA: Assembly programmers’
Language view of a computer
l * Provide all info for someone wants
Assembly to write assembly/machine code
Instruction Set Program * “Contract” between assembly/
Architecture l machine code and processor

: ¢ Processors execute machine
(ISA) Machine

Code code (bln.ary). Assembly
program is merely a text
l representation of machine

Processor code

’

Transistor

So far in 252...

High-Level
Language

Instruction Set

Architecture
(ISA)

Microarchitecture

Circuit

C Program

’

Assembly
Program

!

Machine
Code

!

Processor

’

Transistor

e |[SA: Assembly programmers’
view of a computer

* Provide all info for someone wants
to write assembly/machine code

e “Contract” between assembly/
machine code and processor
* Processors execute machine
code (binary). Assembly
program is merely a text
representation of machine
code

e Microarchitecture: Hardware
implementation of the ISA (with
the help of circuit technologies)

8

This Module (4 Lectures)

High-Level
Language

Instruction Set
Architecture
(ISA)

Microarchitecture

Circuit

C Program

’

Assembly
Program

!

Machine
Code

’

Processor

’

Transistor

* Assembly Programming

* Explain how various C
constructs are implemented in
assembly code

« Effectively translating from C to
assembly program manually

* Helps us understand how
compilers work

e Helps us understand how
assemblers work
e Microarchitecture is the
topic of the next module

Today: Assembly Programming |: Basics

e Different ISAs and history behind them

10

Instruction Set Architecture

Instruction Set Architecture

e There used to be many ISAs
* x86, ARM, Power/PowerPC, Sparc, MIPS, 1A64, z
* Very consolidated today: ARM for mobile, x86 for others

11

Instruction Set Architecture

e There used to be many ISAs

* x86, ARM, Power/PowerPC, Sparc, MIPS, 1A64, z

* Very consolidated today: ARM for mobile, x86 for others
e There are even more microarchitectures

* Apple/Samsung/Qualcomm have their own microarchitecture
(implementation) of the ARM ISA

* |Intel and AMD have different microarchitectures for x86

11

Instruction Set Architecture

e There used to be many ISAs

* x86, ARM, Power/PowerPC, Sparc, MIPS, 1A64, z

* Very consolidated today: ARM for mobile, x86 for others
e There are even more microarchitectures

* Apple/Samsung/Qualcomm have their own microarchitecture
(implementation) of the ARM ISA

* |Intel and AMD have different microarchitectures for x86
e |SA is lucrative business: ARM’s Business Model
» Patent the ISA, and then license the ISA

* Every implementer pays a royalty to ARM
* Apple/Samsung pays ARM whenever they sell a smartphone

The ARM Diaries, Part 1: How ARM’s Business Model Works: https://www.anandtech.com/show/7112/
the-arm-diaries-part-1-how-arms-business-model-works

https://www.anandtech.com/show/7112/the-arm-diaries-part-1-how-arms-business-model-works

Intel x86 ISA

e Dominate laptop/desktop/cloud market

12

Intel x86 ISA

 Dominate laptop/desktop/cloud market

dolays Storage Support Service

OS X Yosemite

Version 10.10.5

MacBook Pro -v‘»*" =2=inch, Mid 2014)
Processor 2.6 Cf \
Memory 8 GB 1600z
Graphics Intel Iris 1536 MB

Serial Number C02NVN6JG3QH

System Report... Software Update...

Intel x86 ISA

 Dominate laptop/desktop/cloud market

dolays Storage Support Service

OS X Yosemite

Version 10.10.5

MacBook Pro (Retina:=t
Processor 2.6 U z Intel Cogp i5
Memory 8 GB 1600z DDR3
Graphics Intel Iris 1536 MB

Serial Number CO02NVN6JG3QH

System Report... Software Update...

3=inch, Mid 2014)

amazon

web services

intel.

12

Intel x86 ISA Evolution (Milestones)

* Evolutionary design: Added more features as time goes on

13

Intel x86 ISA Evolution (Milestones)

* Evolutionary design: Added more features as time goes on

Date

1974
1978
1980
1985
1997
1999
2001
2004
2008

Feature Notable :
Implementation

8-bit ISA 8080

16-bit ISA (Basis for IBM PC & DOS) 8086

Add Floating Point instructions 8087

32-bit ISA (Refer to as IA32) 386

Add Multi-Media eXtension (MMX) Pentium/MMX

Add Streaming SIMD Extension (SSE) Pentium IlI

Intel’s first attempt at 64-bit ISA (IA64, failed) ltanium
Implement AMD’s 64-bit ISA (x86-64, AMD64) Pentium 4E
Add Advanced Vector Extension (AVE) Core i7 Sandy Bridge

13

Intel x86 ISA Evolution (Milestones)

e Evolutionary design: Added more features as time goes on

Date

1974
1978
1980
1985
1997
1999
2001
2004
2008

Fea

8-bi
16-
Adc
32-|
Adc
Adc

Inte

Adc

Number of Instructions

1000
900
800
700
6800 -
500
400
300
200 -
100 A

O T 7T 7T T 1T 171
PO DD NP OO D >R

PSP
O PP

T 1T 7T 7T 7T T 1T 7 7 7" 7" 7" 7y YYUYVUYVTUYTVTOUYTOYTYTOUTYTTTY

Year

13

Backward Compatibility

* Binary executable generated for an older processor can
execute on a newer processor

* Allows legacy code to be executed on newer machines
« Buy new machines without changing the software
e x86 is backward compatible up until 8086 (16-bit ISA)

* |.e., an 8086 binary executable can be executed on any of today’s
Xx86 machines

e Great for users, nasty for processor implementers
» Every instruction you put into the ISA, you are stuck with it FOREVER

14

x86 Clones: Advanced Micro Devices (AMD)

eHistorically ‘
« AMD build processors for x86 ISA
* A little bit slower, a lot cheaper
T AMD

« Recruited top circuit designers from Digital Equipment Corp. and
other downward trending companies

» Developed x86-64, their own 64-bit x86 extension to |IA32
e Built first 1 GHz CPU

¢ |[ntel felt hard to admit mistake or that AMD was better

e 2004: Intel Announces EM64T extension to I1A32
o Almost identical to x86-64!
« Today’s 64-bit x86 ISA is basically AMD’s original proposal

15

x86 Clones: Advanced Micro Devices (AMD)

eToday: Holding up not too badly

16

x86 Clones: Advanced Micro Devices (AMD)

eToday: Holding up not too badly

Market summary > Intel Corporation
MACNHAN A C ar) ¢ 750 PM EC

NASDAQ: INTC - Jan 26, /:59 PM ES
50.08 us0 +4.78 (10.55%)

1 day S day 1 month 3 month 1 year 5 year max

16

x86 Clones: Advanced Micro Devices (AMD)

eToday: Holding up not too badly

Market summary > Advanced Micro Devices, Inc.
NASDAQ: AMD - Jan 26, 8:00 PM EST

1295 IS §054 (4'35%)

1 day 5 day 1 month 3 month 1 year 5 year max

16

Our Coverage

o |[A32
e The traditional x86
o 2Nd edition of the textbook

e X86-64
« The standard
o CSUG machine
« 39 edition of the textbook
e Our focus

17

Aside: Moore’s Law

e More instructions require more transistors to implement

18

Aside: Moore’s Law

e More instructions require more transistors to implement

1000
900 -
800 -
700 -

Number of Instructions

100 +
o+rrrrrrrrrrrrrrrrrrrrrrrrrrrror

FEELFELEFE LSS SIS

Year

Aside: Moore’s Law

e More instructions require more transistors to implement

Transistor count

2,600,000,000
1.000,000,000 -

100,000,000 -

10,000,000

1,000,000 -

100,000

10,000 -

2,300~

16Core SMARC T
SulanCom T
- Yaon T
SO o _i @ 50-Cooe Xaon Westmere-£X
Dut Core Rarvr= 120 . mms
ool coee 2790
AND X0 2 ?g,mwta-ﬂ
mu.‘... ore Naor Nevwiem CX
Barnm 2 Wi VD cete @ . Fun Cove Opteeon 2
L Corw (7 10w

Gors 2 Ouo
wante /558
. s
Mnn.""‘ R L O
L
Curve shows Yransiston AND bk
Count doubiing evory AR L
ad @A K
@ Pwram
B
g
L
. .0
e e
0 N em
0. & o
LT) MG LAy
040 RCA v
f T T T]
1971 1980 1990 2000 20Mm

18

Aside: Moore’s Law

e More instructions require more transistors to implement

19

Aside: Moore’s Law

e More instructions require more transistors to implement

e Gordon Moore in 1965 predicted that the number of
transistors doubles every year

19

Aside: Moore’s Law

e More instructions require more transistors to implement

e Gordon Moore in 1965 predicted that the number of
transistors doubles every year

NG B OO

LI B B
\

JHE NUMBER OF
PER INTEGRATED FUNCTION

O=-NUWAOO ~NOWYWO
L} R 1)

19

Aside: Moore’s Law

e More instructions require more transistors to implement

e Gordon Moore in 1965 predicted that the number of
transistors doubles every year

NGB OO
L} L)

JHE NUMBER OF
PER INTEGRATED FUNCTION

O=-NUWAOO ~NOWYWO
L} R 1)

19

Aside: Moore’s Law

e More instructions require more transistors to implement

e Gordon Moore in 1965 predicted that the number of
transistors doubles every year

NG B OO

LI B B
\

JHE NUMBER OF
PER INTEGRATED FUNCTION

T rITTTTTTTT TTTTTT™Y

O=-NUWAOO ~NOWYWO

Aside: Moore’s Law

e More instructions require more transistors to implement

e Gordon Moore in 1965 predicted that the number of
transistors doubles every year

e [In 1975 he revised the prediction to doubling every 2 years

19

Aside: Moore’s Law

e More instructions require more transistors to implement

e Gordon Moore in 1965 predicted that the number of
transistors doubles every year

e [In 1975 he revised the prediction to doubling every 2 years

e Today’s widely-known Moore’s Law: number of transistors
double about every 18 months

* Moore never used the number 18...

19

Aside: Moore’s Law

Aside: Moore’s Law

e Question: why is transistor count increasing but computers
are becoming smaller?

20

Aside: Moore’s Law

e Question: why is transistor count increasing but computers
are becoming smaller?

* Because transistors are becoming smaller

20

Aside: Moore’s Law

e Question: why is transistor count increasing but computers
are becoming smaller?
* Because transistors are becoming smaller
e ~1.4x smaller each dimension(1.4° ~ 2)

20

Aside: Moore’s Law

e Question: why is transistor count increasing but computers
are becoming smaller?
* Because transistors are becoming smaller
e ~1.4x smaller each dimension(1.4° ~ 2)

e Moore’s Law is:

20

Aside: Moore’s Law

e Question: why is transistor count increasing but computers
are becoming smaller?

* Because transistors are becoming smaller
e ~1.4x smaller each dimension(1.4° ~ 2)

e Moore’s Law is:
* A law of physics?

20

Aside: Moore’s Law

e Question: why is transistor count increasing but computers
are becoming smaller?

* Because transistors are becoming smaller
e ~1.4x smaller each dimension(1.4° ~ 2)

e Moore’s Law is:
* A law of physics? No

20

Aside: Moore’s Law

e Question: why is transistor count increasing but computers
are becoming smaller?

* Because transistors are becoming smaller
e ~1.4x smaller each dimension(1.4° ~ 2)
e Moore’s Law is:
* A law of physics? No
* Alaw of circuits?

20

Aside: Moore’s Law

e Question: why is transistor count increasing but computers
are becoming smaller?

* Because transistors are becoming smaller
» ~1.4x smaller each dimension(1.42 ~ 2)
e Moore’s Law is:
* A law of physics? No
A law of circuits? No

20

Aside: Moore’s Law

e Question: why is transistor count increasing but computers
are becoming smaller?
* Because transistors are becoming smaller
e ~1.4x smaller each dimension(1.4° ~ 2)
e Moore’s Law is:
* A law of physics? No
A law of circuits? No
* A law of economy?

20

Aside: Moore’s Law

e Question: why is transistor count increasing but computers
are becoming smaller?
* Because transistors are becoming smaller
e ~1.4x smaller each dimension(1.4° ~ 2)
e Moore’s Law is:
* A law of physics? No
A law of circuits? No
* A law of economy? Yes

20

Aside: Moore’s Law

e Question: why is transistor count increasing but computers
are becoming smaller?

QI TECHNICA o o s oo s

TCrL
= e

i‘ransistors will stop shrinking in 2021,
but Moore’s law will live on

Final semiconductor industry roadmap says the future is 3D packaging and cooling.

The first problem has been known about for a long while. Basically, starting at around the 65nm
node in 2006, the economic gains from moving to smaller transistors have been slowly dribbling
away. Previously, moving to a smaller node meant you could cram tons more chips onto a single
silicon wafer, at a reasonably small price increase. With recent nodes like 22 or 14nm, though,
there are so many additional steps required that it costs a lot more to manufacture a completed
wafer—not to mention additional costs for things like package-on-package (PoP) and through-
silicon vias (TSV) packaging.

20

Aside: Moore’s Law

e Question: why is transistor count increasing but computers
are becoming smaller?

QI TECHNICA o o s oo s

ll

TEC(C

Transistors will stop shrinking in 2021,
but Moore’s law will live on

Final semiconductor industry roadmap says the future is 3D packaging and cooling.

The first problem has been known about for a long while. Basically, starting at around the 65nm
node in 2006, the economic gains from moving to smaller transistors have been slowly dnbblung
away. Previously, moving to a smaller node meant you could cram tons more chips onto a single
silicon wafer, at a reasonably small price increase. With recent nodes like 22 or 14nm, though,
there are so many additional steps required that it costs a lot more to manufacture a completed
wafer—not to mention additional costs for things like package-on-package (PoP) and through-
silicon vias (TSV) packaging.

20

Aside: Moore’s Law

e Question: why is transistor count increasing but computers
are becoming smaller?
* Because transistors are becoming smaller
e ~1.4x smaller each dimension(1.4° ~ 2)

e Moore’s Law is:

* A law of physics? No
A law of circuits? No
* A law of economy? Yes

* A law of psychology?

20

Aside: Moore’s Law

e Question: why is transistor count increasing but computers
are becoming smaller?

* Because transistors are becoming smaller
e ~1.4x smaller each dimension(1.4° ~ 2)

e Moore’s Law is:

* A law of physics? No
A law of circuits? No
* A law of economy? Yes

« A law of psychology? Yes

Aside: Moore’s Law

e Question: why is transistor count increasing but computers
are becoming smaller?

* Because transistors are becoming smaller
e ~1.4x smaller each dimension(1.4° ~ 2)

e Moore’s Law is:

* A law of physics? No
A law of circuits? No
* A law of economy? Yes

« A law of psychology? Yes

Questions!?

20

Today: Assembly Programming |: Basics

e C, assembly, machine code

21

Assembly Code’s View of Computer: ISA

Assembly Code’s View of Computer: ISA

Assembly
Programmer’s
Perspective
of a Computer

CPU

Memory

22

Assembly Code’s View of Computer: ISA

CPU Memo
Assembly Yy
Programmer’s Code
P : Data
erspective
Stack
of a Computer

e (Byte Addressable) Memory

* Code: instructions
e Data

» Stack to support function call

Assembly Code’s View of Computer: ISA

Assembly i

Programmer’s
Perspective
of a Computer

e (Byte Addressable) Memory

» Code: instructions
» Data
» Stack to support function call

Memory

Code
Data
Stack

Data

22

Assembly Code’s View of Computer: ISA

Assembly i

Programmer’s
Perspective
of a Computer

Memory

Code
Data
Stack

e (Byte Addressable) Memory
» Code: instructions

» Data
» Stack to support function call

Data

0x53
0x48
0x89
0xd3

22

Assembly Code’s View of Computer: ISA

Assembly i

Programmer’s
Perspective
of a Computer

e (Byte Addressable) Memory

* Code: instructions
e Data

» Stack to support function call

Instruction is the fundamental
unit of work.

All instructions are coded as bits
(just like data!)

Memory
Code
Data
Stack
Code
(Instructions) LELE

0x78
Oxfe
Oxe3
0x05

22

Assembly Code’s View of Computer: ISA

CPU Memo
Assembly Yy
Programmer’s Code
P : Data
erspective
Stack
of a Computer

e (Byte Addressable) Memory

« Code: instructions Code

« Data (Instructions) Data | Stack

» Stack to support function call

0x53
0x48
0x89
0xd3

Assembly Code’s View of Computer: ISA

Assembly i Register Memory
Programmer’s File Code
Perspective SDtgt:ak
of a Computer

e (Byte Addressable) Memory

* Code: instructions
e Data

« Stack to support function call

* Register file
» Faster memory (e.g., 0.5 nsvs. 15 ns)
e Small memory (e.g., 128 B vs. 16 GB)
» Heavily used program data

x86-64 Integer Register File

< 8 Bytes

srax %r8

srbx %r9

srcx %rl0
srdx srll
srsi %rl2
srdi %rl3
srsp srl4
srbp %rl5

x86-64 Integer Register File

e | ower-half of each register can be independently
addressed (until 8 bytes)

24

x86-64 Integer Register File

e | ower-half of each register can be independently
addressed (until 8 bytes)

$rax

< 8 Bytes

x86-64 Integer Register File

e | ower-half of each register can be independently
addressed (until 8 bytes)

$rax !%eax

< 8 Bytes >
< 4 Bytes >

x86-64 Integer Register File

e | ower-half of each register can be independently
addressed (until 8 bytes)

< 8 Bytes >
< 4 Bytes >
+—2 Bytes—>

24

x86-64 Integer Register File

e | ower-half of each register can be independently
addressed (until 8 bytes)

< 8 Bytes >
< 4 Bytes >
+—2 Bytes—>

«—1B—

24

x86-64 Integer Register File

e | ower-half of each register can be independently
addressed (until 8 bytes)

< 8 Bytes >
_ < 4 Bytes >
C Data Type Size (Bytes)
+—2 Bytes—>
char 1 «1B—>
short 2
int 4
long 8

Pointer 8

24

x86-64 Integer Register File

e | ower-half of each register can be independently
addressed (until 8 bytes)

< 8 Bytes >
Size (Bytes)) 4 ?yt_es _:
char 1 ° B{t—e‘ls B—
short 2
int 4

Floating point data is stored
long 8 in a separate set of register

Pointer . file (in 3 lectures...)

24

Assembly Code’s View of Computer: ISA

Assembly i Register Memory
Programmer’s File Code
Perspective SDtgt:ak
of a Computer

e (Byte Addressable) Memory

* Code: instructions
e Data

« Stack to support function call

* Register file
» Faster memory (e.g., 0.5 nsvs. 15 ns)
e Small memory (e.g., 128 B vs. 16 GB)
» Heavily used program data

Assembly Code’s View of Computer: ISA

CPU . Memo
Assembly Register ry
Programmer’s PC File Code
P . Data
erspective
Stack
of a Computer
* (Byte Addressable) Memory e PC: Program counter
e Code: instructions » A special register containing address
. Data of next instruction

« Stack to support function call - Called “RIP” in x86-64

* Register file
» Faster memory (e.g., 0.5 nsvs. 15 ns)
e Small memory (e.g., 128 B vs. 16 GB)
» Heavily used program data

25

Assembly Code’s View of Computer: ISA

Assembly CPU Register Addresses > Memory
Programmer’s PC File Code
P : Data
erspective
Stack
of a Computer
* (Byte Addressable) Memory e PC: Program counter
e Code: instructions » A special register containing address
e Data of next instruction

« Stack to support function call - Called “RIP” in x86-64

* Register file
» Faster memory (e.g., 0.5 nsvs. 15 ns)
e Small memory (e.g., 128 B vs. 16 GB)
» Heavily used program data

25

Assembly Code’s View of Computer: ISA

Assembly CPU Register Addresses > Memory
Programmer’s PC File Code
P : Data
erspective
- Stack
of a Computer < Instructions
* (Byte Addressable) Memory e PC: Program counter
e Code: instructions » A special register containing address
e Data of next instruction

« Stack to support function call - Called “RIP” in x86-64

* Register file
» Faster memory (e.g., 0.5 nsvs. 15 ns)
e Small memory (e.g., 128 B vs. 16 GB)
» Heavily used program data

25

Assembly Code’s View of Computer: ISA

Assembly CPU Register Addresses > Memory
, File Code
Programmer 3 PC Data 2o
Perspective
- Stack
of a Computer < Instructions
* (Byte Addressable) Memory e PC: Program counter
e Code: instructions » A special register containing address
e Data of next instruction

« Stack to support function call - Called “RIP” in x86-64

* Register file
» Faster memory (e.g., 0.5 nsvs. 15 ns)
e Small memory (e.g., 128 B vs. 16 GB)
» Heavily used program data

25

Assembly Code’s View of Computer: ISA

Assembly CPU Register Addresses > Memory
Programmer’s PC File Code
Perspective -
of a Computer ALU Jnstructions
* (Byte Addressable) Memory e PC: Program counter
e Code: instructions » A special register containing address
e Data of next instruction

 Called “RIP” in x86-64

e Arithmetic logic unit (ALU)
e \Where computation happens

« Stack to support function call

* Register file
» Faster memory (e.g., 0.5 nsvs. 15 ns)
e Small memory (e.g., 128 B vs. 16 GB)
» Heavily used program data

25

Assembly Code’s View of Computer: ISA

Assembly CPU Register Addresses > Memory
, File Code
P;ogrammer 3 PC Data 2o
erspective Conditi
ondition . Stack
of a Computer ALU Codes |l nStructions
* (Byte Addressable) Memory e PC: Program counter
e Code: instructions » A special register containing address
e Data of next instruction

« Called “RIP” in x86-64
e Arithmetic logic unit (ALU)
e \Where computation happens

e Condition codes

» Store status information about most
recent arithmetic or logical operation

e Used for conditional branch

« Stack to support function call

* Register file
» Faster memory (e.g., 0.5 nsvs. 15 ns)
e Small memory (e.g., 128 B vs. 16 GB)
» Heavily used program data

25

Assembly Program Instructions

Assembly
Programmer’s
Perspective
of a Computer

CPU

PC

Register
File

Addresses

ALU

Condition
Codes

<

Data

>

Instructions
<

Memory

Code
Data
Stack
Heap

26

Assembly Program Instructions

Assembly CPU Register Addresses . Memory
Programmer’s PC e 2ode

erspective Condition . Stack
of a Computer ALU Codes < Instructions Heap

e Compute Instruction: Perform arithmetics on register or memory data
e addg %eax, %ebx

* C constructs: +, -, >>, etc.

Assembly Program Instructions

Assembly CPU Register Addresses . Memory
Programmer’s PC e 2ode

erspective Condition . Stack
of a Computer ALU Codes < Instructions Heap

e Compute Instruction: Perform arithmetics on register or memory data
e addg %eax, %ebx
* C constructs: +, -, >>, etc.

* Data Movement Instruction: Transfer data between memory and register
e movqg %eax, (%ebx)

26

Assembly Program Instructions

Assembly CPU Register Addresses . Memory
Programmer’s PC e 2ode

erspective Condition . Stack
of a Computer ALU Codes < Instructions Heap

e Compute Instruction: Perform arithmetics on register or memory data
e addg %eax, %ebx
* C constructs: +, -, >>, etc.

* Data Movement Instruction: Transfer data between memory and register
e movqg %eax, (%ebx)

e Control Instruction: Alter the sequence of instructions (by changing PC)
e jmp, call

o C constructs: 1if-else, do-while, function call, etc.
26

Turning C into Object Code
C Code (sum.c)

long plus(long x, long y);

void sumstore(long x, long vy,
long *dest)
{
long t = plus(x, y):;
*dest = t;

27

Turning C into Object Code

C Code (sum.c) Generated x86-64 Assembly
long plus(long x, long y)

sumstore:
void sumstore(long x, long vy, ig:gq ;igﬁ 2 rbx
G CREEE T T
{ movq $rax, (%rbx)

long t = plus(x, y); Q
*dest = t; i:iq L2
}

27

Turning C into Object Code

C Code (sum.c) Generated x86-64 Assembly
long plus(long x, long y)

sumstore:
void sumstore(long x, long vy, ig:gq ;igﬁ 2 rbx
G CREEE T T
{
mov Srax $rbx
long t = plus(x, y); popg %rbx, !
*dest = t; e
}

Obtain (on CSUG machine) with command
gcc -O0g -S sum.c -0 sum.s

27

Turning C into Object Code

Generated x86-64 Assembly

sumstore:
pushqg srbx
movq $rdx, S%rbx
call plus
movq $rax, (%rbx)

PoPg $rbx
ret

28

Turning C into Object Code

Generated x86-64 Assembly Binary Code for sumstore

sumstore: Memory

pushqg srbx

movq $rdx, %rbx 0x53

call plus 0x48

movq $rax, (%rbx) 0x89

PoPg $rbx 0xd3

ret Oxe8
0x£f2
Oxff
Oxff
Oxff
0x48
0x89
0x03
0x5b

0xc3

Turning C into Object Code

Generated x86-64 Assembly Binary Code for sumstore

sumstore: Address Memory

pushqgq srbx

movq %rdx, %rbx 0x0400595 0x53

call plus 0x48

movq $rax, (%rbx) 0x89

popq $rbx 0xd3

ret Oxe8
Oxf2
Oxff
Oxff
Oxff
0x48
0x89
0x03
0x5b

0xc3

Turning C into Object Code

Generated x86-64 Assembly Binary Code for sumstore

sumstore: Address Memory

pushq 3rbx

movq %rdx, %rbx 0x0400595 0x53

call plus 0x48

movq $rax, (%rbx) 0x89

pPopq $rbx 0xd3

ret Oxe8

Oxf2

Obtain (on CSUG machine) with command Oitieiz

Oxff

gcc —C sum.s -O sum.o Oxff

0x48

0x89

0x03

0x5b

0xc3

Turning C into Object Code

Generated x86-64 Assembly Binary Code for sumstore

sumstore: Address Memory
pushq 3rbx

movqg %rdx, %rbx 0x0400595 0x53
call plus 0x48
movq $rax, (%rbx) 0x89
popdq $rbx 0xd3
ret Oxe8
Oxf2
Obtain (on CSUG machine) with command Oxff
Oxff
gcc —C sum.s -O sum.o Oxff
0x48
- Total of 14 bytes 0x89
* Instructions have variable g"gg
lengths: e.g., 1, 3, or 5 bytes 0:c3

- Code starts at memory address
0x0400595

Machine Instruction Example

Machine Instruction Example

long t; * C Code

long *dest; o Add value t with value in memory
* location whose address is dest

t += *dest;

and store the result back to t

29

Machine Instruction Example

long t; * C Code

long *dest; o Add value t with value in memory
location whose address is dest
t += *dest;

and store the result back to t
e Assembly Instruction

» Operator: Add two 8-byte values
» Quad words in x86-64 parlance
addq srax p 3 rbx) « Operands:
t: Register $rax
dest: Register$rbx
*dest: Memory M[$rbx]

29

Machine Instruction Example

long t;
long *dest;

t += *dest;

Qprator

e C Code

« Add value t with value in memory
location whose address is dest
and store the result back to t

e Assembly Instruction

» Operator: Add two 8-byte values
» Quad words in x86-64 parlance

Srbx) « Operands:

t: Register $rax
dest: Register$rbx
*dest: Memory M[$rbx]

29

Machine Instruction Example

long t;
long *dest;

t += *dest;

fOperand(s) |

addqg | srax,

srbx)

e C Code

« Add value t with value in memory
location whose address is dest
and store the result back to t
e Assembly Instruction

» Operator: Add two 8-byte values
» Quad words in x86-64 parlance
« Operands:

t: Register $rax
dest: Register$rbx
*dest: Memory M[$rbx]

29

Machine Instruction Example

long
long
t +=

addqgq

t, e C Code
*dest . « Add value t with value in memory
location whose address is dest
* []
dest 4 and store the result back to t
e Assembly Instruction

» Operator: Add two 8-byte values
— , » Quad words in x86-64 parlance
E% r ax], Srbx) « Operands:

!

t

t: Register $rax
dest: Register$rbx
*dest: Memory M[$rbx]

29

Machine Instruction Example

long t;
long *dest;
t += *dest;

addq ﬁrax@ (

!

t

e C Code

« Add value t with value in memory
location whose address is dest
and store the result back to t

e Assembly Instruction
» Operator: Add two 8-byte values

» Quad words in x86-64 parlance

él% rbx!) « Operands:
T t: Register $rax
dest: Register$rbx

dest *dest: Memory M[3rbx]

29

Machine Instruction Example

long t;
long *dest;
t += *dest;
*dest
|
addq ﬁrax$ }%rbxb
! |
t dest

e C Code

« Add value t with value in memory
location whose address is dest
and store the result back to t
e Assembly Instruction

» Operator: Add two 8-byte values
» Quad words in x86-64 parlance
« Operands:

t: Register $rax
dest:
*dest: Memory M[$rbx]

Register $rbx

29

Machine Instruction Example

long t;
long *dest;
t += *dest;
*dest
addq srax) }ﬁrbxb
t dest
Oxf0059e:
Ox 48 01 d8

e C Code

« Add value t with value in memory
location whose address is dest
and store the result back to t
e Assembly Instruction

» Operator: Add two 8-byte values

» Quad words in x86-64 parlance
« Operands:

t: Register $rax

dest: Register$rbx

*dest: Memory M[$rbx]
e Object Code

» 3-byte instruction
o Stored at address 0x£f0059e

29

Instruction Processing Sequence

Assembly CPU Register Addresses > Memory
Programmer’s PC File Code
P - Data Data
erspective Condition | Stack
of a Computer ALU Codes |l nStructions

Fetch Instruction
(According to PC)

30

Instruction Processing Sequence

Assembly CPU Register Addresses > Memory
Programmer’s PC File Code
P - Data Data
erspective Condition | Stack
of a Computer ALU Codes |l nStructions

Fetch Instruction
(According to PC)

0x4801d8

30

Instruction Processing Sequence

Assembly CPU Register Addresses > Memory
’ File Code
Programmer S PC Data ode
Perspective Condition S
of a Computer ALU Codes |l nStructions

Fetch Instruction __J Decode
(According to PC) Instruction

addq %rax, (%rbx)

30

Instruction Processing Sequence

Assembly
Programmer’s
Perspective
of a Computer

Fetch Instruction
(According to PC)

CPU

PC

Register
File

Addresses

ALU

Condition
Codes

Data

>

Decode
Instruction

Instructions
<

Fetch
Operands

Memory

Code
Data
Stack

30

Instruction Processing Sequence

Assembly
Programmer’s
Perspective
of a Computer

Fetch Instruction
(According to PC)

CPU

PC

Register
File

Addresses

ALU

Condition
Codes

Data

>

Instructions
<

Decode
Instruction

Fetch
Operands

Memory

Code
Data
Stack

Execute
Instruction

30

Instruction Processing Sequence

Assembly
Programmer’s
Perspective
of a Computer

Fetch Instruction
(According to PC)

CPU Register Addresses Memory
. >
PC File Code
Data Data
ALU Condition Instructions SIS
Codes <
Decode Fetch __ Execute
Instruction Operands Instruction
v
Update
Condition

Codes

30

Instruction Processing Sequence

Assembly CPU Register Addresses > Memory
Programmer’s PC File Code
P - Data Data
erspective Condition | Stack
of a Computer ALU Codes |l nStructions

Fetch Instruction — Decode __ Fetch __ Execute __ Store
(According to PC) Instruction Operands Instruction Results

\ 4
Update
Condition
Codes

30

Instruction Processing Sequence

Assembly CPU Register Addresses > Memory
Programmer’s PC File Code
P - Data Data
erspective Condition | Stack
of a Computer ALU Codes |l nStructions

Fetch Instruction — Decode __ Fetch __ Execute __ Store

(According to PC) Instruction Operands Instruction Results
v
Update
Condition
Codes y
Adjust

PC

30

Instruction Processing Sequence

Assembly CPU Register Addresses > Memory
Programmer’s PC File Code
P - Data Data
erspective Condition | Stack
of a Computer ALU Codes |l nStructions

Fetch Instruction — Decode __ Fetch __ Execute __ Store

(According to PC) Instruction Operands Instruction Results
4 ;
\ 4
Update
Condition
Codes y
Adjust

PC

30

Instruction Processing Sequence

Assembly CPU Register Addresses > Memory
Programmer’s PC File Code
P - Data Data
erspective Condition | Stack
of a Computer ALU Codes |l nStructions

Fetch Instruction — Decode __ Fetch __ Execute __ Store

(According to PC) Instruction Operands Instruction Results
4 ;
\ 4
Update
Condition
Codes y
Adjust

PC

Questions!?

30

Today: Assembly Programming |: Basics

* Move operations (and addressing modes)

31

Data Movement Instructions

movq Source, Dest

32

Data Movement Instructions

movq Source, Dest

Operator' Opér‘ah.ds

32

Data Movement Instructions

movq Source, Dest

Operator' Opwer‘ah.ds
» Register: One of 16 integer registers

« Example: $rax, %rl3
« But $rsp reserved for special use

32

Data Movement Instructions

movq Source, Dest

Operatowr' ‘OpAer‘ah.ds
» Register: One of 16 integer registers

« Example: $rax, %rl3
« But $rsp reserved for special use

* Immediate: Constant integer data

« Example: $0x400, $-533; like C constant, but prefixed with ‘$’
« Encoded with 1, 2, or 4 bytes; can only be source

32

Data Movement Instructions

movq Source, Dest

Operator Operands
» Register: One of 16 integer registers
« Example: $rax, %rl3
« But $rsp reserved for special use
* Immediate: Constant integer data
« Example: $0x400, $-533; like C constant, but prefixed with ‘$’
« Encoded with 1, 2, or 4 bytes; can only be source
 Memory: 8 consecutive bytes in memory at given address
o Simplest example: ($rax)
« How to obtain the address is called “addressing mode” (later...)

32

movg Operand Combinations

Source Dest Src,Dest C Analog
4 Re
Imm { J
Mem
movqg < Reg Zeg
em
\Mem Reg

Cannot do memory-memory transfer
with a single instruction in x86.

33

movg Operand Combinations

Source Dest Src,Dest C Analog
e {Reg movg $0x4,%rax
Imm
Mem
movqg < Reg Zeg
em
\Mem Reg

Cannot do memory-memory transfer
with a single instruction in x86.

33

movg Operand Combinations

Source Dest Src,Dest C Analog
f {Reg movq $0x4,%rax temp = Ox4;
Imm
Mem
movqg < Reg Zeg
em
\Mem Reg

Cannot do memory-memory transfer
with a single instruction in x86.

33

movg Operand Combinations

movq <

Source Dest Src,Dest C Analog

Imm
Mem movqg $-147, (%rax)

Reg Reg
Mem
\Mem Reg

Cannot do memory-memory transfer
with a single instruction in x86.

4 Reg movq $0x4,%rax temp = 0x4;

33

movg Operand Combinations

movq <

Source Dest Src,Dest C Analog

Imm
Mem movqg $-147, ($rax) *p = -147;

Reg Reg
Mem
\Mem Reg

Cannot do memory-memory transfer
with a single instruction in x86.

4 Reg movq $0x4,%rax temp = 0x4;

33

movq
Source Dest Src,Dest C Analog
4 Reg movq $0x4,%rax temp = 0x4;
Imm

movq <

Operand Combinations

Mem movqg $-147, ($rax) *p = -147;

movqg %rax,%rdx
Reg Reg q
Mem

\Mem Reg

Cannot do memory-memory transfer
with a single instruction in x86.

33

movg Operand Combinations

Source Dest Src,Dest C Analog

4 Reg movg $0x4,%rax temp = 0x4;

Imm
Mem movqg $-147, ($rax) *p = -147;

movqg %rax,%rdx temp2 = templ;
movqg < Reg Reg q p p

Mem

\Mem Reg

Cannot do memory-memory transfer
with a single instruction in x86.

33

movg Operand Combinations

Source Dest Src,Dest C Analog

4 Reg movg $0x4,%rax temp = 0x4;

Imm
Mem movqg $-147, ($rax) *p = -147;

movqg %rax,%rdx temp2 = templ;
movqg < Reg Reg q p p

Mem movg %rax, ($rdx)

\Mem Reg

Cannot do memory-memory transfer
with a single instruction in x86.

33

movg Operand Combinations

Source Dest Src,Dest C Analog
4 Reg movg $0x4,%rax temp = 0x4;
Imm
Mem movqg $-147, ($rax) *p = -147;
movq < Reg Reg movq $%$rax,$rdx temp2 = templ;
Mem movg %rax, ($rdx) *p = temp;
\Mem Reg

Cannot do memory-memory transfer
with a single instruction in x86.

33

movg Operand Combinations

Source Dest Src,Dest C Analog
4 Reg movg $0x4,%rax temp = 0x4;
Imm
Mem movqg $-147, ($rax) *p = -147;
movq < Reg Reg movq $%$rax,$rdx temp2 = templ;
Mem movg %rax, ($rdx) *p = temp;

\Mem Reg movg (%rax),%rdx

Cannot do memory-memory transfer
with a single instruction in x86.

33

movg Operand Combinations

Source Dest Src,Dest C Analog
4 Reg movg $0x4,%rax temp = 0x4;
Imm
Mem movqg $-147, ($rax) *p = -147;
movq < Reg Reg movq $%$rax,$rdx temp2 = templ;
Mem movg %rax, ($rdx) *p = temp;

\Mem Reg movq (%rax), %rdx temp = *p;

Cannot do memory-memory transfer
with a single instruction in x86.

33

Memory Addressing Modes

e An addressing mode specifies:
* how to calculate the effective memory address of an operand
* by using information held in registers and/or constants

34

Memory Addressing Modes

e An addressing mode specifies:
* how to calculate the effective memory address of an operand
* by using information held in registers and/or constants

e Normal: (R)

« Memory address: content of Register R (Reg[R])
 Pointer dereferencing in C

movqg (%rcx),%rax; // address = %$rcx

34

Memory Addressing Modes

e An addressing mode specifies:
* how to calculate the effective memory address of an operand
* by using information held in registers and/or constants

e Normal: (R)

« Memory address: content of Register R (Reg[R])
 Pointer dereferencing in C

movqg (%rcx),%rax; // address = %$rcx
e Displacement: D(R)
« Memory address: Reg[R]+D

 Register R specifies start of memory region
« Constant displacement D specifies offset

movqg 8 (%rbp) ,%rdx; // address = %rbp + 8

34

Example of Simple Addressing Modes

void swap
(long *xp, long *yp)
{

long t0 = *xp;
long tl1 = *yp;
*xp = tl;

*yp = t0;

35

Example of Simple Addressing Modes

void swap

{

(long *xp, long *yp)

long tO
long tl
*xp = tl;
*yp = t0;

*xp;
*yp;

Memory

35

Example of Simple Addressing Modes

Memory Addr

void swap

(long *xp, long *yp) *xXp Xp
{
long t0 = *xp;
long tl1 = *yp;
*xp = tl;
*yp = t0;
}

Example of Simple Addressing Modes

Memory Addr

void swap

(long *xp, long *yp) *xXp Xp
{
long t0 = *xp;
long t1 = *yp;
*xp = tl1;
*yp = t0;
} *yp ypP

35

Example of Simple Addressing Modes

. Registers Memory Addr

void swap
(long *xp, long *yp) e rdi xp *xXp Xp

{

long t0 = *xp; $rsi yP

long tl1 = *yp;

*xp = tl; srax

* — c

yp = t0; -

} srdx *yp vp

35

Example of Simple Addressing Modes

. Registers Memory Addr
void swap
(long *xp, long *yp) e rdi xp *xXp Xp
{
long t0 = *xp; $rsi yp
long t1 = *yp;
*xp = tl; srax
*yp = t0; -
} srdx *yp yp
swap:
movq $rdi), %rax # t0 = *xp
movqg $rsi), %rdx # t1 = *yp
movqg $rdx, (%rdi) # *xp = tl
movq $rax, (%rsi) # *yp = tO

ret

35

Example of Simple Addressing Modes

. Registers Memory Addr
void swap
{ (long *xp, long *yp) e rdi Xp *xXp Xp
long t0 = *xp; $rsi yp
long tl1 = *yp;
*xp = tl; srax
*yp = t0; -
} $rdx *yp vp
How Does This Work?
swap
movq $rdi), %rax # t0 = *xp
movqg $rsi), %rdx # t1 = *yp
movq $rdx, (%rdi) # *xp = tl
movq $rax, (%rsi) # *yp = tO

35

Understanding Swap()

Registers

Frdi 0x120

$rsi 0x100

$rax

$rdx

swap:
movq
movq
movq
movq
ret

rdi) ,
rsi),
srdx,
srax,

Memory Addr
123 0x120 =xp
0x118
0x110
0x108
456 0x100 yp
$rax # t0 = *xp
$rdx # tl1 = *yp
$rdi) # *xp = tl
$rsi) # *yp = tO

36

Understanding Swap()

Registers

Frdi 0x120

$rsi 0x100

$rax

$rdx

swap:
movq
movq
movq
movq
ret

srdi) ,
%rsi),
srdx,

srax,

Memory Addr
123 0x120 =xp
0x118
0x110
0x108
456 0x100 yp
$rax # t0 = *xp
$rdx # tl1 = *yp
$rdi) # *xp = tl
$rsi) # *yp = tO

36

Understanding Swap()

Registers

Frdi 0x120

$rsi 0x100

$rax 123

$rdx

swap:
movq
movq
movq
movq
ret

srdi) ,
%rsi),
srdx,

srax,

Memory Addr
123 0x120 =xp
0x118
0x110
0x108
456 0x100 yp
$rax # t0 = *xp
$rdx # tl1 = *yp
$rdi) # *xp = tl
$rsi) # *yp = tO

36

Understanding Swap()

Registers

Frdi 0x120

$rsi 0x100

$rax 123

$rdx

swap:
movq
movq
movq
movq
ret

rdi) ,
(%rs1i),
srdx,

srax,

Memory Addr
123 0x120 =xp
0x118
0x110
0x108
456 0x100 yp
$rax # t0 = *xp
$rdx # tl1 = *yp
$rdi) # *xp = tl
$rsi) # *yp = tO

36

Understanding Swap()

Registers

Frdi 0x120

$rsi 0x100

$rax 123

Frdx 456

swap:
movq
movq
movq
movq
ret

Memory Addr
123 0x120 =xp
0x118
0x110
0x108
456 0x100 yp
$rdi) , %$rax # t0 = *xp
($rsi), %$rdx # tl1 = *yp
$rdx, (%rdi) # *xp = tl
$rax, (%rsi) # *yp = tO

36

Understanding Swap()

Registers

Frdi 0x120

$rsi 0x100

$rax 123

Frdx 456

swap:
movq
movq
movq
movq
ret

rdi) ,
(%rsi),
srdx,
srax,

Memory Addr
123 0x120 =xp
0x118
0x110
0x108
456 0x100 yp
$rax # t0 = *xp
$rdx # tl1 = *yp
$rdi) # *xp = tl
$rsi) # *yp = tO

36

Understanding Swap()

Registers

Frdi 0x120

$rsi 0x100

$rax 123

Frdx 456

swap:
movq
movq
movq
movq
ret

rdi) ,
(%rsi),
srdx,
srax,

Memory Addr
456 0x120 xp
0x118
0x110
0x108
456 0x100 yp
$rax # t0 = *xp
$rdx # tl1 = *yp
$rdi) # *xp = tl
$rsi) # *yp = tO

36

Understanding Swap()

Registers

Frdi 0x120

$rsi 0x100

$rax 123

Frdx 456

swap:
movq
movq
movq
movq
ret

srdi) ,
(%rsi),
srdx,

srax,

Memory Addr
456/ 0x120 xp
0x118
0x110
0x108
456 0x100 yp
$rax # t0 = *xp
$rdx # tl1 = *yp
$rdi) # *xp = tl
$rsi) # *yp = tO

36

Understanding Swap()

Registers

Frdi 0x120

$rsi 0x100

$rax 123

Frdx 456

swap:
movq
movq
movq
movq
ret

Memory Addr
456 0x120 xp
0x118
0x110
0x108
NMNN&\NN\\““%& 123 0x100 yp
$rdi) , %$rax # t0 = *xp
(3rsi), %rdx # tl = *yp
$rdx, (%rdi) # *xp = tl
$rax, (%rsi) # *yp = tO

36

