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Announcement
• Programming Assignment 2 is out


• Due on Feb 16, 11:59 PM 
• You may still have 3 slip days… 

• Read the instructions before getting started!!!

• You get 1/4 point off for every wrong answer 
• Maxed out at 10
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How Does Pointer Work in C???
char a = 4; 
char b = 3; 
char *c; 
c = &a; 
b += (*c);
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How Does Pointer Work in C???
char a = 4; 
char b = 3; 
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c = &a; 
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Memory Addressing Modes
•An addressing mode specifies:


• how to calculate the effective memory address of an operand 
• by using information held in registers and/or constants
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• Essentially pointer dereferencing in C 
 
movq (%rcx),%rax; // address = %rcx
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Memory Addressing Modes
•An addressing mode specifies:


• how to calculate the effective memory address of an operand 
• by using information held in registers and/or constants

•Normal: (R)

• Memory address: content of Register R (Reg[R]) 
• Essentially pointer dereferencing in C 
 
movq (%rcx),%rax; // address = %rcx

•Displacement: D(R)

• Memory address: Reg[R]+D 
• Register R specifies start of memory region 
• Constant displacement D specifies offset 
 
movq 8(%rbp),%rdx; // address = %rbp + 8
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Complete Memory Addressing Modes

•Most General Form: D(Rb,Ri,S)
• Memory address: Reg[Rb] + S * Reg[Ri] + D
• E.g., 8(%eax, %ebx, 4); // address = %eax + 4 * %ebx + 8
• D: 	 Constant “displacement”
• Rb: 	 Base register: Any of 16 integer registers
• Ri:	 Index register: Any, except for %rsp
• S: 	 Scale: 1, 2, 4, or 8
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Complete Memory Addressing Modes

•Most General Form: D(Rb,Ri,S)
• Memory address: Reg[Rb] + S * Reg[Ri] + D
• E.g., 8(%eax, %ebx, 4); // address = %eax + 4 * %ebx + 8
• D: 	 Constant “displacement”
• Rb: 	 Base register: Any of 16 integer registers
• Ri:	 Index register: Any, except for %rsp
• S: 	 Scale: 1, 2, 4, or 8

•Special Cases
	 	 (Rb,Ri)	 Reg[Rb]+Reg[Ri]
	 	 D(Rb,Ri)	 Reg[Rb]+Reg[Ri]+D
	 	 (Rb,Ri,S)	 Reg[Rb]+S*Reg[Ri]
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Expression Address Computation Address

0x8(%rdx)

(%rdx,%rcx)

(%rdx,%rcx,4)

0x80(,%rdx,2)

Carnegie Mellon

Address Computation Examples

%rdx 0xf000

%rcx 0x0100
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Expression Address Computation Address

0x8(%rdx)

(%rdx,%rcx)

(%rdx,%rcx,4)

0x80(,%rdx,2)

Carnegie Mellon

Address Computation Examples

%rdx 0xf000

%rcx 0x0100

0xf000 + 0x8

0xf000 + 0x100

0xf000 + 4*0x100

2*0xf000 + 0x80

0xf008

0xf100

0xf400

0x1e080
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Carnegie Mellon

Address Computation Instruction

leaq 4(%rsi,%rdi,2), %rax
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Carnegie Mellon

Address Computation Instruction

leaq 4(%rsi,%rdi,2), %rax

%rax = %rsi + %rdi * 2 + 4
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Carnegie Mellon

Address Computation Instruction

• leaq Src, Dst

• Src is address mode expression 
• Set Dst to address denoted by expression 
• No actual memory reference is made

leaq 4(%rsi,%rdi,2), %rax

%rax = %rsi + %rdi * 2 + 4
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Carnegie Mellon

Address Computation Instruction

• leaq Src, Dst

• Src is address mode expression 
• Set Dst to address denoted by expression 
• No actual memory reference is made

• Uses

• Computing addresses without a memory reference 

• E.g., translation of p = &x[i];

leaq 4(%rsi,%rdi,2), %rax

%rax = %rsi + %rdi * 2 + 4
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Carnegie Mellon

Address Computation Instruction
• Interesting Use

• Computing arithmetic expressions of the form x + k*y 
• Faster arithmetic computation
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Carnegie Mellon

Address Computation Instruction
• Interesting Use

• Computing arithmetic expressions of the form x + k*y 
• Faster arithmetic computation

long m12(long x) 
{ 
  return x*12; 
}
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Carnegie Mellon

Address Computation Instruction
• Interesting Use

• Computing arithmetic expressions of the form x + k*y 
• Faster arithmetic computation

long m12(long x) 
{ 
  return x*12; 
}

leaq (%rdi,%rdi,2), %rax # t <- x+x*2 
salq $2, %rax            # return t<<2

Converted to 
ASM by compiler:
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Assembly Program Instructions

PC
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File
Memory
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Data

InstructionsCondition 
Codes

Assembly 
Programmer’s 
Perspective 

of a Computer ALU
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• Data Movement Instruction: Transfer data between memory and register

• movq %eax, (%ebx)
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CPU

Assembly Program Instructions

PC
Register 

File
Memory

Code 
Data 
Stack 
Heap

Addresses

Data

InstructionsCondition 
Codes

Assembly 
Programmer’s 
Perspective 

of a Computer ALU

• Data Movement Instruction: Transfer data between memory and register

• movq %eax, (%ebx)

• Compute Instruction: Perform arithmetics on register or memory data

•addq %eax, %ebx 
• C constructs: +, -, >>, etc.

• Control Instruction: Alter the sequence of instructions (by changing PC)

• jmp, call 
• C constructs: if-else, do-while, function call, etc.
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Carnegie Mellon

Today: Compute and Control Instructions
• Arithmetic & logical operations

• Control: Condition codes

• Conditional branches (if… else…)

• Loops (for, while)

• Switch Statements (case… switch…)
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Carnegie Mellon

Some Arithmetic Operations (2 Operands)
Format Computation Notes

addq src, dest Dest = Dest + Src
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Carnegie Mellon

Some Arithmetic Operations (2 Operands)
Format Computation Notes

addq src, dest Dest = Dest + Src

addq %rax, %rbx

• • •

• • •

u

v+

• • •u + v

• • •TAddw(u , v)
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Carnegie Mellon

Some Arithmetic Operations (2 Operands)
Format Computation Notes

addq src, dest Dest = Dest + Src

addq %rax, %rbx
%rbx = %rax + %rbx


Truncation if overflow, 
set carry bit (more later…)

• • •

• • •

u

v+

• • •u + v

• • •TAddw(u , v)
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Carnegie Mellon

Some Arithmetic Operations (2 Operands)
Format Computation Notes

addq src, dest Dest = Dest + Src
subq src, dest Dest = Dest - Src
imulq src, dest Dest = Dest * Src
salq src, dest Dest = Dest << Src Also called shlq

sarq src, dest Dest = Dest >> Src Arithmetic shift

shrq src, dest Dest = Dest >> Src Logical shift

xorq src, dest Dest = Dest ^ Src
andq src, dest Dest = Dest & Src
orq src, dest Dest = Dest | Src
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Carnegie Mellon

• No distinction between signed and unsigned (why?)

• Bit level behaviors for signed and unsigned arithmetic are 

exactly the same — assuming truncation

Some Arithmetic Operations (2 Operands)
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}
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• No distinction between signed and unsigned (why?)
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}
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• No distinction between signed and unsigned (why?)

• Bit level behaviors for signed and unsigned arithmetic are 

exactly the same — assuming truncation

long signed_add 
(long x, long y) 
{ 
  long res = x + y; 
  return res; 
}

#x in %rdx, y in %rax 
addq    %rdx, %rax

long unsigned_add 
(unsigned long x, unsigned long y) 
{ 
  unsigned long res = x + y; 
  return res; 
}

#x in %rdx, y in %rax 
addq    %rdx, %rax

   010 
+) 101

   111

Bit-level
    2 
+) -3

    -1

Signed Unsigned
    2 
+)  5

     7

Some Arithmetic Operations (2 Operands)
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Carnegie Mellon

• Unary Instructions (one operand)

Format Computation

incq dest Dest = Dest + 1
decq dest Dest = Dest - 1
negq dest Dest = -Dest
notq dest Dest = ~Dest

Some Arithmetic Operations (1 Operand)
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Carnegie Mellon

• Unary Instructions (one operand)

Format Computation

incq dest Dest = Dest + 1
decq dest Dest = Dest - 1
negq dest Dest = -Dest
notq dest Dest = ~Dest

Some Arithmetic Operations (1 Operand)

Questions?
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Carnegie Mellon

Today: Compute and Control Instructions
• Arithmetic & logical operations

• Control: Condition codes

• Conditional branches (if… else…)

• Loops (for, while)

• Switch Statements (case… switch…)



Three Basic Programming Constructs
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Subtask 2

Sequential
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a = x + y; 
y = a - c; 
…
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if (x > y) r = x - y; 
else r = y - x;

a = x + y; 
y = a - c; 
…
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Subtask 2
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Test 
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True False Test 
Condition
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True

False

Sequential Conditional Iterative

16

if (x > y) r = x - y; 
else r = y - x;

while (x > 0) { 
  x—-; 
}

a = x + y; 
y = a - c; 
…
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if (x > y) r = x - y; 
else r = y - x;
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• Both conditional and iterative 
programming requires altering 
the sequence of instructions 
(control flow)

if (x > y) r = x - y; 
else r = y - x;
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programming requires altering 
the sequence of instructions 
(control flow)

• We need a set of control 
instructions to do so

if (x > y) r = x - y; 
else r = y - x;



Three Basic Programming Constructs

Subtask 1 Subtask 2

Test 
Condition

True False

Conditional

17

• Both conditional and iterative 
programming requires altering 
the sequence of instructions 
(control flow)

• We need a set of control 
instructions to do so

• Two fundamental questions:

• How to test condition and how to 

represent test results? 
• How to alter control flow according 

to the test results? if (x > y) r = x - y; 
else r = y - x;
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Condition Codes Hold Test Results
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Register 
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Assembly 
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of a Computer ALU
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• Sometimes also called: Status Register, Flag Register
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CPU

Condition Codes Hold Test Results

PC
Register 

File
Memory

Code 
Data 
Stack 
Heap

Addresses

Data

InstructionsCondition 
Codes

Assembly 
Programmer’s 
Perspective 

of a Computer ALU

• Condition Codes

• Hold the status of most recent test 
• 4 common condition codes in x86-64 
• A set of special registers (more often: bits in one single register) 
• Sometimes also called: Status Register, Flag Register

CF ZF SF OF

CF  Carry Flag (for unsigned)

ZF  Zero Flag

SF  Sign Flag

OF  Overflow Flag (for signed)
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Carnegie Mellon

Explicit Set Condition Codes: Compare
cmpq Src2, Src1
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Explicit Set Condition Codes: Compare

• Explicit Setting by Compare Instruction
• cmpq b,a like computing a-b, and sets condition codes accordingly

cmpq Src2, Src1

0

CF

0

ZF

0

SF

0

OF

cmpq 0xFF, 0x80 
(assuming 8-bit word size here)

11111111 10000000
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Explicit Set Condition Codes: Compare

• Explicit Setting by Compare Instruction
• cmpq b,a like computing a-b, and sets condition codes accordingly
• CF (Carry Flag): Treat a and b as unsigned value, set CF if a-b 

generates a borrow out of the most significant bit (i.e., a < b). 
Effectively detecting overflow for unsigned
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0
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(assuming 8-bit word size here)

11111111 10000000
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generates a borrow out of the most significant bit (i.e., a < b). 
Effectively detecting overflow for unsigned

• ZF (Zero Flag): set if a == b (i.e., bit patterns are the same)
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(assuming 8-bit word size here)
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Explicit Set Condition Codes: Compare

• Explicit Setting by Compare Instruction
• cmpq b,a like computing a-b, and sets condition codes accordingly
• CF (Carry Flag): Treat a and b as unsigned value, set CF if a-b 

generates a borrow out of the most significant bit (i.e., a < b). 
Effectively detecting overflow for unsigned
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• SF (Sign Flag): set if (a-b)<0 (i.e., most significant bit is 1)
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Explicit Set Condition Codes: Compare

• Explicit Setting by Compare Instruction
• cmpq b,a like computing a-b, and sets condition codes accordingly
• CF (Carry Flag): Treat a and b as unsigned value, set CF if a-b 

generates a borrow out of the most significant bit (i.e., a < b). 
Effectively detecting overflow for unsigned

• ZF (Zero Flag): set if a == b (i.e., bit patterns are the same)
• SF (Sign Flag): set if (a-b)<0 (i.e., most significant bit is 1)
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(assuming 8-bit word size here)

11111111 10000000



19

Carnegie Mellon

Explicit Set Condition Codes: Compare

• Explicit Setting by Compare Instruction
• cmpq b,a like computing a-b, and sets condition codes accordingly
• CF (Carry Flag): Treat a and b as unsigned value, set CF if a-b 

generates a borrow out of the most significant bit (i.e., a < b). 
Effectively detecting overflow for unsigned

• ZF (Zero Flag): set if a == b (i.e., bit patterns are the same)
• SF (Sign Flag): set if (a-b)<0 (i.e., most significant bit is 1)
• OF (Overflow Flag) set if a-b overflows (treat a and b as signed) 
(a>0 && b<0 && (a-b)<0) || (a<0 && b>0 && (a-b)>0)

cmpq Src2, Src1

0

CF

0

ZF

0

SF

0

OF

1 1cmpq 0xFF, 0x80 
(assuming 8-bit word size here)

11111111 10000000
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Explicit Set Condition Codes: Test

• Explicit Setting by Test Instruction

• test b,a like computing a&b, but instead of setting the result, it sets 

condition codes 

• ZF (Zero Flag): set if a & b == 0 
• SF (Sign Flag): set if a & b < 0 
• OF and CF are always set to 0

testq Src2, Src1
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Implicit Set Condition Codes
addq Src, Dest
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Implicit Set Condition Codes

• Condition Codes could also be implicitly set by arithmetic 
operations (think of it as side effect)

addq Src, Dest
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Implicit Set Condition Codes

• Condition Codes could also be implicitly set by arithmetic 
operations (think of it as side effect)

• Assume Src is a, Dest is b, addition result is t = a + b (after truncation)
• CF set if carry out from most significant bit (unsigned overflow)
• ZF set if t == 0

addq Src, Dest
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Implicit Set Condition Codes

• Condition Codes could also be implicitly set by arithmetic 
operations (think of it as side effect)

• Assume Src is a, Dest is b, addition result is t = a + b (after truncation)
• CF set if carry out from most significant bit (unsigned overflow)
• ZF set if t == 0
• SF set if t < 0 (as signed, i.e., MSB is 1)

addq Src, Dest
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Implicit Set Condition Codes

• Condition Codes could also be implicitly set by arithmetic 
operations (think of it as side effect)

• Assume Src is a, Dest is b, addition result is t = a + b (after truncation)
• CF set if carry out from most significant bit (unsigned overflow)
• ZF set if t == 0
• SF set if t < 0 (as signed, i.e., MSB is 1)
• OF set if signed overflow  
(a>0 && b>0 && t<0) || (a<0 && b<0 && t>=0)

addq Src, Dest
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Today: Compute and Control Instructions
• Arithmetic & logical operations

• Control: Condition codes

• Conditional branches (if… else…)

• Loops (for, while)

• Switch Statements (case… switch…)
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Conditional Branch Example
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Conditional Branch Example

long absdiff 
  (long x, long y) 
{ 
  long result; 
  if (x > y) 
    result = x-y; 
  else 
    result = y-x; 
  return result; 
}
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Conditional Branch Example

long absdiff 
  (long x, long y) 
{ 
  long result; 
  if (x > y) 
    result = x-y; 
  else 
    result = y-x; 
  return result; 
}

absdiff: 
   cmpq    %rsi,%rdi # x:y 
   jle     .L4 
   movq    %rdi,%rax 
   subq    %rsi,%rax 
   ret 
.L4:       # x <= y 
   movq    %rsi,%rax 
   subq    %rdi,%rax 
   ret

gcc –Og -S –fno-if-conversion control.c
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Conditional Branch Example

long absdiff 
  (long x, long y) 
{ 
  long result; 
  if (x > y) 
    result = x-y; 
  else 
    result = y-x; 
  return result; 
}

absdiff: 
   cmpq    %rsi,%rdi # x:y 
   jle     .L4 
   movq    %rdi,%rax 
   subq    %rsi,%rax 
   ret 
.L4:       # x <= y 
   movq    %rsi,%rax 
   subq    %rdi,%rax 
   ret

gcc –Og -S –fno-if-conversion control.c

Register Use(s)

%rdi x

%rsi y

%rax Return value
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Conditional Branch Example

long absdiff 
  (long x, long y) 
{ 
  long result; 
  if (x > y) 
    result = x-y; 
  else 
    result = y-x; 
  return result; 
}

absdiff: 
   cmpq    %rsi,%rdi # x:y 
   jle     .L4 
   movq    %rdi,%rax 
   subq    %rsi,%rax 
   ret 
.L4:       # x <= y 
   movq    %rsi,%rax 
   subq    %rdi,%rax 
   ret

gcc –Og -S –fno-if-conversion control.c

Labels are symbolic names used 
to refer to instruction addresses.

Register Use(s)

%rdi x

%rsi y

%rax Return value


