
CSC 252: Computer Organization 
 Spring 2018: Lecture 6 

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Action Items:
• Assignment 2 is out

Carnegie Mellon

2

Announcement
• Programming Assignment 2 is out

• Due on Feb 16, 11:59 PM
• You may still have 3 slip days…

• Read the instructions before getting started!!!

• You get 1/4 point off for every wrong answer
• Maxed out at 10

due

Carnegie Mellon

2

Announcement
• Programming Assignment 2 is out

• Due on Feb 16, 11:59 PM
• You may still have 3 slip days…

• Read the instructions before getting started!!!

• You get 1/4 point off for every wrong answer
• Maxed out at 10

3

How Does Pointer Work in C???
char a = 4;
char b = 3;
char *c;
c = &a;
b += (*c);

3

How Does Pointer Work in C???
char a = 4;
char b = 3;
char *c;
c = &a;
b += (*c);

Memory
Content

Memory
Address

0x10
0x11

0x16

…

…

3

How Does Pointer Work in C???
char a = 4;
char b = 3;
char *c;
c = &a;
b += (*c);

Memory
Content

Memory
Address

0x10
0x11

0x16

…

…

3

How Does Pointer Work in C???
char a = 4;
char b = 3;
char *c;
c = &a;
b += (*c);

Memory
Content

C
Variable

a

Memory
Address

0x10
0x11

0x16

…

…

4

3

How Does Pointer Work in C???
char a = 4;
char b = 3;
char *c;
c = &a;
b += (*c);

Memory
Content

C
Variable

a

Memory
Address

0x10
0x11

0x16

…

…

4

3

How Does Pointer Work in C???
char a = 4;
char b = 3;
char *c;
c = &a;
b += (*c);

Memory
Content

C
Variable

a
b

Memory
Address

0x10
0x11

0x16

…

…

4

3

3

How Does Pointer Work in C???
char a = 4;
char b = 3;
char *c;
c = &a;
b += (*c);

Memory
Content

C
Variable

a
b

Memory
Address

0x10
0x11

0x16

…

…

4

3

3

How Does Pointer Work in C???
char a = 4;
char b = 3;
char *c;
c = &a;
b += (*c);

Memory
Content

C
Variable

a
b

• The content of a pointer
variable is memory address.

Memory
Address

0x10
0x11

0x16

…

…

4

3

3

How Does Pointer Work in C???
char a = 4;
char b = 3;
char *c;
c = &a;
b += (*c);

Memory
Content

C
Variable

a
b

c

• The content of a pointer
variable is memory address.

Memory
Address

0x10
0x11

0x16

…

…

4

3

random

3

How Does Pointer Work in C???
char a = 4;
char b = 3;
char *c;
c = &a;
b += (*c);

Memory
Content

C
Variable

a
b

c

• The content of a pointer
variable is memory address.

Memory
Address

0x10
0x11

0x16

…

…

4

3

random

3

How Does Pointer Work in C???
char a = 4;
char b = 3;
char *c;
c = &a;
b += (*c);

Memory
Content

C
Variable

a
b

c

• The content of a pointer
variable is memory address.

• The ‘&’ operator (address-of
operator) returns the memory
address of a variable.

Memory
Address

0x10
0x11

0x16

…

…

4

3

random

3

How Does Pointer Work in C???
char a = 4;
char b = 3;
char *c;
c = &a;
b += (*c);

Memory
Content

C
Variable

a
b

c

• The content of a pointer
variable is memory address.

• The ‘&’ operator (address-of
operator) returns the memory
address of a variable.

Memory
Address

0x10
0x11

0x16

…

…

4

3

random0x10

3

How Does Pointer Work in C???
char a = 4;
char b = 3;
char *c;
c = &a;
b += (*c);

Memory
Content

C
Variable

a
b

c

• The content of a pointer
variable is memory address.

• The ‘&’ operator (address-of
operator) returns the memory
address of a variable.

Memory
Address

0x10
0x11

0x16

…

…

4

3

random0x10

3

How Does Pointer Work in C???
char a = 4;
char b = 3;
char *c;
c = &a;
b += (*c);

Memory
Content

C
Variable

a
b

c

• The content of a pointer
variable is memory address.

• The ‘&’ operator (address-of
operator) returns the memory
address of a variable.

• The ‘*’ operator returns the
content stored at the memory
location pointed by the pointer
variable (dereferencing)

Memory
Address

0x10
0x11

0x16

…

…

4

3

random0x10

3

How Does Pointer Work in C???
char a = 4;
char b = 3;
char *c;
c = &a;
b += (*c);

Memory
Content

C
Variable

a
b

c

• The content of a pointer
variable is memory address.

• The ‘&’ operator (address-of
operator) returns the memory
address of a variable.

• The ‘*’ operator returns the
content stored at the memory
location pointed by the pointer
variable (dereferencing)

Memory
Address

0x10
0x11

0x16

…

…

4

37

random0x10

4

Memory Addressing Modes
•An addressing mode specifies:

• how to calculate the effective memory address of an operand
• by using information held in registers and/or constants

4

Memory Addressing Modes
•An addressing mode specifies:

• how to calculate the effective memory address of an operand
• by using information held in registers and/or constants

•Normal: (R)

• Memory address: content of Register R (Reg[R])
• Essentially pointer dereferencing in C 
 
movq (%rcx),%rax; // address = %rcx

4

Memory Addressing Modes
•An addressing mode specifies:

• how to calculate the effective memory address of an operand
• by using information held in registers and/or constants

•Normal: (R)

• Memory address: content of Register R (Reg[R])
• Essentially pointer dereferencing in C 
 
movq (%rcx),%rax; // address = %rcx

•Displacement: D(R)

• Memory address: Reg[R]+D
• Register R specifies start of memory region
• Constant displacement D specifies offset 
 
movq 8(%rbp),%rdx; // address = %rbp + 8

5

Complete Memory Addressing Modes

•Most General Form: D(Rb,Ri,S)
• Memory address: Reg[Rb] + S * Reg[Ri] + D
• E.g., 8(%eax, %ebx, 4); // address = %eax + 4 * %ebx + 8
• D: 	 Constant “displacement”
• Rb: 	 Base register: Any of 16 integer registers
• Ri:	 Index register: Any, except for %rsp
• S: 	 Scale: 1, 2, 4, or 8

5

Complete Memory Addressing Modes

•Most General Form: D(Rb,Ri,S)
• Memory address: Reg[Rb] + S * Reg[Ri] + D
• E.g., 8(%eax, %ebx, 4); // address = %eax + 4 * %ebx + 8
• D: 	 Constant “displacement”
• Rb: 	 Base register: Any of 16 integer registers
• Ri:	 Index register: Any, except for %rsp
• S: 	 Scale: 1, 2, 4, or 8

•Special Cases
	 	 (Rb,Ri)	 Reg[Rb]+Reg[Ri]
	 	 D(Rb,Ri)	 Reg[Rb]+Reg[Ri]+D
	 	 (Rb,Ri,S)	 Reg[Rb]+S*Reg[Ri]

6

Expression Address Computation Address

0x8(%rdx)

(%rdx,%rcx)

(%rdx,%rcx,4)

0x80(,%rdx,2)

Carnegie Mellon

Address Computation Examples

%rdx 0xf000

%rcx 0x0100

6

Expression Address Computation Address

0x8(%rdx)

(%rdx,%rcx)

(%rdx,%rcx,4)

0x80(,%rdx,2)

Carnegie Mellon

Address Computation Examples

%rdx 0xf000

%rcx 0x0100

0xf000 + 0x8 0xf008

6

Expression Address Computation Address

0x8(%rdx)

(%rdx,%rcx)

(%rdx,%rcx,4)

0x80(,%rdx,2)

Carnegie Mellon

Address Computation Examples

%rdx 0xf000

%rcx 0x0100

0xf000 + 0x8

0xf000 + 0x100

0xf008

0xf100

6

Expression Address Computation Address

0x8(%rdx)

(%rdx,%rcx)

(%rdx,%rcx,4)

0x80(,%rdx,2)

Carnegie Mellon

Address Computation Examples

%rdx 0xf000

%rcx 0x0100

0xf000 + 0x8

0xf000 + 0x100

0xf000 + 4*0x100

0xf008

0xf100

0xf400

6

Expression Address Computation Address

0x8(%rdx)

(%rdx,%rcx)

(%rdx,%rcx,4)

0x80(,%rdx,2)

Carnegie Mellon

Address Computation Examples

%rdx 0xf000

%rcx 0x0100

0xf000 + 0x8

0xf000 + 0x100

0xf000 + 4*0x100

2*0xf000 + 0x80

0xf008

0xf100

0xf400

0x1e080

7

Carnegie Mellon

Address Computation Instruction

leaq 4(%rsi,%rdi,2), %rax

7

Carnegie Mellon

Address Computation Instruction

leaq 4(%rsi,%rdi,2), %rax

%rax = %rsi + %rdi * 2 + 4

7

Carnegie Mellon

Address Computation Instruction

• leaq Src, Dst

• Src is address mode expression
• Set Dst to address denoted by expression
• No actual memory reference is made

leaq 4(%rsi,%rdi,2), %rax

%rax = %rsi + %rdi * 2 + 4

7

Carnegie Mellon

Address Computation Instruction

• leaq Src, Dst

• Src is address mode expression
• Set Dst to address denoted by expression
• No actual memory reference is made

• Uses

• Computing addresses without a memory reference

• E.g., translation of p = &x[i];

leaq 4(%rsi,%rdi,2), %rax

%rax = %rsi + %rdi * 2 + 4

8

Carnegie Mellon

Address Computation Instruction
• Interesting Use

• Computing arithmetic expressions of the form x + k*y
• Faster arithmetic computation

8

Carnegie Mellon

Address Computation Instruction
• Interesting Use

• Computing arithmetic expressions of the form x + k*y
• Faster arithmetic computation

long m12(long x)
{
 return x*12;
}

8

Carnegie Mellon

Address Computation Instruction
• Interesting Use

• Computing arithmetic expressions of the form x + k*y
• Faster arithmetic computation

long m12(long x)
{
 return x*12;
}

leaq (%rdi,%rdi,2), %rax # t <- x+x*2
salq $2, %rax # return t<<2

Converted to
ASM by compiler:

9

CPU

Assembly Program Instructions

PC
Register

File
Memory

Code
Data
Stack
Heap

Addresses

Data

InstructionsCondition
Codes

Assembly
Programmer’s
Perspective

of a Computer ALU

9

CPU

Assembly Program Instructions

PC
Register

File
Memory

Code
Data
Stack
Heap

Addresses

Data

InstructionsCondition
Codes

Assembly
Programmer’s
Perspective

of a Computer ALU

• Data Movement Instruction: Transfer data between memory and register

• movq %eax, (%ebx)

9

CPU

Assembly Program Instructions

PC
Register

File
Memory

Code
Data
Stack
Heap

Addresses

Data

InstructionsCondition
Codes

Assembly
Programmer’s
Perspective

of a Computer ALU

• Data Movement Instruction: Transfer data between memory and register

• movq %eax, (%ebx)

• Compute Instruction: Perform arithmetics on register or memory data

•addq %eax, %ebx
• C constructs: +, -, >>, etc.

9

CPU

Assembly Program Instructions

PC
Register

File
Memory

Code
Data
Stack
Heap

Addresses

Data

InstructionsCondition
Codes

Assembly
Programmer’s
Perspective

of a Computer ALU

• Data Movement Instruction: Transfer data between memory and register

• movq %eax, (%ebx)

• Compute Instruction: Perform arithmetics on register or memory data

•addq %eax, %ebx
• C constructs: +, -, >>, etc.

• Control Instruction: Alter the sequence of instructions (by changing PC)

• jmp, call
• C constructs: if-else, do-while, function call, etc.

10

Carnegie Mellon

Today: Compute and Control Instructions
• Arithmetic & logical operations

• Control: Condition codes

• Conditional branches (if… else…)

• Loops (for, while)

• Switch Statements (case… switch…)

11

Carnegie Mellon

Some Arithmetic Operations (2 Operands)
Format Computation Notes

addq src, dest Dest = Dest + Src

11

Carnegie Mellon

Some Arithmetic Operations (2 Operands)
Format Computation Notes

addq src, dest Dest = Dest + Src

addq %rax, %rbx

11

Carnegie Mellon

Some Arithmetic Operations (2 Operands)
Format Computation Notes

addq src, dest Dest = Dest + Src

addq %rax, %rbx

• • •

• • •

u

v+

• • •u + v

• • •TAddw(u , v)

11

Carnegie Mellon

Some Arithmetic Operations (2 Operands)
Format Computation Notes

addq src, dest Dest = Dest + Src

addq %rax, %rbx
%rbx = %rax + %rbx

Truncation if overflow,
set carry bit (more later…)

• • •

• • •

u

v+

• • •u + v

• • •TAddw(u , v)

12

Carnegie Mellon

Some Arithmetic Operations (2 Operands)
Format Computation Notes

addq src, dest Dest = Dest + Src
subq src, dest Dest = Dest - Src
imulq src, dest Dest = Dest * Src
salq src, dest Dest = Dest << Src Also called shlq

sarq src, dest Dest = Dest >> Src Arithmetic shift

shrq src, dest Dest = Dest >> Src Logical shift

xorq src, dest Dest = Dest ^ Src
andq src, dest Dest = Dest & Src
orq src, dest Dest = Dest | Src

13

Carnegie Mellon

• No distinction between signed and unsigned (why?)

• Bit level behaviors for signed and unsigned arithmetic are

exactly the same — assuming truncation

Some Arithmetic Operations (2 Operands)

13

Carnegie Mellon

• No distinction between signed and unsigned (why?)

• Bit level behaviors for signed and unsigned arithmetic are

exactly the same — assuming truncation

long signed_add
(long x, long y)
{
 long res = x + y;
 return res;
}

#x in %rdx, y in %rax
addq %rdx, %rax

Some Arithmetic Operations (2 Operands)

13

Carnegie Mellon

• No distinction between signed and unsigned (why?)

• Bit level behaviors for signed and unsigned arithmetic are

exactly the same — assuming truncation

long signed_add
(long x, long y)
{
 long res = x + y;
 return res;
}

#x in %rdx, y in %rax
addq %rdx, %rax

long unsigned_add
(unsigned long x, unsigned long y)
{
 unsigned long res = x + y;
 return res;
}

#x in %rdx, y in %rax
addq %rdx, %rax

Some Arithmetic Operations (2 Operands)

13

Carnegie Mellon

• No distinction between signed and unsigned (why?)

• Bit level behaviors for signed and unsigned arithmetic are

exactly the same — assuming truncation

long signed_add
(long x, long y)
{
 long res = x + y;
 return res;
}

#x in %rdx, y in %rax
addq %rdx, %rax

long unsigned_add
(unsigned long x, unsigned long y)
{
 unsigned long res = x + y;
 return res;
}

#x in %rdx, y in %rax
addq %rdx, %rax

 010
+) 101

 111

Bit-level

Some Arithmetic Operations (2 Operands)

13

Carnegie Mellon

• No distinction between signed and unsigned (why?)

• Bit level behaviors for signed and unsigned arithmetic are

exactly the same — assuming truncation

long signed_add
(long x, long y)
{
 long res = x + y;
 return res;
}

#x in %rdx, y in %rax
addq %rdx, %rax

long unsigned_add
(unsigned long x, unsigned long y)
{
 unsigned long res = x + y;
 return res;
}

#x in %rdx, y in %rax
addq %rdx, %rax

 010
+) 101

 111

Bit-level
 2
+) -3

 -1

Signed

Some Arithmetic Operations (2 Operands)

13

Carnegie Mellon

• No distinction between signed and unsigned (why?)

• Bit level behaviors for signed and unsigned arithmetic are

exactly the same — assuming truncation

long signed_add
(long x, long y)
{
 long res = x + y;
 return res;
}

#x in %rdx, y in %rax
addq %rdx, %rax

long unsigned_add
(unsigned long x, unsigned long y)
{
 unsigned long res = x + y;
 return res;
}

#x in %rdx, y in %rax
addq %rdx, %rax

 010
+) 101

 111

Bit-level
 2
+) -3

 -1

Signed Unsigned
 2
+) 5

 7

Some Arithmetic Operations (2 Operands)

14

Carnegie Mellon

• Unary Instructions (one operand)

Format Computation

incq dest Dest = Dest + 1
decq dest Dest = Dest - 1
negq dest Dest = -Dest
notq dest Dest = ~Dest

Some Arithmetic Operations (1 Operand)

14

Carnegie Mellon

• Unary Instructions (one operand)

Format Computation

incq dest Dest = Dest + 1
decq dest Dest = Dest - 1
negq dest Dest = -Dest
notq dest Dest = ~Dest

Some Arithmetic Operations (1 Operand)

Questions?

15

Carnegie Mellon

Today: Compute and Control Instructions
• Arithmetic & logical operations

• Control: Condition codes

• Conditional branches (if… else…)

• Loops (for, while)

• Switch Statements (case… switch…)

Three Basic Programming Constructs

16

Three Basic Programming Constructs

Subtask 1

Subtask 2

Sequential

16

a = x + y;
y = a - c;
…

Three Basic Programming Constructs

Subtask 1

Subtask 2
Subtask 1 Subtask 2

Test
Condition

True False

Sequential Conditional

16

if (x > y) r = x - y;
else r = y - x;

a = x + y;
y = a - c;
…

Three Basic Programming Constructs

Subtask 1

Subtask 2
Subtask 1 Subtask 2

Test
Condition

True False Test
Condition

Subtask

True

False

Sequential Conditional Iterative

16

if (x > y) r = x - y;
else r = y - x;

while (x > 0) {
 x—-;
}

a = x + y;
y = a - c;
…

Three Basic Programming Constructs

Subtask 1 Subtask 2

Test
Condition

True False

Conditional

17

if (x > y) r = x - y;
else r = y - x;

Three Basic Programming Constructs

Subtask 1 Subtask 2

Test
Condition

True False

Conditional

17

• Both conditional and iterative
programming requires altering
the sequence of instructions
(control flow)

if (x > y) r = x - y;
else r = y - x;

Three Basic Programming Constructs

Subtask 1 Subtask 2

Test
Condition

True False

Conditional

17

• Both conditional and iterative
programming requires altering
the sequence of instructions
(control flow)

• We need a set of control
instructions to do so

if (x > y) r = x - y;
else r = y - x;

Three Basic Programming Constructs

Subtask 1 Subtask 2

Test
Condition

True False

Conditional

17

• Both conditional and iterative
programming requires altering
the sequence of instructions
(control flow)

• We need a set of control
instructions to do so

• Two fundamental questions:

• How to test condition and how to

represent test results?
• How to alter control flow according

to the test results? if (x > y) r = x - y;
else r = y - x;

18

CPU

Condition Codes Hold Test Results

PC
Register

File
Memory

Code
Data
Stack
Heap

Addresses

Data

InstructionsCondition
Codes

Assembly
Programmer’s
Perspective

of a Computer ALU

18

CPU

Condition Codes Hold Test Results

PC
Register

File
Memory

Code
Data
Stack
Heap

Addresses

Data

InstructionsCondition
Codes

Assembly
Programmer’s
Perspective

of a Computer ALU

• Condition Codes

• Hold the status of most recent test
• 4 common condition codes in x86-64
• A set of special registers (more often: bits in one single register)
• Sometimes also called: Status Register, Flag Register

18

CPU

Condition Codes Hold Test Results

PC
Register

File
Memory

Code
Data
Stack
Heap

Addresses

Data

InstructionsCondition
Codes

Assembly
Programmer’s
Perspective

of a Computer ALU

• Condition Codes

• Hold the status of most recent test
• 4 common condition codes in x86-64
• A set of special registers (more often: bits in one single register)
• Sometimes also called: Status Register, Flag Register

CF ZF SF OF

18

CPU

Condition Codes Hold Test Results

PC
Register

File
Memory

Code
Data
Stack
Heap

Addresses

Data

InstructionsCondition
Codes

Assembly
Programmer’s
Perspective

of a Computer ALU

• Condition Codes

• Hold the status of most recent test
• 4 common condition codes in x86-64
• A set of special registers (more often: bits in one single register)
• Sometimes also called: Status Register, Flag Register

CF ZF SF OF

CF Carry Flag (for unsigned)

ZF Zero Flag

SF Sign Flag

OF Overflow Flag (for signed)

19

Carnegie Mellon

Explicit Set Condition Codes: Compare
cmpq Src2, Src1

19

Carnegie Mellon

Explicit Set Condition Codes: Compare

• Explicit Setting by Compare Instruction

cmpq Src2, Src1

19

Carnegie Mellon

Explicit Set Condition Codes: Compare

• Explicit Setting by Compare Instruction
• cmpq b,a like computing a-b, and sets condition codes accordingly

cmpq Src2, Src1

19

Carnegie Mellon

Explicit Set Condition Codes: Compare

• Explicit Setting by Compare Instruction
• cmpq b,a like computing a-b, and sets condition codes accordingly

cmpq Src2, Src1

0

CF

0

ZF

0

SF

0

OF

cmpq 0xFF, 0x80
(assuming 8-bit word size here)

11111111 10000000

19

Carnegie Mellon

Explicit Set Condition Codes: Compare

• Explicit Setting by Compare Instruction
• cmpq b,a like computing a-b, and sets condition codes accordingly
• CF (Carry Flag): Treat a and b as unsigned value, set CF if a-b

generates a borrow out of the most significant bit (i.e., a < b).
Effectively detecting overflow for unsigned

cmpq Src2, Src1

0

CF

0

ZF

0

SF

0

OF

cmpq 0xFF, 0x80
(assuming 8-bit word size here)

11111111 10000000

19

Carnegie Mellon

Explicit Set Condition Codes: Compare

• Explicit Setting by Compare Instruction
• cmpq b,a like computing a-b, and sets condition codes accordingly
• CF (Carry Flag): Treat a and b as unsigned value, set CF if a-b

generates a borrow out of the most significant bit (i.e., a < b).
Effectively detecting overflow for unsigned

cmpq Src2, Src1

0

CF

0

ZF

0

SF

0

OF

1cmpq 0xFF, 0x80
(assuming 8-bit word size here)

11111111 10000000

19

Carnegie Mellon

Explicit Set Condition Codes: Compare

• Explicit Setting by Compare Instruction
• cmpq b,a like computing a-b, and sets condition codes accordingly
• CF (Carry Flag): Treat a and b as unsigned value, set CF if a-b

generates a borrow out of the most significant bit (i.e., a < b).
Effectively detecting overflow for unsigned

• ZF (Zero Flag): set if a == b (i.e., bit patterns are the same)

cmpq Src2, Src1

0

CF

0

ZF

0

SF

0

OF

1cmpq 0xFF, 0x80
(assuming 8-bit word size here)

11111111 10000000

19

Carnegie Mellon

Explicit Set Condition Codes: Compare

• Explicit Setting by Compare Instruction
• cmpq b,a like computing a-b, and sets condition codes accordingly
• CF (Carry Flag): Treat a and b as unsigned value, set CF if a-b

generates a borrow out of the most significant bit (i.e., a < b).
Effectively detecting overflow for unsigned

• ZF (Zero Flag): set if a == b (i.e., bit patterns are the same)
• SF (Sign Flag): set if (a-b)<0 (i.e., most significant bit is 1)

cmpq Src2, Src1

0

CF

0

ZF

0

SF

0

OF

1cmpq 0xFF, 0x80
(assuming 8-bit word size here)

11111111 10000000

19

Carnegie Mellon

Explicit Set Condition Codes: Compare

• Explicit Setting by Compare Instruction
• cmpq b,a like computing a-b, and sets condition codes accordingly
• CF (Carry Flag): Treat a and b as unsigned value, set CF if a-b

generates a borrow out of the most significant bit (i.e., a < b).
Effectively detecting overflow for unsigned

• ZF (Zero Flag): set if a == b (i.e., bit patterns are the same)
• SF (Sign Flag): set if (a-b)<0 (i.e., most significant bit is 1)

cmpq Src2, Src1

0

CF

0

ZF

0

SF

0

OF

1 1cmpq 0xFF, 0x80
(assuming 8-bit word size here)

11111111 10000000

19

Carnegie Mellon

Explicit Set Condition Codes: Compare

• Explicit Setting by Compare Instruction
• cmpq b,a like computing a-b, and sets condition codes accordingly
• CF (Carry Flag): Treat a and b as unsigned value, set CF if a-b

generates a borrow out of the most significant bit (i.e., a < b).
Effectively detecting overflow for unsigned

• ZF (Zero Flag): set if a == b (i.e., bit patterns are the same)
• SF (Sign Flag): set if (a-b)<0 (i.e., most significant bit is 1)
• OF (Overflow Flag) set if a-b overflows (treat a and b as signed) 
(a>0 && b<0 && (a-b)<0) || (a<0 && b>0 && (a-b)>0)

cmpq Src2, Src1

0

CF

0

ZF

0

SF

0

OF

1 1cmpq 0xFF, 0x80
(assuming 8-bit word size here)

11111111 10000000

20

Carnegie Mellon

Explicit Set Condition Codes: Test

• Explicit Setting by Test Instruction

• test b,a like computing a&b, but instead of setting the result, it sets

condition codes

• ZF (Zero Flag): set if a & b == 0
• SF (Sign Flag): set if a & b < 0
• OF and CF are always set to 0

testq Src2, Src1

21

Carnegie Mellon

Implicit Set Condition Codes
addq Src, Dest

21

Carnegie Mellon

Implicit Set Condition Codes

• Condition Codes could also be implicitly set by arithmetic
operations (think of it as side effect)

addq Src, Dest

21

Carnegie Mellon

Implicit Set Condition Codes

• Condition Codes could also be implicitly set by arithmetic
operations (think of it as side effect)

• Assume Src is a, Dest is b, addition result is t = a + b (after truncation)

addq Src, Dest

21

Carnegie Mellon

Implicit Set Condition Codes

• Condition Codes could also be implicitly set by arithmetic
operations (think of it as side effect)

• Assume Src is a, Dest is b, addition result is t = a + b (after truncation)
• CF set if carry out from most significant bit (unsigned overflow)

addq Src, Dest

21

Carnegie Mellon

Implicit Set Condition Codes

• Condition Codes could also be implicitly set by arithmetic
operations (think of it as side effect)

• Assume Src is a, Dest is b, addition result is t = a + b (after truncation)
• CF set if carry out from most significant bit (unsigned overflow)
• ZF set if t == 0

addq Src, Dest

21

Carnegie Mellon

Implicit Set Condition Codes

• Condition Codes could also be implicitly set by arithmetic
operations (think of it as side effect)

• Assume Src is a, Dest is b, addition result is t = a + b (after truncation)
• CF set if carry out from most significant bit (unsigned overflow)
• ZF set if t == 0
• SF set if t < 0 (as signed, i.e., MSB is 1)

addq Src, Dest

21

Carnegie Mellon

Implicit Set Condition Codes

• Condition Codes could also be implicitly set by arithmetic
operations (think of it as side effect)

• Assume Src is a, Dest is b, addition result is t = a + b (after truncation)
• CF set if carry out from most significant bit (unsigned overflow)
• ZF set if t == 0
• SF set if t < 0 (as signed, i.e., MSB is 1)
• OF set if signed overflow  
(a>0 && b>0 && t<0) || (a<0 && b<0 && t>=0)

addq Src, Dest

22

Carnegie Mellon

Today: Compute and Control Instructions
• Arithmetic & logical operations

• Control: Condition codes

• Conditional branches (if… else…)

• Loops (for, while)

• Switch Statements (case… switch…)

23

Carnegie Mellon

Conditional Branch Example

23

Carnegie Mellon

Conditional Branch Example

long absdiff
 (long x, long y)
{
 long result;
 if (x > y)
 result = x-y;
 else
 result = y-x;
 return result;
}

23

Carnegie Mellon

Conditional Branch Example

long absdiff
 (long x, long y)
{
 long result;
 if (x > y)
 result = x-y;
 else
 result = y-x;
 return result;
}

absdiff:
 cmpq %rsi,%rdi # x:y
 jle .L4
 movq %rdi,%rax
 subq %rsi,%rax
 ret
.L4: # x <= y
 movq %rsi,%rax
 subq %rdi,%rax
 ret

gcc –Og -S –fno-if-conversion control.c

23

Carnegie Mellon

Conditional Branch Example

long absdiff
 (long x, long y)
{
 long result;
 if (x > y)
 result = x-y;
 else
 result = y-x;
 return result;
}

absdiff:
 cmpq %rsi,%rdi # x:y
 jle .L4
 movq %rdi,%rax
 subq %rsi,%rax
 ret
.L4: # x <= y
 movq %rsi,%rax
 subq %rdi,%rax
 ret

gcc –Og -S –fno-if-conversion control.c

Register Use(s)

%rdi x

%rsi y

%rax Return value

23

Carnegie Mellon

Conditional Branch Example

long absdiff
 (long x, long y)
{
 long result;
 if (x > y)
 result = x-y;
 else
 result = y-x;
 return result;
}

absdiff:
 cmpq %rsi,%rdi # x:y
 jle .L4
 movq %rdi,%rax
 subq %rsi,%rax
 ret
.L4: # x <= y
 movq %rsi,%rax
 subq %rdi,%rax
 ret

gcc –Og -S –fno-if-conversion control.c

Labels are symbolic names used
to refer to instruction addresses.

Register Use(s)

%rdi x

%rsi y

%rax Return value

