
CSC 252: Computer Organization 
 Spring 2019: Lecture 11 

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Action Items:
• Assignment 3 is due March 1, midnight

Carnegie Mellon

Announcement
• Programming Assignment 3 is out

• Due on March 1, midnight

2

due

Today

Carnegie Mellon

Y86 Instruction Encoding

3

0 1 2 3 4 5 6 7 8 9Byte

pushq rA A 0 rA F

jXX Dest 7 fn

popq rA B 0 rA F

call Dest 8 0

V

D

D

Dest

Dest

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB

rmmovq rA, D(rB) 4 0 rA rB

mrmovq D(rB), rA 5 0 rA rB

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

Carnegie Mellon

How Does An Assembler Work?

4

Carnegie Mellon

How Does An Assembler Work?

4

rmmovq %rsi,0x41c(%rsp)

addq %rax,%rsi

jmp .L0

ret

<foo>

… …

… …

.L0 irmovq $0xabcd, %rdx

call <foo>

0x100

Carnegie Mellon

How Does An Assembler Work?

4

rmmovq %rsi,0x41c(%rsp)

addq %rax,%rsi

jmp .L0

ret

<foo>

… …

… …

.L0 irmovq $0xabcd, %rdx

call <foo>

0x100

jXX Dest 7 fn

call Dest 8 0

D

Dest

rmmovq rA, D(rB) 4 0 rA rB

OPq rA, rB 6 fn rA rB

Carnegie Mellon

How Does An Assembler Work?

4

rmmovq %rsi,0x41c(%rsp)

addq %rax,%rsi

jmp .L0

ret

<foo>

… …

… …

.L0 irmovq $0xabcd, %rdx

call <foo>

0x100 40 64 1c 04 00 00 00 00 00 00

jXX Dest 7 fn

call Dest 8 0

D

Dest

rmmovq rA, D(rB) 4 0 rA rB

OPq rA, rB 6 fn rA rB

Carnegie Mellon

How Does An Assembler Work?

4

90

rmmovq %rsi,0x41c(%rsp)

addq %rax,%rsi

jmp .L0

ret

<foo>

… …

… …

.L0 irmovq $0xabcd, %rdx

call <foo>

0x100 40 64 1c 04 00 00 00 00 00 00

jXX Dest 7 fn

call Dest 8 0

D

Dest

rmmovq rA, D(rB) 4 0 rA rB

OPq rA, rB 6 fn rA rB

Carnegie Mellon

How Does An Assembler Work?

4

90

rmmovq %rsi,0x41c(%rsp)

addq %rax,%rsi

jmp .L0

ret

<foo>

… …

… …

.L0 irmovq $0xabcd, %rdx

call <foo>

0x100

60 06

40 64 1c 04 00 00 00 00 00 00

jXX Dest 7 fn

call Dest 8 0

D

Dest

rmmovq rA, D(rB) 4 0 rA rB

OPq rA, rB 6 fn rA rB

Carnegie Mellon

How Does An Assembler Work?

4

90

rmmovq %rsi,0x41c(%rsp)

addq %rax,%rsi

jmp .L0

ret

<foo>

… …

… …

.L0 irmovq $0xabcd, %rdx

call <foo>

0x100

60 06

80 06 00 01 00 00 00 00 00 00

40 64 1c 04 00 00 00 00 00 00

jXX Dest 7 fn

call Dest 8 0

D

Dest

rmmovq rA, D(rB) 4 0 rA rB

OPq rA, rB 6 fn rA rB

Carnegie Mellon

How Does An Assembler Work?

4

90

rmmovq %rsi,0x41c(%rsp)

addq %rax,%rsi

jmp .L0

ret

<foo>

… …

… …

.L0 irmovq $0xabcd, %rdx

call <foo>

0x100

60 06

80 06 00 01 00 00 00 00 00 00

70 ????????

40 64 1c 04 00 00 00 00 00 00

jXX Dest 7 fn

call Dest 8 0

D

Dest

rmmovq rA, D(rB) 4 0 rA rB

OPq rA, rB 6 fn rA rB

Carnegie Mellon

How Does An Assembler Work?

4

30 f2 cd ab 00 00 00 00 00 00

90

rmmovq %rsi,0x41c(%rsp)

addq %rax,%rsi

jmp .L0

ret

<foo>

… …

… …

.L0 irmovq $0xabcd, %rdx

call <foo>

0x100

60 06

80 06 00 01 00 00 00 00 00 00

70 ????????

40 64 1c 04 00 00 00 00 00 00

jXX Dest 7 fn

call Dest 8 0

D

Dest

rmmovq rA, D(rB) 4 0 rA rB

OPq rA, rB 6 fn rA rB

Carnegie Mellon

How Does An Assembler Work?

4

30 f2 cd ab 00 00 00 00 00 00

90

rmmovq %rsi,0x41c(%rsp)

addq %rax,%rsi

jmp .L0

ret

<foo>

… …

… …

.L0 irmovq $0xabcd, %rdx

call <foo>

0x100

60 06

80 06 00 01 00 00 00 00 00 00

0x100 + the
lengths of all
instructions
in-between

70 ????????

40 64 1c 04 00 00 00 00 00 00

jXX Dest 7 fn

call Dest 8 0

D

Dest

rmmovq rA, D(rB) 4 0 rA rB

OPq rA, rB 6 fn rA rB

Carnegie Mellon

How Does An Assembler Work?

4

30 f2 cd ab 00 00 00 00 00 00

90

rmmovq %rsi,0x41c(%rsp)

addq %rax,%rsi

jmp .L0

ret

<foo>

… …

… …

.L0 irmovq $0xabcd, %rdx

call <foo>

0x100

60 06

80 06 00 01 00 00 00 00 00 00

0x200

0x100 + the
lengths of all
instructions
in-between

70 ????????

40 64 1c 04 00 00 00 00 00 00

jXX Dest 7 fn

call Dest 8 0

D

Dest

rmmovq rA, D(rB) 4 0 rA rB

OPq rA, rB 6 fn rA rB

Carnegie Mellon

How Does An Assembler Work?

4

30 f2 cd ab 00 00 00 00 00 00

90

rmmovq %rsi,0x41c(%rsp)

addq %rax,%rsi

jmp .L0

ret

<foo>

… …

… …

.L0 irmovq $0xabcd, %rdx

call <foo>

0x100

60 06

80 06 00 01 00 00 00 00 00 00

0x200

0x100 + the
lengths of all
instructions
in-between

70 ????????

40 64 1c 04 00 00 00 00 00 00

00 02 00 00 00 00 00 00

jXX Dest 7 fn

call Dest 8 0

D

Dest

rmmovq rA, D(rB) 4 0 rA rB

OPq rA, rB 6 fn rA rB

Carnegie Mellon

How Does An Assembler Work?
• The assembler is a program that translates assembly code to binary code

• The OS tells the assembler the start address of the code (sort of…)

• Translate the assembly program line by line

• Need to build a “label map” that maps each label to its address

5

30 f2 cd ab 00 00 00 00 00 00

90

rmmovq %rsi,0x41c(%rsp)

addq %rax,%rsi

jmp .L0

ret

<foo>

… …

… …

.L0 irmovq $0xabcd, %rdx

call <foo>

0x100

60 06

80 06 00 01 00 00 00 00 00 00

0x200

0x100 + the
lengths of all
instructions
in-between

70 ????????

40 64 1c 04 00 00 00 00 00 00

00 02 00 00 00 00 00 00

Carnegie Mellon

How Does An Assembler Work?
• What if the ISA encoding uses relative address for jump and call?

6

30 f2 cd ab 00 00 00 00 00 00

90

rmmovq %rsi,0x41c(%rsp)

addq %rax,%rsi

jmp .L0

ret

<foo>

… …

… …

.L0 irmovq $0xabcd, %rdx

call <foo>

0x100

60 06

80 06 00 01 00 00 00 00 00 00

0x200

70 00 02 00 00 00 00 00 00

40 64 1c 04 00 00 00 00 00 00

0x185

0x180

Carnegie Mellon

How Does An Assembler Work?
• What if the ISA encoding uses relative address for jump and call?

6

30 f2 cd ab 00 00 00 00 00 00

90

rmmovq %rsi,0x41c(%rsp)

addq %rax,%rsi

jmp .L0

ret

<foo>

… …

… …

.L0 irmovq $0xabcd, %rdx

call <foo>

0x100

60 06

80 06 00 01 00 00 00 00 00 00

0x200

70 00 02 00 00 00 00 00 00

40 64 1c 04 00 00 00 00 00 00

0x185

0x180

relative addr:
-0x80

Carnegie Mellon

How Does An Assembler Work?
• What if the ISA encoding uses relative address for jump and call?

6

30 f2 cd ab 00 00 00 00 00 00

90

rmmovq %rsi,0x41c(%rsp)

addq %rax,%rsi

jmp .L0

ret

<foo>

… …

… …

.L0 irmovq $0xabcd, %rdx

call <foo>

0x100

60 06

80 06 00 01 00 00 00 00 00 00

0x200

70 00 02 00 00 00 00 00 00

40 64 1c 04 00 00 00 00 00 00

0x185

0x180

relative addr:
-0x80

00 00 00 11 11 11 11 11

Carnegie Mellon

How Does An Assembler Work?
• What if the ISA encoding uses relative address for jump and call?

6

30 f2 cd ab 00 00 00 00 00 00

90

rmmovq %rsi,0x41c(%rsp)

addq %rax,%rsi

jmp .L0

ret

<foo>

… …

… …

.L0 irmovq $0xabcd, %rdx

call <foo>

0x100

60 06

80 06 00 01 00 00 00 00 00 00

0x200

70 00 02 00 00 00 00 00 00

40 64 1c 04 00 00 00 00 00 00

0x185

0x180

relative addr:
-0x80

0x7B

00 00 00 11 11 11 11 11

Carnegie Mellon

How Does An Assembler Work?
• What if the ISA encoding uses relative address for jump and call?

6

30 f2 cd ab 00 00 00 00 00 00

90

rmmovq %rsi,0x41c(%rsp)

addq %rax,%rsi

jmp .L0

ret

<foo>

… …

… …

.L0 irmovq $0xabcd, %rdx

call <foo>

0x100

60 06

80 06 00 01 00 00 00 00 00 00

0x200

70 00 02 00 00 00 00 00 00

40 64 1c 04 00 00 00 00 00 00

7B 00 00 00 00 00 00 000x185

0x180

relative addr:
-0x80

0x7B

00 00 00 11 11 11 11 11

Carnegie Mellon

How Does An Assembler Work?
• What if the ISA encoding uses relative address for jump and call?
• If we use relative address, the exact start address of the code

doesn’t matter. Why?

6

30 f2 cd ab 00 00 00 00 00 00

90

rmmovq %rsi,0x41c(%rsp)

addq %rax,%rsi

jmp .L0

ret

<foo>

… …

… …

.L0 irmovq $0xabcd, %rdx

call <foo>

0x100

60 06

80 06 00 01 00 00 00 00 00 00

0x200

70 00 02 00 00 00 00 00 00

40 64 1c 04 00 00 00 00 00 00

7B 00 00 00 00 00 00 000x185

0x180

relative addr:
-0x80

0x7B

00 00 00 11 11 11 11 11

Carnegie Mellon

How Does An Assembler Work?
• What if the ISA encoding uses relative address for jump and call?
• If we use relative address, the exact start address of the code

doesn’t matter. Why?
• This code is called Position-Independent Code (PIC)

6

30 f2 cd ab 00 00 00 00 00 00

90

rmmovq %rsi,0x41c(%rsp)

addq %rax,%rsi

jmp .L0

ret

<foo>

… …

… …

.L0 irmovq $0xabcd, %rdx

call <foo>

0x100

60 06

80 06 00 01 00 00 00 00 00 00

0x200

70 00 02 00 00 00 00 00 00

40 64 1c 04 00 00 00 00 00 00

7B 00 00 00 00 00 00 000x185

0x180

relative addr:
-0x80

0x7B

00 00 00 11 11 11 11 11

Carnegie Mellon

7

Today: Circuits Basics
• Transistors

• Circuits for computations

• Circuits for storing data

Carnegie Mellon

8

Basic Logic Gates

A | B ~(A | B)

A & B ~(A & B)

Carnegie Mellon

8

Basic Logic Gates

A | B ~(A | B)

A & B ~(A & B)

Think of them as LEGOs.

Carnegie Mellon

Computing with Logic Gates

• Outputs are Boolean functions of inputs

• Respond continuously to changes in inputs with some small delay

• Different gates have different delays (b/c different transistor implementations)

9

a
b out

a
b out a out

out = a && b out = a || b out = !a

And Or Not

Voltage

Time

a

b

Carnegie Mellon

Computing with Logic Gates

• Outputs are Boolean functions of inputs

• Respond continuously to changes in inputs with some small delay

• Different gates have different delays (b/c different transistor implementations)

9

a
b out

a
b out a out

out = a && b out = a || b out = !a

And Or Not

Voltage

Time

a

b
a && b

Carnegie Mellon

Computing with Logic Gates

• Outputs are Boolean functions of inputs

• Respond continuously to changes in inputs with some small delay

• Different gates have different delays (b/c different transistor implementations)

9

a
b out

a
b out a out

out = a && b out = a || b out = !a

And Or Not

Voltage

Time

a

b
a && b

Rising Delay

Carnegie Mellon

Computing with Logic Gates

• Outputs are Boolean functions of inputs

• Respond continuously to changes in inputs with some small delay

• Different gates have different delays (b/c different transistor implementations)

9

a
b out

a
b out a out

out = a && b out = a || b out = !a

And Or Not

Voltage

Time

a

b
a && b

Rising Delay Falling Delay

Carnegie Mellon

Combinational Circuits

• A Network of Logic Gates

• Continuously responds to changes on primary inputs
• Primary outputs become (after some delay) Boolean functions of

primary inputs

10

Primary
Inputs

Primary
Outputs

Carnegie Mellon

Bit Equality

11

bool eq = (a&&b)||(!a&&!b)

Carnegie Mellon

Bit Equality

11

bool eq = (a&&b)||(!a&&!b)

Carnegie Mellon

Bit Equality

11

a

b

bool eq = (a&&b)||(!a&&!b)

Carnegie Mellon

Bit Equality

11

a

b

bool eq = (a&&b)||(!a&&!b)

Carnegie Mellon

Bit Equality

11

a

b

bool eq = (a&&b)||(!a&&!b)

Carnegie Mellon

Bit Equality

11

a

b

bool eq = (a&&b)||(!a&&!b)

Carnegie Mellon

Bit Equality

11

a

b

bool eq = (a&&b)||(!a&&!b)

Carnegie Mellon

Bit Equality

11

a

b

eq

bool eq = (a&&b)||(!a&&!b)

Carnegie Mellon

Bit Equality

11

Bit equal
a

b

eq

bool eq = (a&&b)||(!a&&!b)

Carnegie Mellon

Bit Equality

• Hardware Control Language (HCL)

11

Bit equal
a

b

eq

bool eq = (a&&b)||(!a&&!b)HCL Expression

Carnegie Mellon

Bit Equality

• Hardware Control Language (HCL)
• Hardware designers use HCL to describe the hardware, and a special

compiler (called synthesis tool) generates the gate-level implementation
of the described function. The process is called logic synthesis.

11

Bit equal
a

b

eq

bool eq = (a&&b)||(!a&&!b)HCL Expression

Carnegie Mellon

Bit Equality

• Hardware Control Language (HCL)
• Hardware designers use HCL to describe the hardware, and a special

compiler (called synthesis tool) generates the gate-level implementation
of the described function. The process is called logic synthesis.

• Real-world examples: Verilog, VHDL (they are usually called hardware
description language, or HDL; HCL is a name the textbook authors came
up to confuse you.)

11

Bit equal
a

b

eq

bool eq = (a&&b)||(!a&&!b)HCL Expression

Carnegie Mellon

Delay of Bit Equal Circuit

• What’s the delay of this bit equal circuit?

• Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3,

and 2-input OR takes 4.7

12

Bit equal
a

b

eq

Carnegie Mellon

Delay of Bit Equal Circuit

• What’s the delay of this bit equal circuit?

• Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3,

and 2-input OR takes 4.7

12

Bit equal
a

b

eq1

4.3

4.7

Carnegie Mellon

Delay of Bit Equal Circuit

• What’s the delay of this bit equal circuit?

• Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3,

and 2-input OR takes 4.7
• The delay of a circuit is determined by its “critical path”

• The path between an input and the output that the maximum delay
• Estimating the critical path delay is called static timing analysis

12

Bit equal
a

b

eq1

4.3

4.7

Carnegie Mellon

Delay of Bit Equal Circuit

• What’s the delay of this bit equal circuit?

• Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3,

and 2-input OR takes 4.7
• The delay of a circuit is determined by its “critical path”

• The path between an input and the output that the maximum delay
• Estimating the critical path delay is called static timing analysis

12

Bit equal
a

b

eq1

4.3

4.7

Critical Path

Carnegie Mellon

64-bit Equality

13

=
B

A

Eq

bool Eq = (A == B)

HCL Representation

Carnegie Mellon

64-bit Equality

13

b63
Bit equal

a63

eq63

b62
Bit equal

a62

eq62

b1
Bit equal

a1

eq1

b0
Bit equal

a0

eq0

Eq

=
B

A

Eq

bool Eq = (A == B)

HCL Representation

Carnegie Mellon

Bit-Level Multiplexor (MUX)
• Control signal s

• Data signals A and B

• Output A when s=1, B when s=0

14

s

B

A
OutMUX

Carnegie Mellon

Bit-Level Multiplexor (MUX)
• Control signal s

• Data signals A and B

• Output A when s=1, B when s=0

14

bool out = (s&&a)||(!s&&b)

HCL Expression

s

B

A
OutMUX

Carnegie Mellon

Bit-Level Multiplexor (MUX)
• Control signal s

• Data signals A and B

• Output A when s=1, B when s=0

14

bool out = (s&&a)||(!s&&b)

HCL Expression

s

b

a

out

Bit MUX

s

B

A
OutMUX

Carnegie Mellon

4-Input Multiplexor
• Control signal s; Data signals A, B, C, and D

• Output: A when s = 00, B when s = 01, C when s = 10, D when s = 11

15

Carnegie Mellon

4-Input Multiplexor
• Control signal s; Data signals A, B, C, and D

• Output: A when s = 00, B when s = 01, C when s = 10, D when s = 11

15

s[0]

A

C

Bit MUX

Carnegie Mellon

4-Input Multiplexor
• Control signal s; Data signals A, B, C, and D

• Output: A when s = 00, B when s = 01, C when s = 10, D when s = 11

15

s[0]

A

C

Bit MUX

s[0]

B

D

Bit MUX

Carnegie Mellon

4-Input Multiplexor
• Control signal s; Data signals A, B, C, and D

• Output: A when s = 00, B when s = 01, C when s = 10, D when s = 11

15

s[0]

A

C

Bit MUX

s[0]

B

D

Bit MUX out

s[1] Bit MUX

Carnegie Mellon

4-Input Multiplexor
• Control signal s; Data signals A, B, C, and D

• Output: A when s = 00, B when s = 01, C when s = 10, D when s = 11

15

s[0]

A

C

Bit MUX

s[0]

B

D

Bit MUX out

s[1] Bit MUX

What’s the latency of
this implementation?

1

4.7
4.3

Carnegie Mellon

4-Input Multiplexor
• Control signal s; Data signals A, B, C, and D

• Output: A when s = 00, B when s = 01, C when s = 10, D when s = 11

• What’s the latency of this implementation?

• Assume 3-input AND takes 4.7 units of time and 4-input OR takes 6

16

Truth Table

s[1] s[0]

Carnegie Mellon

4-Input Multiplexor
• Control signal s; Data signals A, B, C, and D

• Output: A when s = 00, B when s = 01, C when s = 10, D when s = 11

• What’s the latency of this implementation?

• Assume 3-input AND takes 4.7 units of time and 4-input OR takes 6

16

bool out = ((!s[0]&&!s[1]&&A) ||
 (s[0]&&!s[1]&&B) ||
 (!s[0]&&s[1]&&C) ||

 (s[0]&&s[1]&&D))

HCL Expression

Truth Table

s[1] s[0]

Carnegie Mellon

Logic Design and VLSI
• The number of inputs of a gate (fan-in) and the number of outputs of a

gate (fan-out) will affect the gate delay.

17

Carnegie Mellon

Logic Design and VLSI
• The number of inputs of a gate (fan-in) and the number of outputs of a

gate (fan-out) will affect the gate delay.
• The logic synthesis tool will automatically generate the “best” gate-level

implementation.

17

Carnegie Mellon

Logic Design and VLSI
• The number of inputs of a gate (fan-in) and the number of outputs of a

gate (fan-out) will affect the gate delay.
• The logic synthesis tool will automatically generate the “best” gate-level

implementation.
• Think of logic gates as LEGOs, using which you/synthesis tool generate

the gate level circuit design for complex functionalities.

17

Carnegie Mellon

Logic Design and VLSI
• The number of inputs of a gate (fan-in) and the number of outputs of a

gate (fan-out) will affect the gate delay.
• The logic synthesis tool will automatically generate the “best” gate-level

implementation.
• Think of logic gates as LEGOs, using which you/synthesis tool generate

the gate level circuit design for complex functionalities.
• A standard cell library is a collection of well defined and appropriately

characterized logic gates (delay, operating voltage, etc.) that can be used
to implement a digital design.

17

Carnegie Mellon

Logic Design and VLSI
• The number of inputs of a gate (fan-in) and the number of outputs of a

gate (fan-out) will affect the gate delay.
• The logic synthesis tool will automatically generate the “best” gate-level

implementation.
• Think of logic gates as LEGOs, using which you/synthesis tool generate

the gate level circuit design for complex functionalities.
• A standard cell library is a collection of well defined and appropriately

characterized logic gates (delay, operating voltage, etc.) that can be used
to implement a digital design.

• Take a Logic Design or Very Large Scale Integrated-Circuit (VLSI) course
if you want to know more about circuit design.

• Logic design uses the gate-level abstractions
• VLSI tells you how the gates are implemented at transistor-level

17

Carnegie Mellon

Logic Design and VLSI
• The number of inputs of a gate (fan-in) and the number of outputs of a

gate (fan-out) will affect the gate delay.
• The logic synthesis tool will automatically generate the “best” gate-level

implementation.
• Think of logic gates as LEGOs, using which you/synthesis tool generate

the gate level circuit design for complex functionalities.
• A standard cell library is a collection of well defined and appropriately

characterized logic gates (delay, operating voltage, etc.) that can be used
to implement a digital design.

• Take a Logic Design or Very Large Scale Integrated-Circuit (VLSI) course
if you want to know more about circuit design.

• Logic design uses the gate-level abstractions
• VLSI tells you how the gates are implemented at transistor-level

• CMOS VLSI Design: A Circuits and Systems Perspective is a good
reference

17

Carnegie Mellon

18

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out. A B Cin S Cou

t

0 0 0 0 0
0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Carnegie Mellon

18

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out. A B Cin S Cou

t

0 0 0 0 0
0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

S = (~A & ~B & Cin)

Carnegie Mellon

18

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out. A B Cin S Cou

t

0 0 0 0 0
0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

S = (~A & ~B & Cin)
 | (~A & B & ~Cin)

Carnegie Mellon

18

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out. A B Cin S Cou

t

0 0 0 0 0
0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

S = (~A & ~B & Cin)
 | (~A & B & ~Cin)

 | (A & ~B & ~Cin)

Carnegie Mellon

18

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out. A B Cin S Cou

t

0 0 0 0 0
0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

S = (~A & ~B & Cin)
 | (~A & B & ~Cin)

 | (A & ~B & ~Cin)

 | (A & B & Cin)

Carnegie Mellon

18

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out. A B Cin S Cou

t

0 0 0 0 0
0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

S = (~A & ~B & Cin)
 | (~A & B & ~Cin)

 | (A & ~B & ~Cin)

 | (A & B & Cin)

Cou = (~A & B & Cin)

 | (A & ~B & Cin)

 | (A & B & ~Cin)
 | (A & B & Cin)

Carnegie Mellon

19

1-bit Full Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out.

Cou = (~A & B & Cin)

 | (A & ~B & Cin)
 | (A & B & ~Cin)

 | (A & B & Cin)

Carnegie Mellon

19

1-bit Full Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out.

Cou = (~A & B & Cin)

 | (A & ~B & Cin)
 | (A & B & ~Cin)

 | (A & B & Cin)

AND Gates

OR Gates

Carnegie Mellon

19

1-bit Full Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out.

Cou = (~A & B & Cin)

 | (A & ~B & Cin)
 | (A & B & ~Cin)

 | (A & B & Cin)

AND Gates

OR Gates

Carnegie Mellon

20

Four-bit Adder

Carnegie Mellon

20

Four-bit Adder

• Ripple-carry Adder

• Simple, but performance linear to bit width

Carnegie Mellon

20

Four-bit Adder

• Ripple-carry Adder

• Simple, but performance linear to bit width

• Carry look-ahead adder (CLA)

• Generate all carriers simultaneously

Carnegie Mellon

OF
ZF
CF

Arithmetic Logic Unit

21

A
L
U

Y

X

Result of some computation
between X and Y

s

A

B

• An ALU performs multiple kinds of computations.

• The actual computation depends on the selection signal s.

• Also sets the condition codes (status flags)

• For instance:

• X + Y when s == 00

• X - Y when s == 01

• X & Y when s == 10

• X ^ Y when s == 11

• How can this ALU be implemented?

Carnegie Mellon

Arithmetic Logic Unit

• Implement 4 different circuits, one for each operation.

• Then use a MUX to select the results

22

OF
ZF
CF

OF
ZF
CF

OF
ZF
CF

OF
ZF
CF

+
Y

X

X + Y

Y

X

X - Y

Y

X

X & Y

Y

X

X ^ Y

A

B

A

B

A

B

A

B

- & ^

MUXs

Out

Carnegie Mellon

23

Today: Circuits Basics
• Transistors

• Circuits for computations

• Circuits for storing data

Carnegie Mellon

24

The Need for Storing Bits
• Assembly programs set architecture (processor) states.

• Register File
• Status Flags
• Memory
• Program Counter

Carnegie Mellon

24

The Need for Storing Bits
• Assembly programs set architecture (processor) states.

• Register File
• Status Flags
• Memory
• Program Counter

• Every state is essentially some bits that are stored/loaded.

Carnegie Mellon

24

The Need for Storing Bits
• Assembly programs set architecture (processor) states.

• Register File
• Status Flags
• Memory
• Program Counter

• Every state is essentially some bits that are stored/loaded.
• Think of the program execution as an FSM.

Carnegie Mellon

24

The Need for Storing Bits
• Assembly programs set architecture (processor) states.

• Register File
• Status Flags
• Memory
• Program Counter

• Every state is essentially some bits that are stored/loaded.
• Think of the program execution as an FSM.
• The hardware must provide mechanisms to load and store bits.

Carnegie Mellon

24

The Need for Storing Bits
• Assembly programs set architecture (processor) states.

• Register File
• Status Flags
• Memory
• Program Counter

• Every state is essentially some bits that are stored/loaded.
• Think of the program execution as an FSM.
• The hardware must provide mechanisms to load and store bits.
• There are many different ways to store bits. They have trade-offs.

Carnegie Mellon

Build a 1-Bit Storage

25

Q

D

C

Some Logic

•What I would like:

• D is the data I want to store (0 or 1)
• C is the control signal

• When C is 1, Q becomes D (i.e., storing the data)
• When C is 0, Q doesn’t change with D (data stored)

Carnegie Mellon

Bitstable Element

26

Vin V1

V2

Vin = V2

Carnegie Mellon

Bitstable Element

26

Vin V1

V2

Vin = V2

1

Carnegie Mellon

Bitstable Element

26

Vin V1

V2

Vin = V2

1
0

Carnegie Mellon

Bitstable Element

26

Vin V1

V2

Vin = V2

1
0

1

Carnegie Mellon

Bitstable Element

26

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Vin V1

V2

Vin = V2

1
0

1

Carnegie Mellon

Bitstable Element

26

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Vin V1

V2

Vin = V2

1
0

1

Q+ continuously outputs q.

Carnegie Mellon

Storing and Accessing 1 Bit

27

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Carnegie Mellon

Storing and Accessing 1 Bit

27

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

Carnegie Mellon

Storing and Accessing 1 Bit

27

0

1

0 1

1 0

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

Carnegie Mellon

Storing and Accessing 1 Bit

27

1

0

1 0

0 1

0

1

0 1

1 0

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

Carnegie Mellon

Storing and Accessing 1 Bit

27

1

0

1 0

0 1

0

1

0 1

1 0

0

0

!q q

q !q

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

Carnegie Mellon

Storing and Accessing 1 Bit

27

1

0

1 0

0 1

Setting
0

1

0 1

1 0

0

0

!q q

q !q

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

Carnegie Mellon

Storing and Accessing 1 Bit

27

Resetting
1

0

1 0

0 1

Setting
0

1

0 1

1 0

0

0

!q q

q !q

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

Carnegie Mellon

Storing and Accessing 1 Bit

27

Resetting
1

0

1 0

0 1

Setting
0

1

0 1

1 0

Storing
0

0

!q q

q !q

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

Carnegie Mellon

Storing and Accessing 1 Bit

27

R-S Latch

Resetting
1

0

1 0

0 1

Setting
0

1

0 1

1 0

Storing
0

0

!q q

q !q

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

Carnegie Mellon

A Better Way of Storing/Accessing 1 Bit

28

Q+

Q–

R

S

D

C

Data

Control

Carnegie Mellon

A Better Way of Storing/Accessing 1 Bit

28

Q+

Q–

R

S

D

C

Data

Control

1

d !d !d !d d

d d !d

Carnegie Mellon

A Better Way of Storing/Accessing 1 Bit

28

Q+

Q–

R

S

D

C

Data

Control

1

d !d !d !d d

d d !d

Q+ will continuously
change as d changes

Carnegie Mellon

A Better Way of Storing/Accessing 1 Bit

28

Q+

Q–

R

S

D

C

Data

Control

Storing Data (Latching)

1

d !d !d !d d

d d !d

Q+ will continuously
change as d changes

Carnegie Mellon

A Better Way of Storing/Accessing 1 Bit

28

Q+

Q–

R

S

D

C

Data

Control

Storing Data (Latching)

1

d !d !d !d d

d d !d
0

d !d q

!q

!q

q0

0

Q+ will continuously
change as d changes

Carnegie Mellon

A Better Way of Storing/Accessing 1 Bit

28

Q+

Q–

R

S

D

C

Data

Control

Storing Data (Latching)

1

d !d !d !d d

d d !d
0

d !d q

!q

!q

q0

0

Q+ will continuously
change as d changes Q+ doesn’t change with d

Carnegie Mellon

A Better Way of Storing/Accessing 1 Bit

28

Q+

Q–

R

S

D

C

Data

Control

Storing Data (Latching)

1

d !d !d !d d

d d !d

Holding Data

0

d !d q

!q

!q

q0

0

Q+ will continuously
change as d changes Q+ doesn’t change with d

Carnegie Mellon

A Better Way of Storing/Accessing 1 Bit

28

D Latch

Q+

Q–

R

S

D

C

Data

Control

Storing Data (Latching)

1

d !d !d !d d

d d !d

Holding Data

0

d !d q

!q

!q

q0

0

Q+ will continuously
change as d changes Q+ doesn’t change with d

Carnegie Mellon

D-Latch is “Transparent”

29

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

Carnegie Mellon

D-Latch is “Transparent”

29

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

Carnegie Mellon

D-Latch is “Transparent”

29

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

Carnegie Mellon

D-Latch is “Transparent”

29

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

Carnegie Mellon

D-Latch is “Transparent”

29

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

Carnegie Mellon

D-Latch is “Transparent”

29

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

Carnegie Mellon

D-Latch is “Transparent”

29

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

Carnegie Mellon

D-Latch is “Transparent”

• When you want to store d, you have to first set C to 1, and then set d

29

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

Carnegie Mellon

D-Latch is “Transparent”

• When you want to store d, you have to first set C to 1, and then set d
• There is a propagation delay of the combinational circuit from D to Q+

and Q–. So hold C for a while until the signal is fully propagated

29

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

Carnegie Mellon

D-Latch is “Transparent”

• When you want to store d, you have to first set C to 1, and then set d
• There is a propagation delay of the combinational circuit from D to Q+

and Q–. So hold C for a while until the signal is fully propagated
• Then set C to 0. Value latched depends on value of D as C goes to 0

29

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

Carnegie Mellon

D-Latch is “Transparent”

• When you want to store d, you have to first set C to 1, and then set d
• There is a propagation delay of the combinational circuit from D to Q+

and Q–. So hold C for a while until the signal is fully propagated
• Then set C to 0. Value latched depends on value of D as C goes to 0
• D-latch is transparent when C is 1

29

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

Carnegie Mellon

D-Latch is “Transparent”

• When you want to store d, you have to first set C to 1, and then set d
• There is a propagation delay of the combinational circuit from D to Q+

and Q–. So hold C for a while until the signal is fully propagated
• Then set C to 0. Value latched depends on value of D as C goes to 0
• D-latch is transparent when C is 1
• D-latch is “level-triggered” b/c Q changes as the voltage level of C rises.

29

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

30

Q+

Q–

R

S

D

C

Data

Control

D

C

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

30

Q+

Q–

R

S

D

C

Data

Control

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

30

Q+

Q–

R

S

D

C

Data

Control 0

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

30

Q+

Q–

R

S

D

C

Data

Control 0

1

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

30

Q+

Q–

R

S

D

C

Data

Control 0

1
0

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

30

Q+

Q–

R

S

D

C

Data

Control

1
0

1

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

30

Q+

Q–

R

S

D

C

Data

Control

1
0

1

->1

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

30

Q+

Q–

R

S

D

C

Data

Control

1
0

1

->0
->1

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

30

Q+

Q–

R

S

D

C

Data

Control

1
0

1

->0
->1->0

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

30

Q+

Q–

R

S

D

C

Data

Control T
Trigger

C

D

Q+

Time

T

1
0

1

->0
->1->0

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

• Flip-flop: Only latches data for a
brief period

30

Q+

Q–

R

S

D

C

Data

Control T
Trigger

C

D

Q+

Time

T

1
0

1

->0
->1->0

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

• Flip-flop: Only latches data for a
brief period

• Value latched depends on data
as C rises (i.e., 0–>1); usually
called at the rising edge of C

30

Q+

Q–

R

S

D

C

Data

Control T
Trigger

C

D

Q+

Time

T

1
0

1

->0
->1->0

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

• Flip-flop: Only latches data for a
brief period

• Value latched depends on data
as C rises (i.e., 0–>1); usually
called at the rising edge of C

•Output remains stable at all
other times

30

Q+

Q–

R

S

D

C

Data

Control T
Trigger

C

D

Q+

Time

T

1
0

1

->0
->1->0

