CSC 252: Computer Organization
Spring 2019: Lecture 12

Instructor: Yuhao Zhu

Department of Computer Science
University of Rochester

Action Items:
 Assignment 3 is due March 1, midnight



Announcement

* Programming Assignment 3 is due on March 1, midnight
e Mid-term exam: March 7; in class

* Past exam & Problem set: http://www.cs.rochester.edu/courses/
252/spring2019/handouts.html

MON TUE WED THU FRI
25 @ 27 28 Mar 1
Lecture Lecture A3 due
4 5 6 8

Lecture Midterm


http://www.cs.rochester.edu/courses/252/spring2019/handouts.html

The Need for Storing Bits

e Assembly programs set architecture (processor) states.
* Register File
e Status Flags
* Memory
* Program Counter
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The Need for Storing Bits

e Assembly programs set architecture (processor) states.
* Register File
e Status Flags
* Memory
* Program Counter
* Every state is essentially some bits that are stored/loaded.
* Think of the program execution as an FSM.
* The hardware must provide mechanisms to load and store bits.
* There are many different ways to store bits. They have trade-offs.



Build a 1-Bit Storage

D

Some Logic

* What | would like:
e D is the data | want to store (O or 1)
e C is the control signal
« When Cis 1, Q becomes D (i.e., storing the data)
 When C is 0, Q doesn’t change with D (data stored)
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A Simple Way of Storing/Accessing 1 Bit
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D-Latch is “Transparent”
Latching Changing D
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* \When you want to store d, you have to first set C to 1, and then set d

® There is a propagation delay of the combinational circuit from D to Q+
and Q-. So hold C for a while until the signal is fully propagated

® Then set C to 0. Value latched depends on value of D as C goes to O
® D-latch is transparent when C is 1
* D-latch is “level-triggered” b/c Q changes as the voltage level of C rises.
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Edge-Triggered Latch (Flip-Flop)
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Registers

Structure
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e Stores several bits of data
e Collection of edge-triggered latches (D Flip-flops)
e | oads input on rising edge of the C signal
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Structure

i, p Q+ o,

ig | |2 a+ O

i | |2 a+ 0

i e Q+ 0, |—p —p O
i3 | |2 a+ 0,

Iy | |2 Q+ 0, |

Iy | o Q+ 0, C

i | |2 a+ 0,

C

e Stores several bits of data
e Collection of edge-triggered latches (D Flip-flops)
e | oads input on rising edge of the C signal
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Register Operation

State = x State =y

Input =y| | Output = x C Rises Output =y

DX =D — — —p Dy—>

e Stores data bits
e For most of time acts as barrier between input and output
e As C rises, loads input

e S0 you’d better compute the input before the C signal rises if you want
to store the input data to the register



Register Operation

State = x
Input =y| | Output = x
DX

e Stores data bits
e For most of time acts as barrier between input and output
e As C rises, loads input

e S0 you’d better compute the input before the C signal rises if you want
to store the input data to the register

C Rises

State =y

Output =y

D

Output continuously produces
y after the rising edge unless
you cut off power.
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Clock Signal

State = x
Input =y| | Output = x
DX
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* A special C: periodically oscillating between 0 and 1

* That’s called the clock signal. Generated by a crystal oscillator
inside your computer
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Clock Signal

State = x
Input =y| | Output = x
DX

C Rises
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Output =y

— —

* A special C: periodically oscillating between 0 and 1

* That’s called the clock signal. Generated by a crystal oscillator
inside your computer

Clock |

In ?Xo

=l

P Xs

12



Clock Signal

State = x
Input =y| | Output = x
DX

C Rises

State =y

Output =y

D

* A special C: periodically oscillating between 0 and 1

* That’s called the clock signal. Generated by a crystal oscillator
inside your computer

Clock | |
In|_ % X X X Xy X5
Out X X4 X5 X3 Xy X5




Clock Signal

e Cycle time of a clock signal: the time duration between two rising edges.
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Clock Signal

e Cycle time of a clock signal: the time duration between two rising edges.
e Frequency of a clock signal: how many rising (falling) edges in 1 second.
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Clock Signal

e Cycle time of a clock signal: the time duration between two rising edges.
e Frequency of a clock signal: how many rising (falling) edges in 1 second.
* 1 GHz CPU means the clock frequency is 1 GHz

Cycle time

Clock | |
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Clock Signal

e Cycle time of a clock signal: the time duration between two rising edges.
e Frequency of a clock signal: how many rising (falling) edges in 1 second.
* 1 GHz CPU means the clock frequency is 1 GHz

e The cycle time is 1/10"9 =1 ns

Cycle time

Clock | |
In|_ % X X X Xy X5
Out Xg Xg X; X3 Xq X5

13



Register File

e A register file consists of a set of registers that you can individual read
from and write to.
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e A register file consists of a set of registers that you can individual read
from and write to.

* To read: give a register file ID, and read the stored value out
e To write: give a register file ID, a new value, overwrite the old value
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Register File

e A register file consists of a set of registers that you can individual read
from and write to.

* To read: give a register file ID, and read the stored value out
e To write: give a register file ID, a new value, overwrite the old value

Register File
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srcA Read Write dstW

2 —> 3 w
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Register File

e A register file consists of a set of registers that you can individual read
from and write to.

* To read: give a register file ID, and read the stored value out
e To write: give a register file ID, a new value, overwrite the old value

Register File
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X valA X | valWw
2 %Read 3 = erteﬂ 2
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Register File

e A register file consists of a set of registers that you can individual read
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e To write: give a register file ID, a new value, overwrite the old value
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Register File

e A register file consists of a set of registers that you can individual read
from and write to.

* To read: give a register file ID, and read the stored value out
e To write: give a register file ID, a new value, overwrite the old value
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Register File

e A register file consists of a set of registers that you can individual read
from and write to.

* To read: give a register file ID, and read the stored value out
e To write: give a register file ID, a new value, overwrite the old value
e How do we build a register file out of individual registers??

Register File
1| z
X valA 2 y | valW y
5 SrcA Read Write| 4w
1 "~ Rising

Clock __| edge
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Register File Read

e Continuously read a register independent of the clock signal

Register 0

Register 1

Register 2

Register 3

O 00 0|0 0|0 O
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Register File Read

e Continuously read a register independent of the clock signal

Register 0

Register 1

Register 2

O 00 0|0 0|0 O

Register 3

Read Reg

1l

4:1
MUX

ID

Out
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Register File Write
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Register File Write
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Register File Write

* Only write the a specific register when the clock rises. How??
Read Reg ID

Clock ‘ |
+—CO
Register 0 —
W1 .
Q —»
o)) +—ClI )
2 Register 1 ——» Out
© ] 41 |—>
T W0 +—C2 MUX
= —> Register 2—
+—C3
Register 3 >
Data — D
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Register File Write

* Only write the a specific register when the clock rises. How??
Read Reg ID

Clock ‘ |

Co
Register 0 —

1]

a w;.mm
=] 0 0 O cr
% == o o 1t o tP Register 1 — 4:1 —>OUt
Ewo BB o 1 0o o tC2_ b
= —>-- o Register 2—
+—C3
Register 3 >
Data — D
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Register File Write
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Register File Write
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Register File Write
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Register File Write
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Register File Write

Clock

Write Reg ID

Data

lo

l_.

2:4
Decoder

Co

Register 0

Cl

Register 1
D g

C2

Register 2
D g

o

C3

Register 3
D g

1l

4:1
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-

Read Reg ID

Out

* This implementation can read 1 register and write 1 register at
the same time: 1 read port and 1 write port
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Multi-Port Register File

* \What if we want to read multiple registers at the same time?

Clock

Write Reg ID
lo

l_.

2:4
Decoder

Co

Register 0

Cl

Register 1
D g

C2

Register 2
D g

Data

o

C3

Register 3
D g

Read Reg

b

4:1
MUX

ID

Out1
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Multi-Port Register File

* \What if we want to read multiple registers at the same time?

Clock

Write Reg ID
lo

l_.

2:4
Decoder

Co

Register 0

Read Reg ID

b

Cl

Register 1
D g

C2

Register 2
D g

> Outi
4:1 |— >
MUX

Data

o

C3

Register 3
D g

Reg ID 2

4:-1 |Out2
MUX
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Multi-Port Register File

* \What if we want to read multiple registers at the same time?

Clock

Co
Register 0

Read Reg ID

b

Cl
Register 1
D

2:4

Decoder| ¢ . =

Register 2
D g

Write Reg ID

l_.

> Outi
4:1 |— >
MUX

C3
Register 3
D

lo
|
o

Data

* This register file has 2 read ports and 1 write
port. How many ports do we actually need?

Reg ID 2

4:-1 |Out2
MUX
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Multi-Port Register File

* |s this correct? What if we don’t want to write anything?

Clock

Write Reg ID
lo

l_.

2:4
Decoder

Co

Register 0

Read Reg ID

b

Cl

Register 1
D g

C2

Register 2
D g

> Outi
4:1 |— >
MUX

Data

o

C3

Register 3
D g

Reg ID 2

4:-1 |Out2
MUX
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Multi-Port Register File

* |s this correct? What if we don’t want to write anything?

Clock

Write Reg ID

Data

Enable

Co

Register 0

b

Cl

Register 1
D g

C2

Register 2
D g

4:1
MUX

e e
0 +— D
— > 1
2:4 :)_._’,_
3 Decoder| ¢ | :)--»
0 e :)——b

C3

Register 3
D g

4:1
MUX

Read Reg ID

Out1

Read

Reg ID 2

Out2

20



Executing an ADD instruction

« How does the processor execute addg %$rax, $rsi

« The binary encodingis 60 06

Instruction Code
Add

AN

Function Code

/

addqg rA, rB

6|0

rA

rB
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Executing an ADD instruction

« How does the processor execute addg %$rax, $rsi

« The binary encoding is 60 06  |nstruction Code Function Code
Add N/
addqg rA, rB 6|0|rArB
Memory
|_> (Later...)
Clock
— PC
_ A
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File U
? T > Flags

Enable Clock Z1s 1o
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Executing an ADD instruction
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Executing an ADD instruction

« How does the processor execute addg %$rax, $rsi
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Executing an ADD instruction

« How does the processor execute addg %$rax, $rsi

« The binary encoding is 60 06  |nstruction Code Function Code
Add N/
addqg rA, rB 6|0|rArB
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Clock
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Executing an ADD instruction

« How does the processor execute addg %$rax, $rsi

« The binary encodingis 60 06
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Executing an ADD instruction

« How does the processor execute addg %$rax, $rsi

« The binary encodingis 60 06
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Executing an ADD instruction

« How does the processor execute addg %$rax, $rsi

« The binary encodingis 60 06
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Executing an ADD instruction

« How does the processor execute addg %$rax, $rsi

« The binary encodingis 60 06

-
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Executing an ADD instruction

« How does the processor execute addg %$rax, $rsi

« The binary encoding is 60 06  |nstruction Code Function Code
Add N/
addqg rA, rB 6|0|rArB
Memory
(Later...)
‘ newData
Clock T l ¢
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Executing an ADD instruction

« How does the processor execute addg %$rax, $rsi

« The binary encoding is 60 06  |nstruction Code Function Code
Add N/
addqg rA, rB 6|0|rArB
Memory
(Later...)
‘ newData
Clock T l ¢
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Executing an ADD instruction

« How does the processor execute addg %$rax, $rsi

« The binary encoding is 60 06  |nstruction Code Function Code
Add N/
addqg rA, rB 6|0|rArB
Memory
(Later...)
‘ newData
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Executing an ADD instruction

« How does the processor execute addg %$rax, $rsi

« The binary encoding is 60 06  |nstruction Code Function Code
Add N/
addqg rA, rB 6|0|rArB
Memory
(Later...)
‘ newData
Clock T l ¢
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sole6 Reg.D —> Reg 1 Data> l
A
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Executing an ADD instruction

« How does the processor execute addg %$rax, $rsi

« The binary encoding is 60 06  |nstruction Code Function Code
Add N/
addqg rA, rB 6|0|rArB
Memory
(Later...)
‘ newData What
Clock T l # Logic?
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Write
sole6 Reg.D —> Reg 1 Data> l
A
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Executing an ADD instruction

« How does the processor execute addg %$rax, $rsi

« The binary encoding is 60 06  |nstruction Code Function Code
Add N/
addqg rA, rB 6|0|rArB
Memory
(Later...)
r newData 37 What
Clock T l # Logic?
—»| PC lSeIect
Reg 1 Data
s0| 6 >
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Executing an ADD instruction

 Logic 1: if (sO == 6) select = s1;

addg rA, rB 6| 0|rA|rB
Memory
‘ (Later...)
newData
T —> Logic 1
Clock__| v
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Reg 1 Data
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Executing an ADD instruction

Clock

!

sO
si
s2

s3

 Logic 1: if (sO == 6) select = s1;
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Read Reg. ,
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Executing an ADD instruction

 Logic 1: if (sO == 6) select = s1;

addg rA, rB 6| 0|rA|rB
Memory
‘ (Later...)
newData
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Clock__| v
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Executing an ADD instruction

 Logic 1: if (sO == 6) select = s1;
e Logic 2: if (sO == 6) Enable = 1; else Enable = 0;

addg rA, rB 6| 0|rA|rB
Memory
‘ (Later...)
newData
T —> Logic 1
Clock__| v
N lSeIect
Reg 1 Data
s0| 6 > A
s1(0 Read Reg. _,| Register L
s2| g ID 1 . Reg 2 Data
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Executing an ADD instruction

 Logic 1: if (sO == 6) select = s1;

e Logic 2: if (sO == 6) Enable = 1; else Enable = 0;

addg rA, rB 6| 0|rA|rB
Memory
‘ "l (Later...)
newData
T —> Logic 1
Clock | v
i lSeIect
Reg 1 Data
sO| 6 > A
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Executing an ADD instruction

 Logic 1: if (sO == 6) select = s1;

e Logic 2: if (sO == 6) Enable = 1; else Enable = 0;

Memory

|—' (Later...)
T
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s
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Executing an ADD instruction

 Logic 1: if (sO == 6) select = s1;
e Logic 2: if (sO == 6) Enable = 1; else Enable = 0;

addg rA, rB 6| 0|rA|rB
Memory
‘ (Later...)
newData
T —> Logic 1
Clock | ¢
o lSeIect
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Executing an ADD instruction

 Logic 1: if (sO == 6) select = s1;
e Logic 2: if (sO == 6) Enable = 1; else Enable = 0;

addg rA, rB 6| 0|rA|rB
Memory
‘ (Later...)
newData
T —> Logic 1
Clock | ¢
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Executing an ADD instruction

 Logic 1: if (sO == 6) select = s1;
e Logic 2: if (sO == 6) Enable = 1; else Enable = 0;
* Logic 3: if (sO == 6) nPC = oPC + 2;

addg rA, rB 6| 0|rA|rB
Memory
‘ (Later...)
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Executing an ADD instruction

 Logic 1:if (sO == 6) select = s1;

e Logic 2: if (sO == 6) Enable = 1; else Enable = 0;
* Logic 3: if (sO == 6) nPC = oPC + 2;
« How about Logic 47?
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Executing an ADD instruction

 Logic 1: if (sO == 6) select = s1;

e Logic 2: if (sO == 6) Enable = 1; else Enable = 0;
* Logic 3: if (sO == 6) nPC = oPC + 2;

« How about Logic 47?

addg rA, rB 6| 0|rA|rB
Memory
‘ (Later...)
newData
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Executing an ADD instruction

 Logic 1: if (sO == 6) select = s1; .

Logic 2: i (sO —= 6) Enable = 1- else Enable = 0- How do these logics
e Logic 2: if (sO == 6) Enable = 1; else Enable = 0; get implemented?
 Logic 3: if (sO == 6) nPC = oPC + 2; S ——
« How about Logic 47?

addg rA, rB 6|0 |rArB
Memory
‘ (Later...)
newData
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Clock__1 #
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Executing an ADD instruction

 Logic 1: if (sO == 6) select = s1; .

Logic 2: i (sO —= 6) Enable = 1- else Enable = 0- How do these logics
e Logic 2: if (sO == 6) Enable = 1; else Enable = 0; get implemented?
 Logic 3: if (sO == 6) nPC = oPC + 2; S ——
« How about Logic 47?

addg rA, rB 6| 0|rA|rB
Memory
‘ (Later...)
newData
T —> Logic 1
Clock__| v
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Executing an ADD instr

uction

« When the rising edge of the clock arrives, the RF/PC/Flags will be written.
« So the following has to be ready: newData, nPC, which means Logic1, Logic2,

Logic3, and Logic4 has to finish.

addqg rA, rB 6|0 |rArB
Memory
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newData
T —> Logic 1
Clock #
O e Select
oPC‘ TnP(yso 6 o9 | Data’A\
: silo Read Reg. Reaqi
—>» Register T
Logic 3 s2[ o ID 1 Igile Reg 2 Data IfJ
s3|6 Reﬁg geg' —> ’/ Loiﬂ
i} 1 =
. E— Flags
Logic 2 Enable  Clock Rising Z Sg o)
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