CSC 252: Computer Organization
Spring 2019: Lecture 12

Instructor: Yuhao Zhu

Department of Computer Science
University of Rochester

Action Items:
 Assignment 3 is due March 1, midnight

Announcement

* Programming Assignment 3 is due on March 1, midnight
e Mid-term exam: March 7; in class

* Past exam & Problem set: http://www.cs.rochester.edu/courses/
252/spring2019/handouts.html

MON TUE WED THU FRI
25 @ 27 28 Mar 1
Lecture Lecture A3 due
4 5 6 8

Lecture Midterm

http://www.cs.rochester.edu/courses/252/spring2019/handouts.html

The Need for Storing Bits

e Assembly programs set architecture (processor) states.
* Register File
e Status Flags
* Memory
* Program Counter

The Need for Storing Bits

e Assembly programs set architecture (processor) states.
* Register File
e Status Flags
* Memory
* Program Counter
* Every state is essentially some bits that are stored/loaded.

The Need for Storing Bits

e Assembly programs set architecture (processor) states.

* Register File

e Status Flags

* Memory

* Program Counter
* Every state is essentially some bits that are stored/loaded.
* Think of the program execution as an FSM.

The Need for Storing Bits

e Assembly programs set architecture (processor) states.
* Register File
e Status Flags
* Memory
* Program Counter
* Every state is essentially some bits that are stored/loaded.
* Think of the program execution as an FSM.
* The hardware must provide mechanisms to load and store bits.

The Need for Storing Bits

e Assembly programs set architecture (processor) states.
* Register File
e Status Flags
* Memory
* Program Counter
* Every state is essentially some bits that are stored/loaded.
* Think of the program execution as an FSM.
* The hardware must provide mechanisms to load and store bits.
* There are many different ways to store bits. They have trade-offs.

Build a 1-Bit Storage

D

Some Logic

* What | would like:
e D is the data | want to store (O or 1)
e C is the control signal
« When Cis 1, Q becomes D (i.e., storing the data)
 When C is 0, Q doesn’t change with D (data stored)

Building Block: RS Latch

Bistable Element

= Q+
'q Q-

qg=0or1

Building Block: RS Latch

Bistable Element

- Q+ R OR Q+
‘9 Q- o Q-

qg=0or1

Building Block: RS Latch

Bistable Element

OR

Q+

Building Block: RS Latch

Bistable Element

OR

Q+

Building Block: RS Latch

Bistable Element
q =

Q+ OR Q+
9 Q- o Q-
qg=0or1

s
0 1 'q
ST HRte 0T ¥ERte 0 T e

Building Block: RS Latch

Bistable Element R-S Latch
q
Q+ R OR Q+
|q Q_ _
S Q
qg =0or1

A THRte 0 TT¥nle 0 TRl

A Simple Way of Storing/Accessing 1 Bit

D

Data %—[>O— R
;)% X
Q_

Control C *— S

A Simple Way of Storing/Accessing 1 Bit

D
Data %—[>O— R
— Q+
C Q-
Control o S
Storing 1
1 o 0 O 0o 1
- \ - .
_ ‘/’.J‘lgﬁ{ Q+
1 N\ “ - > Q-
| e S
— 1 1 0

A Simple Way of Storing/Accessing 1 Bit

Storing 1

1

o

D
Data

C

4._[>o_

Control

Stable State

(i.e., 1 stored)
0 0 1

- Q+

R

Q+

A Simple Way of Storing/Accessing 1 Bit

D

Data ~——¢ >o—

C

Control

Storing 1
1 o 0
1

—

Stable State
(i.e., 1 stored)

0 0 1

[\
¥ -
N L
)/

1 1 0

When Cis1,Dis 1, Q+
will eventually become 1.

Q+

Q+

A Simple Way of Storing/Accessing 1 Bit

D

Data ~——¢ >o—

C

Control

—

Storing 1
1 o 0
1

—

—

N

Stable State
(i.e., 1 stored)

0 0 1

1 1 0

When Cis1,Dis 1, Q+
will eventually become 1.

- Q+

. S
Storing 0
0 o 1
1

Q+

A Simple Way of Storing/Accessing 1 Bit

D

pr—

Storing 1
1 0
>
1

 S—

Data 4._>o_
Control C — S

Stable State .

) Storing 0

(i.e., 1 stored) 9

0 0 1 0 o 1
- Q.,,, -
L Q- 1

1 1 0

When Cis1,Dis 1, Q+
will eventually become 1.

Q+

Stable State
(i.e., 0 stored)

1 1 0

- Q+

A Simple Way of Storing/Accessing 1 Bit

D

Data ~——¢ >o—

C

Control

pr—

Storing 1
1 0
>
1

 S—

Stable State
(i.e., 1 stored)

0 0 1

1 1 0

When Cis1,Dis 1, Q+
will eventually become 1.

Q+

R
> S
Storing 0
0 1
>
- Q+ B
- Q- 1 [

—

Stable State
(i.e., 0 stored)

1 1 0

0 0 1

- Q+

When Cis 1,Dis 0, Q+
will eventually become O.

A Simple Way of Storing/Accessing 1 Bit

D

Data ~——¢ >o—

C

Control

D Latch
Storing 1
1 0
Do—1—

—

pr—

 S—

Stable State
(i.e., 1 stored)

0 0 1

1 1 0

When Cis1,Dis 1, Q+
will eventually become 1.

Q+

R
> S
Storing 0
0 1
o
L Q+ L
- Q- 1 [

—

Stable State
(i.e., 0 stored)

1 1 0

0 0 1

- Q+

When Cis 1,Dis 0, Q+
will eventually become O.

A Simple Way of Storing/Accessing 1 Bit

D
Data %—[>O— R
— Q+
D Latch
Q_
Control C *— S

Holding Data

d ~ !
-

A Simple Way of Storing/Accessing 1 Bit

D
Data %—[>O— R
— Q+
D Latch
Q_
Control C *— S
Holding Data
d ~_'d 0 '
>0 N\ A | q
0) " OIS Q-
—) Oyt

If C == 0, Q+ doesn’t change with d

A Simple Way of Storing/Accessing 1 Bit

D
Data 40—[>O— R
— Q+
D Latch
Q-
Control C S S
Holding Data Stable State
(i.e., q held)
d Do 'd | 0 g q

= - Q+
0 \ [~ Q—
0 Qa -

If C == 0, Q+ doesn’t change with d

D-Latch is “Transparent”

Latching Changing D
d 1d ! !
Mo d 1d '1d d c
w4 Q+ -
D
1 N\ Q-
d d 'd Q+__

Time

D-Latch is “Transparent”

Latching Changing D
d 1d 1d '1d d
Do—
- Q+ c J
D
1 [\ Q-
d d 'd Q+_ |

Time

D-Latch is “Transparent”

Latching Changing D
d Mo 'd__ 'd '1d d c
- Q+ 4’]
D
1 [\ Q- (
d d 'd Q+ N

Time

D-Latch is “Transparent”

Latching Changing D

d 1d 1d 1d d
> N C

- Q+ \
D —
1 [\ Q-
d d 'd Q+ .

Time

D-Latch is “Transparent”

Latching Changing D

d 1d 1d 1d d
> N C

D-Latch is “Transparent”

Latching

d

Q+

Changing D

)

(

Time

D-Latch is “Transparent”

Latching

d

Q+

Changing D

)

(

Time

D-Latch is “Transparent”

Latching Changing D

d 1d 1d 1d d
> N C

=

J

()

|

O

N
e s 4
o~
e~

d d 1d Q+

Time

* \When you want to store d, you have to first set C to 1, and then set d

D-Latch is “Transparent”

Latching Changing D
d 1d 1d '1d d
o— C
~__/ | Q+ \
(A
1 N\ ‘ Q-
a4 Q+ |\ 1!
Time

* \When you want to store d, you have to first set C to 1, and then set d

® There is a propagation delay of the combinational circuit from D to Q+
and Q-. So hold C for a while until the signal is fully propagated

D-Latch is “Transparent”

Latching Changing D
d 'd 1d 'd d
> [) C
= | Q+ \
% ()

1 N\ | Q-

Y Q+ |\ {5

Time

* \When you want to store d, you have to first set C to 1, and then set d

® There is a propagation delay of the combinational circuit from D to Q+
and Q-. So hold C for a while until the signal is fully propagated

® Then set C to 0. Value latched depends on value of D as C goes to O

D-Latch is “Transparent”

Latching Changing D
d 'd 1d 'd d
> [) C
= | Q+ \
% ()

1 N\ | Q-

Y Q+ |\ {5

Time

* \When you want to store d, you have to first set C to 1, and then set d

® There is a propagation delay of the combinational circuit from D to Q+
and Q-. So hold C for a while until the signal is fully propagated

® Then set C to 0. Value latched depends on value of D as C goes to O
® D-latch is transparent when C is 1

D-Latch is “Transparent”
Latching Changing D

d 'd 'd 'd d

r \\x)

|

= A c—N

D (
Q+ |\

.‘_\/

Time

* \When you want to store d, you have to first set C to 1, and then set d

® There is a propagation delay of the combinational circuit from D to Q+
and Q-. So hold C for a while until the signal is fully propagated

® Then set C to 0. Value latched depends on value of D as C goes to O
® D-latch is transparent when C is 1
* D-latch is “level-triggered” b/c Q changes as the voltage level of C rises.

Edge-Triggered Latch (Flip-Flop)

Edge-Triggered Latch (Flip-Flop)

D

Data

¢ [

U

Control

Edge-Triggered Latch (Flip-Flop)

D

Data

¢ [

U

Control 0

Edge-Triggered Latch (Flip-Flop)

D

Data

1

¢ [

U

Control 0

Edge-Triggered Latch (Flip-Flop)

D

Data

1

¢ [

Control 0

Edge-Triggered Latch (Flip-Flop)

D

Data

1

¢ [

Control 1

Edge-Triggered Latch (Flip-Flop)

D

i —i%j
1
I—[>o—-‘>o—‘>o—_\ 0 ->1
C / 1 S

Control 1

Edge-Triggered Latch (Flip-Flop)

D

-

Data

1->0

I—[>o—-‘>o—‘>o—_\ 0 ->1
C . T

Control 1

Edge-Triggered Latch (Flip-Flop)

D

-

Data

1->0

I—[>o—-‘>o—‘>o—_\ 0->1->0
C . -

Control 1

Edge-Triggered Latch (Flip-Flop)

D

-

Data

Trigger

1->0
I—[>o—-‘>o—‘>o—_\ 0->1 ->0‘_

C - T

ontrol 1

C —

—)

D R (
Q+ .

Time

Edge-Triggered Latch (Flip-Flop)

D [
Dat R
o T Q+
1->0 Q
I—[>O—-‘>o—‘>o—_\ 0->1 ->0’_ -
C - T S
ontrol 1)
Trigger
c—— e Flip-flop: Only latches data for a

brief period

o
|
4]

Time

Edge-Triggered Latch (Flip-Flop)

D
Dat l: R
o — Q+
1->0 Q
I—[><>—‘><>—‘><>— ~N 0 ->1 ->0’_ -
c . . T °
ontrol 1 .
Trigger
c e Flip-flop: Only latches data for a
T brief period
“"E% e Value latched depends on data
D_| as C rises (i.e., 0—>1); usually
Qs called at the rising edge of C

Time

Edge-Triggered Latch (Flip-Flop)

- >o— R

Data

¢ [

Control

= Q+
— 0->1->0 Q-
T . =
Trigger

e Flip-flop: Only latches data for a

brief period

)

D

¢ Value latched depends on data

as C rises (i.e., 0—>1); usually
called at the rising edge of C

Q+

Time

e Output remains stable at all
other times

Registers

Structure
T p Q+ o,
ig | |2 Q+ O
i | |2 Q+ 0
z I le o 0,4
i3 | |2 Q+ 0,
i | o Q+ 0,
g | e o 0,
iy | |2 Q+ 0,

C

e Stores several bits of data
e Collection of edge-triggered latches (D Flip-flops)
e | oads input on rising edge of the C signal

Registers

Structure

i, p Q+ o,

ig | |2 a+ O

i | |2 a+ 0

i e Q+ 0, |—p —p O
i3 | |2 a+ 0,

Iy | |2 Q+ 0, |

Iy | o Q+ 0, C

i | |2 a+ 0,

C

e Stores several bits of data
e Collection of edge-triggered latches (D Flip-flops)
e | oads input on rising edge of the C signal

Register Operation

State = x

Input =y

Output = x

—>

>

11

Register Operation

State = x
Input =y| | Output = x
—DIX—>

C Rises

11

Register Operation

State = x
Input =y| | Output = x
—DIX—>

State =y

C Rises

Output =y

— —

>

11

Register Operation

State = x State =y

Input =y| | Output = x C Rises Output =y

DX =D — — —p Dy—>

e Stores data bits
e For most of time acts as barrier between input and output
e As C rises, loads input

e S0 you’d better compute the input before the C signal rises if you want
to store the input data to the register

Register Operation

State = x
Input =y| | Output = x
DX

e Stores data bits
e For most of time acts as barrier between input and output
e As C rises, loads input

e S0 you’d better compute the input before the C signal rises if you want
to store the input data to the register

C Rises

State =y

Output =y

D

Output continuously produces
y after the rising edge unless
you cut off power.

11

Clock Signal

State = x
Input =y| | Output = x
DX

C Rises

State =y

Output =y

D

* A special C: periodically oscillating between 0 and 1

* That’s called the clock signal. Generated by a crystal oscillator
inside your computer

12

Clock Signal

State = x
Input =y| | Output = x
DX

C Rises

State =y

Output =y

D

* A special C: periodically oscillating between 0 and 1

* That’s called the clock signal. Generated by a crystal oscillator
inside your computer

Clock |

[

12

Clock Signal

State = x
Input =y| | Output = x
DX

C Rises

State =y

Output =y

— —

* A special C: periodically oscillating between 0 and 1

* That’s called the clock signal. Generated by a crystal oscillator
inside your computer

Clock |

In ?Xo

=l

P Xs

12

Clock Signal

State = x
Input =y| | Output = x
DX

C Rises

State =y

Output =y

D

* A special C: periodically oscillating between 0 and 1

* That’s called the clock signal. Generated by a crystal oscillator
inside your computer

Clock | |
In|_ % X X X Xy X5
Out X X4 X5 X3 Xy X5

Clock Signal

e Cycle time of a clock signal: the time duration between two rising edges.

clock [~ 1 M1 M1 M1 11

In[__ %o X : X : X3 - X4 i X5

Out Xo Xy Xo X3 Xq X5

13

Clock Signal

e Cycle time of a clock signal: the time duration between two rising edges.

Cycle time

clock [~ 1 M1 M1 M1 11

In[__ %o X : X : X3 - X4 i X5

Out Xo Xy Xo X3 Xq X5

13

Clock Signal

e Cycle time of a clock signal: the time duration between two rising edges.
e Frequency of a clock signal: how many rising (falling) edges in 1 second.

Cycle time

clock [~ 1 M1 M1 M1 11

In[__ %o X : X : X3 - X4 i X5

Out Xo Xy Xo X3 Xq X5

13

Clock Signal

e Cycle time of a clock signal: the time duration between two rising edges.
e Frequency of a clock signal: how many rising (falling) edges in 1 second.
* 1 GHz CPU means the clock frequency is 1 GHz

Cycle time

Clock | |
In|_ % X X X Xy X5
Out Xg Xg X; X3 Xq X5

13

Clock Signal

e Cycle time of a clock signal: the time duration between two rising edges.
e Frequency of a clock signal: how many rising (falling) edges in 1 second.
* 1 GHz CPU means the clock frequency is 1 GHz

e The cycle time is 1/10"9 =1 ns

Cycle time

Clock | |
In|_ % X X X Xy X5
Out Xg Xg X; X3 Xq X5

13

Register File

e A register file consists of a set of registers that you can individual read
from and write to.

Register File

Clock

14

Register File

e A register file consists of a set of registers that you can individual read
from and write to.

* To read: give a register file ID, and read the stored value out

Register File

Clock

14

Register File

e A register file consists of a set of registers that you can individual read
from and write to.

* To read: give a register file ID, and read the stored value out

Register File

valA

srcA |Read

Clock

Register File

e A register file consists of a set of registers that you can individual read
from and write to.

* To read: give a register file ID, and read the stored value out

Register File
1| z
valA
Read X
srcA ["€d
2 —> 3w

Clock

Register File

e A register file consists of a set of registers that you can individual read
from and write to.

* To read: give a register file ID, and read the stored value out

Register File

valA
X €«— 2| x
srcA |Read

2 —> 3 w

Clock

14

Register File

e A register file consists of a set of registers that you can individual read
from and write to.

* To read: give a register file ID, and read the stored value out
e To write: give a register file ID, a new value, overwrite the old value

Register File

valA
X €«— 2| x
srcA |Read

2 —> 3 w

Clock

14

Register File

e A register file consists of a set of registers that you can individual read
from and write to.

* To read: give a register file ID, and read the stored value out
e To write: give a register file ID, a new value, overwrite the old value

Register File
1| z
X valA X valW

srcA Read Write dstW

2 —> 3 w

Clock

Register File

e A register file consists of a set of registers that you can individual read
from and write to.

* To read: give a register file ID, and read the stored value out
e To write: give a register file ID, a new value, overwrite the old value

Register File
1| z
X valA X | valWw
2 %Read 3 = erteﬂ 2

14

Register File

e A register file consists of a set of registers that you can individual read
from and write to.

* To read: give a register file ID, and read the stored value out
e To write: give a register file ID, a new value, overwrite the old value

Register File
1| z
X valA X | valW
2 %CARead 3 = erteﬂ 5
0 "~ Rising

Clock __| edge

14

Register File

e A register file consists of a set of registers that you can individual read
from and write to.

* To read: give a register file ID, and read the stored value out
e To write: give a register file ID, a new value, overwrite the old value

Register File
1| z
X valA 2 y | valW y
5 srcA Read Write| 4w
0 "~ Rising

Clock __| edge

14

Register File

e A register file consists of a set of registers that you can individual read
from and write to.

* To read: give a register file ID, and read the stored value out
e To write: give a register file ID, a new value, overwrite the old value
e How do we build a register file out of individual registers??

Register File
1| z
X valA 2 y | valW y
5 SrcA Read Write| 4w
1 "~ Rising

Clock __| edge

14

Register File Read

e Continuously read a register independent of the clock signal

Register 0

Register 1

Register 2

Register 3

O 00 0|0 0|0 O

15

Register File Read

e Continuously read a register independent of the clock signal

Register 0

Register 1

Register 2

O 00 0|0 0|0 O

Register 3

Read Reg

1l

4:1
MUX

ID

Out

15

Register File Write

Co

Register 0
D J

Cl

Register 1
D g

C2

Register 2
D g

C3

Register 3
D g

Read Reg ID

1l

4:1
MUX

Out

16

Register File Write

Data

Co

Register 0
D J

Cl

Register 1
D g

C2

Register 2
D g

C3

Register 3
D g

Read Reg ID

1l

4:1
MUX

Out

16

Register File Write

Clock

Data

Co

Register 0
D J

Cl

Register 1
D g

C2

Register 2
D g

C3

Register 3
D g

Read Reg ID

1l

4:1
MUX

Out

16

Register File Write

* Only write the a specific register when the clock rises. How??
Read Reg ID

Clock ‘ |
+—CO
Register 0 —
W1 .
Q —»
o)) +—ClI)
2 Register 1 ——» Out
©] 41 |—>
T W0 +—C2 MUX
= —> Register 2—
+—C3
Register 3 >
Data — D

16

Register File Write

* Only write the a specific register when the clock rises. How??
Read Reg ID

Clock ‘ |

Co
Register 0 —

1]

a w;.mm
=] 0 0 O cr
% == o o 1t o tP Register 1 — 4:1 —>OUt
Ewo BB o 1 0o o tC2_ b
= —>-- o Register 2—
+—C3
Register 3 >
Data — D

16

Decoder

2
mm co

1
0
0

:

0
0
0

W1 -

_CO

- C1

_C2

C3

Decoder

2
mm co

0 1

1 0

0 0
CO =IW1 & WO
C1=1IW1 & WO
C2 =W1 & WO

C3=W1&W0

|

0
0
0

W1 -

_CO

- C1

_C2

C3

Decoder

z
CCIEIEIEIE .

0 1

1 0

0 0
CO =IW1 & WO
C1=1IW1 & WO
C2 =W1 & WO

C3=W1&W0

|

0
0
0

W1

| f%%
QUL

CO

CT

C2

C3

Register File Write

Clock

Write Reg ID

Data

l

|

Co

Register 0
D J

Cl

Register 1
D g

C2

Register 2
D g

C3

Register 3
D g

Read Reg ID

1l

4:1
MUX

Out

18

Register File Write

Clock

Write Reg ID

Data

l

|

2:4
Decoder

Co

Register 0
D J

Cl

Register 1
D g

C2

Register 2
D g

C3

Register 3
D g

Read Reg ID

1l

4:1
MUX

Out

18

Register File Write

Clock

Write Reg ID

Data

lo

l_.

2:4
Decoder

Co

Register 0
D J

Cl

Register 1
D g

C2

Register 2
D g

C3

Register 3
D g

Read Reg ID

1l

4:1
MUX

Out

18

Register File Write

Clock

Write Reg ID

Data

lo

l_.

2:4
Decoder

Co

Register 0
D J

Cl

Register 1
D g

C2

Register 2
D g

C3

Register 3
D g

Read Reg ID

1l

4:1
MUX

Out

18

Register File Write

Clock

Write Reg ID

Data

lo

l_.

2:4
Decoder

Co

Register 0

Cl

Register 1
D g

C2

Register 2
D g

o

C3

Register 3
D g

Read Reg ID

1l

4:1
MUX

Out

18

Register File Write

Clock

Write Reg ID

Data

lo

l_.

2:4
Decoder

Co

Register 0

Cl

Register 1
D g

C2

Register 2
D g

o

C3

Register 3
D g

1l

4:1
MUX

-

Read Reg ID

Out

* This implementation can read 1 register and write 1 register at
the same time: 1 read port and 1 write port

18

Multi-Port Register File

* \What if we want to read multiple registers at the same time?

Clock

Write Reg ID
lo

l_.

2:4
Decoder

Co

Register 0

Cl

Register 1
D g

C2

Register 2
D g

Data

o

C3

Register 3
D g

Read Reg

b

4:1
MUX

ID

Out1

19

Multi-Port Register File

* \What if we want to read multiple registers at the same time?

Clock

Write Reg ID
lo

l_.

2:4
Decoder

Co

Register 0

Read Reg ID

b

Cl

Register 1
D g

C2

Register 2
D g

> Outi
4:1 |— >
MUX

Data

o

C3

Register 3
D g

Reg ID 2

4:-1 |Out2
MUX

19

Multi-Port Register File

* \What if we want to read multiple registers at the same time?

Clock

Co
Register 0

Read Reg ID

b

Cl
Register 1
D

2:4

Decoder| ¢ . =

Register 2
D g

Write Reg ID

l_.

> Outi
4:1 |— >
MUX

C3
Register 3
D

lo
|
o

Data

* This register file has 2 read ports and 1 write
port. How many ports do we actually need?

Reg ID 2

4:-1 |Out2
MUX

19

Multi-Port Register File

* |s this correct? What if we don’t want to write anything?

Clock

Write Reg ID
lo

l_.

2:4
Decoder

Co

Register 0

Read Reg ID

b

Cl

Register 1
D g

C2

Register 2
D g

> Outi
4:1 |— >
MUX

Data

o

C3

Register 3
D g

Reg ID 2

4:-1 |Out2
MUX

20

Multi-Port Register File

* |s this correct? What if we don’t want to write anything?

Clock

Write Reg ID

Data

Enable

Co

Register 0

b

Cl

Register 1
D g

C2

Register 2
D g

4:1
MUX

e e
0 +— D
— > 1
2:4 :)_._’,_
3 Decoder| ¢ | :)--»
0 e :)——b

C3

Register 3
D g

4:1
MUX

Read Reg ID

Out1

Read

Reg ID 2

Out2

20

Executing an ADD instruction

« How does the processor execute addg %$rax, $rsi

« The binary encodingis 60 06

Instruction Code
Add

AN

Function Code

/

addqg rA, rB

6|0

rA

rB

21

Executing an ADD instruction

« How does the processor execute addg %$rax, $rsi

« The binary encoding is 60 06 |nstruction Code Function Code
Add N/
addqg rA, rB 6|0|rArB
Memory
|_> (Later...)
Clock
— PC
_ A
Register L
File U
? T > Flags

Enable Clock Z1s 1o

D2

Executing an ADD instruction

« How does the processor execute addg %$rax, $rsi

« The binary encoding is 60 06 |nstruction Code Function Code
Add N/
addqg rA, rB 6|0|rArB
Memory
|_> (Later...)
Clock
—| PC
. A
Read Reg. _,) Register L
ID 1 .
File U
? T > Flags

Enable Clock Z1s 1o

D2

Executing an ADD instruction

« How does the processor execute addg %$rax, $rsi

« The binary encoding is 60 06 |nstruction Code Function Code
Add N/
addqg rA, rB 6|0|rArB
Memory
|_> (Later...)
Clock
—| PC
. A
Reallg Teg- —» Register L
Read Reg > File v
ID 2
? T > Flags

Enable Clock Z1s 1o

D2

Executing an ADD instruction

« How does the processor execute addg %$rax, $rsi

« The binary encoding is 60 06 |nstruction Code Function Code
Add N/
addqg rA, rB 6|0|rArB
Memory
|_> (Later...)
Clock
— PC
Reg 1 Data
> A
Reallg Teg- —» Register L
Read Reg. > File v
ID 2
? T > Flags

Enable Clock Z1s 1o

D2

Executing an ADD instruction

« How does the processor execute addg %$rax, $rsi

« The binary encodingis 60 06

Memory
|_> (Later...)
Clock
— PC

Instruction Code

Add AN

/

Function Code

addqg rA, rB 6|0 |rArB
Reg 1 Data
> A
Read Reg. _,| Register L
ID 1 File Reg 2 Data |
Read Reg. __, "
ID 2
f T > Flags
Enable Clock

D2

Executing an ADD instruction

« How does the processor execute addg %$rax, $rsi

« The binary encodingis 60 06

Memory
|_> (Later...)
Clock
— PC

Instruction Code

Add AN

Function Code

/

addqg rA, rB 6

O |rA|rB

Read Reg. >
ID 1

Read Reg. ,
ID 2

Reg 1 Data

lSeIect

Register
File Reg 2 Data

>

D'U

?

Ena

T

ble Clock

> Flags

D2

Executing an ADD instruction

« How does the processor execute addg %$rax, $rsi

« The binary encodingis 60 06

Memory
|_> (Later...)
Clock
— PC

Instruction Code

Function Code

Add \ /
addq rA, rB 6 O|rA|rB
newData
| # Select
Write
Req. D — Reg 1 Data> l
A
Read Reg. _,| Register L
ID 1 File Reg 2 Data |
Read Reg. __, "
D 2
f T > Flags
Enable Clock

D2

Executing an ADD instruction

« How does the processor execute addg %$rax, $rsi

« The binary encodingis 60 06

-

Memory
(Later...)

Clock

{

—

PC

Instruction Code

Function Code

Add \ /
addq rA, rB 6 O|rA|rB
newData
| # Select
Write
Req. D — Reg 1 Data> l
A
Read Reg. _,| Register L
ID 1 File Reg 2 Data |
Read Reg. __, "
D 2
f T > Flags
Enable Clock

D2

Executing an ADD instruction

« How does the processor execute addg %$rax, $rsi

« The binary encoding is 60 06 |nstruction Code Function Code
Add N/
addqg rA, rB 6|0|rArB
Memory
(Later...)
‘ newData
Clock T l ¢
— PC . Select
Write
sole6 Reg.D —> Reg 1 Data> l
A
s1/0 Read Reg. _,| Register L
s2| 0 ID 1 File Reg 2 Data U
Read Reg. >
s3|6 D2 >
? T > Flags

Enable Clock

Executing an ADD instruction

« How does the processor execute addg %$rax, $rsi

« The binary encoding is 60 06 |nstruction Code Function Code
Add N/
addqg rA, rB 6|0|rArB
Memory
(Later...)
‘ newData
Clock T l ¢
— PC . Select
Write
sole6 Reg.D —> Reg 1 Data> l
A
s1/0 /Read Reg. | Register L
s2| 0 ID 1 File Reg 2 Data U
Read Reg. >
s3|6 D2 >
? T > Flags

Enable Clock

Executing an ADD instruction

« How does the processor execute addg %$rax, $rsi

« The binary encoding is 60 06 |nstruction Code Function Code
Add N/
addqg rA, rB 6|0|rArB
Memory
(Later...)
‘ newData
Clock T l ¢
— PC . Select
Write
sol 6 Reg. D | Reg 1 Data> l
A
s1/0 /Read Reg. 5 Register L
s2| 0 ID 1 File Reg 2 Data U
s3| g /VReel‘S geg- —» g
= t 1 > Flags

Enable Clock

Executing an ADD instruction

« How does the processor execute addg %$rax, $rsi

« The binary encoding is 60 06 |nstruction Code Function Code
Add N/
addqg rA, rB 6|0|rArB
Memory
(Later...)
‘ newData
Clock T l ¢
— PC . Select
Write
sole6 Reg.D —> Reg 1 Data> l
A
s1/0 Read Reg. _,| Register L
s2| 0 ID 1 File Reg 2 Data U
Read Reg. >
s3|6 D2 >
? T > Flags

Enable Clock

Executing an ADD instruction

« How does the processor execute addg %$rax, $rsi

« The binary encoding is 60 06 |nstruction Code Function Code
Add N/
addqg rA, rB 6|0|rArB
Memory
(Later...)
‘ newData What
Clock T l # Logic?
— PC . Select
Write
sole6 Reg.D —> Reg 1 Data> l
A
s1(0 Read Reg. _,| Register L
s2| 0 ID 1 File Reg 2 Data U
Read Reg. >
3|6 D2 >
? T > Flags

Enable Clock

Executing an ADD instruction

« How does the processor execute addg %$rax, $rsi

« The binary encoding is 60 06 |nstruction Code Function Code
Add N/
addqg rA, rB 6|0|rArB
Memory
(Later...)
r newData 37 What
Clock T l # Logic?
—»| PC lSeIect
Reg 1 Data
s0| 6 >
s1|0 Read Reg. _,) Register ﬁ
s2| 0 ID 1 File Reg 2 Data U
Read Reg. >
s3| 6 D 2 9 —p
? T > Flags

Enable Clock

Executing an ADD instruction

 Logic 1: if (sO == 6) select = s1;

addg rA, rB 6| 0|rA|rB
Memory
‘ (Later...)
newData
T —> Logic 1
Clock__| v
N lSeIect
Reg 1 Data
s0| 6 > A
s1(0 Read Reg. _,| Register L
s2| g ID 1 File Reg 2 Data |
Read Reg. g
s3| 6 D2 '
f T > Flags

Enable Clock

Executing an ADD instruction

Clock

!

sO
si
s2

s3

 Logic 1: if (sO == 6) select = s1;

1D 1

Read Reg. ,

ID 2

Read Reg. >

Logic 2

addg rA, rB 6|0 |rArB
newData
—> Logic 1
¢ lSeIect
Reg 1 Data
> A
Register L
File Reg 2 Data N U
? T > Flags
Enable Clock

P3

Executing an ADD instruction

 Logic 1: if (sO == 6) select = s1;

addg rA, rB 6| 0|rA|rB
Memory
‘ (Later...)
newData
T —> Logic 1
Clock__| v
N lSeIect
Reg 1 Data
s0| 6 > A
s1(0 Read Reg. _,| Register L
s2| g ID 1 . Reg 2 Data
Read Reg Al g y
s3| 6 D2 '
; t .
. Flags
Logic 2 Enable Clock Z|ls

Executing an ADD instruction

 Logic 1: if (sO == 6) select = s1;
e Logic 2: if (sO == 6) Enable = 1; else Enable = 0;

addg rA, rB 6| 0|rA|rB
Memory
‘ (Later...)
newData
T —> Logic 1
Clock__| v
N lSeIect
Reg 1 Data
s0| 6 > A
s1(0 Read Reg. _,| Register L
s2| g ID 1 . Reg 2 Data
Read Reg Al g y
s3| 6 D2 '
; t .
. Flags
Logic 2 Enable Clock Z|ls

Executing an ADD instruction

 Logic 1: if (sO == 6) select = s1;

e Logic 2: if (sO == 6) Enable = 1; else Enable = 0;

addg rA, rB 6| 0|rA|rB
Memory
‘ "l (Later...)
newData
T —> Logic 1
Clock | v
i lSeIect
Reg 1 Data
sO| 6 > A
: silo Read Reg. i
Logic 3 s2| o D1~ Reg_lster Reg 2 Data]
Read Reg > File g y
s3| 6 D 2
5 1 >
. Flags
Logic 2 Enable Clock Z|ls

Executing an ADD instruction

 Logic 1: if (sO == 6) select = s1;

e Logic 2: if (sO == 6) Enable = 1; else Enable = 0;

Memory

|—' (Later...)
T

Clock 1
—»| PC

TnPC sO
s
s2

s3

Logic 3

Ol lelielle)

1D 1

ID 2

Read Reg. .

Read Reg. ,

Logic 2

addg rA, rB 6|0 |rArB
newData
—> Logic 1
v lSeIect
Reg 1 Data
> A
Register L
File Reg 2 Data N U
? T > Flags
Enable Clock

P3

Executing an ADD instruction

 Logic 1: if (sO == 6) select = s1;
e Logic 2: if (sO == 6) Enable = 1; else Enable = 0;

addg rA, rB 6| 0|rA|rB
Memory
‘ (Later...)
newData
T —> Logic 1
Clock | ¢
o lSeIect
OPC‘ TnPC sO| 6 o9 | Data' A
P s1|0 Read Reg. _,| Register L
ogic3 | ., 0 ID 1 . Reg 2 Data
Read Re Al g)
s3| 6 Do .
¥) >
. Flags
Logic 2 Enable Clock z|ls|lo

Executing an ADD instruction

 Logic 1: if (sO == 6) select = s1;
e Logic 2: if (sO == 6) Enable = 1; else Enable = 0;

addg rA, rB 6| 0|rA|rB
Memory
‘ (Later...)
newData
T —> Logic 1
Clock | ¢
o lSeIect
oPC‘ TnP(yso 6 Reg 1 Data> A
Logic 3 s1|0 Read Reg. _,| Register L
ogic3 | ., 0 ID 1 . Reg 2 Data
Read Re Al g)
s3| 6 Do .
3) >
. Flags
Logic 2 Enable Clock z|ls||o

Executing an ADD instruction

 Logic 1: if (sO == 6) select = s1;
e Logic 2: if (sO == 6) Enable = 1; else Enable = 0;
* Logic 3: if (sO == 6) nPC = oPC + 2;

addg rA, rB 6| 0|rA|rB
Memory
‘ (Later...)
newData
T —> Logic 1
Clock__| ;
o lSeIect
oPC‘ TnP(yso 6 Reg 1 Data> A
Logic 3 s1|0 Read Reg. _,| Register L
ogic3 | ., 0 ID 1 . Reg 2 Data
Read Re Al g)
s3| 6 Do .
3) >
. Flags
Logic 2 Enable Clock z|ls||o

Executing an ADD instruction

 Logic 1:if (sO == 6) select = s1;

e Logic 2: if (sO == 6) Enable = 1; else Enable = 0;
* Logic 3: if (sO == 6) nPC = oPC + 2;
« How about Logic 47?

Memory

|—' (Later...)
Clock T l

—> PC

opc) Thec S0
g
ogic 3 s

s3

Ol lelielle)

1D 1

ID 2

Read Reg. .

Read Reg. ,

Logic 2

addg rA, rB 6|0 |rArB
newData
—> Logic 1
v lSeIect
Reg 1 Data
> A
Register L
File Reg 2 Data N U
? T > Flags
Enable Clock Z1s 1o

P3

Executing an ADD instruction

 Logic 1: if (sO == 6) select = s1;

e Logic 2: if (sO == 6) Enable = 1; else Enable = 0;
* Logic 3: if (sO == 6) nPC = oPC + 2;

« How about Logic 47?

addg rA, rB 6| 0|rA|rB
Memory
‘ (Later...)
newData
T —> Logic 1
Clock__| v
O e Select
orc) frgrs0/6 =
Logic 3 s1|0 Read Reg. _,| Register L 1
s2/ D 1 File Reg 2 Data |
s3/6 feached —» 1% Logiﬂ
5 1 >
. Flags
Logic 2 Enable Clock z||s||o

Executing an ADD instruction

 Logic 1: if (sO == 6) select = s1; .

Logic 2: i (sO —= 6) Enable = 1- else Enable = 0- How do these logics
e Logic 2: if (sO == 6) Enable = 1; else Enable = 0; get implemented?
 Logic 3: if (sO == 6) nPC = oPC + 2; S ——
« How about Logic 47?

addg rA, rB 6|0 |rArB
Memory
‘ (Later...)
newData
T —> Logic 1
Clock__1 #
— PC Select
oPC‘ TnP(yso 6 Reg 1 Data>A\
s1|0 Read Reg. Reaqi
i — egister
Logic 3 s2| o ID 1 Ig"e Reg 2 Data IL_J T
s3| 6 Re&?g geg' —_— "/ Logio4
Logic 2 ! t > _ Flags
Enable Clock -1lsllo

Executing an ADD instruction

 Logic 1: if (sO == 6) select = s1; .

Logic 2: i (sO —= 6) Enable = 1- else Enable = 0- How do these logics
e Logic 2: if (sO == 6) Enable = 1; else Enable = 0; get implemented?
 Logic 3: if (sO == 6) nPC = oPC + 2; S ——
« How about Logic 47?

addg rA, rB 6| 0|rA|rB
Memory
‘ (Later...)
newData
T —> Logic 1
Clock__| v
O e Select
oPC‘ TnP(yso 6 o9 | Data’A\
: silo Read Reg. Reaqi
—>» Register T
Logic 3 s2[o ID 1 ,?"e Reg 2 Data IfJ
s3|6 Reﬁg geg' —> ’/ Loiﬂ
5 1 >
. E— Flags
Logic 2 Enable Clock Rising Z Sg o)
] edge

Executing an ADD instr

uction

« When the rising edge of the clock arrives, the RF/PC/Flags will be written.
« So the following has to be ready: newData, nPC, which means Logic1, Logic2,

Logic3, and Logic4 has to finish.

addqg rA, rB 6|0 |rArB
Memory
|_. (Later...)
newData
T —> Logic 1
Clock #
O e Select
oPC‘ TnP(yso 6 o9 | Data’A\
: silo Read Reg. Reaqi
—>» Register T
Logic 3 s2[o ID 1 Igile Reg 2 Data IfJ
s3|6 Reﬁg geg' —> ’/ Loiﬂ
i} 1 =
. E— Flags
Logic 2 Enable Clock Rising Z Sg o)
] edge

D4

