CSC 252: Computer Organization
Spring 2019: Lecture 14

Instructor: Yuhao Zhu

Department of Computer Science
University of Rochester

Action Items:
e Mid-term on Thursday, this room, 75 mins
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e Thursday office hours canceled. Traveling to meetings.
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Announcements

e | ab 2 grades are out. Talk to Yu if you saw issues.
e Thursday office hours canceled. Traveling to meetings.
e Mid-term exam: March 7; in class.

e Past exam and problem set: http://www.cs.rochester.edu/
courses/252/spring2019/handouts.html

e Open book test: any sort of paper-based product, e.g., book,
notes, magazine, old tests.

e Exams are designed to test your ability to apply what you have
learned and not your memory (though a good memory could help).

¢ Nothing electronic, including laptop, cell phone, calculator, etc.

¢ Nothing biological, including your roommate, huslband, wife,
your hamster, another professor, etc.

* ‘| don’t know” gets15% partial credit. Must erase everything else.


http://www.cs.rochester.edu/courses/252/spring2019/handouts.html
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Combinational Logic

Read current_states;
next_states = f(current_states);
When clock rises, current_states = next_states;

next_states has to be ready before the close rises
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Single-Cycle Microarchitecture

Clock l l l l

Register Flags
PC —» Memory 9 2151l
| File
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PC Inst. New Enable? Cur. Flag
I New Addr Rd/Wr Reg. Current | Values
Data : Reg. IDs Reg.
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Combinational Logic
Fetch

(Access Decode Memory Write

. (Access (Access Back
Inst#]ocr’%ons Register S Data from (Update
Memory) File) Memory) Reqister)

The execution time of an instruction is the delay of the combinational logic.
The next instruction can’t start until the previous instruction has finished.
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System Characteristics
o Computation requires total of 300 picoseconds
» Additional 20 picoseconds to save result in register
e Delay for each instruction: 320 ps
» The cycle time of the clock has to be at least 320 ps

« Throughput (how many operations can the system handle in a
second): 3.12 Giga Instructions Per Second (GIPS)
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System Characteristics
« Can push a new instruction every 120 ps

« The cycle time could be reduced to 120 ps

Delay = 360 ps
Throughput = 8.33 GIPS

Clock

« Delay for each instruction: 360 ps (60 ps in loading registers)

« Throughput (how many operations can the system handle in a
second): 8.33 Giga Instructions Per Second (GIPS)
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Operating a Pipeline
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Pipeline Trade-offs

e Pros:Increase throughput. Can process more instructions in a given time span.
e Cons: Increase latency as new registers are needed between pipeline stages.
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Unbalanced Pipeline

* A pipeline’s delay is limited by the slowest stage. This limits the
cycle time and the throughput
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Unbalanced Pipeline

* A pipeline’s delay is limited by the slowest stage. This limits the
cycle time and the throughput

170 ps
OP1 | A C
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Time >
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Mitigating Unbalanced Pipeline

e Solution 1: Further pipeline the slow stages
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e Solution 1: Further pipeline the slow stages

e Not always possible. What to do if we can’t further pipeline a stage”?
e Solution 2: Use multiple copies of the slow component
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Mitigating Unbalanced Pipeline

* Data sent to copy 1 in odd cycles and to copy 2 in even cycles.
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Mitigating Unbalanced Pipeline

* Data sent to copy 1 in odd cycles and to copy 2 in even cycles.
e This is called 2-way interleaving. Effectively the same as pipelining

Comb. logic B into two sub-stages.
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Mitigating Unbalanced Pipeline

* Data sent to copy 1 in odd cycles and to copy 2 in even cycles.
e This is called 2-way interleaving. Effectively the same as pipelining

Comb. logic B into two sub-stages.

e The cycle time is reduced to 70 ps (as opposed to 120 ps) at the cost

of extra hardware.
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W_icode, W_vaiM W_valE, W_valM, W_dsiE, 'W_dstM

Pipeline Stages

Fetch n—
» Select current PC

e Read instruction

« Compute incremented PC
Decode

» Read program registers
Execute

« Operate ALU
Memory

« Read or write data memory
Write Back

« Update register file o

Execute

Decode

~ Write back

Fetch

prodC
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Today: Making the Pipeline Really Work

e Control Dependencies
e What is it?
» Software mitigation: Inserting Nops
» Software mitigation: Delay Slots

17



Control Dependency

* Definition: Outcome of instruction A determines whether or not
instruction B should be executed or not.

e Jump instruction example below:

e jne L1 determines whether irmovg $1, %rax should be
executed

« But Jne doesn’t know its outcome until after its Execute stage

X0rg %srax, Ssrax

jne L1 # Not taken

irmovg $1, %rax # Fall Through
L1 irmovg $4, S%rcx # Target

irmovg $3, %rax # Target + 1

18
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Control Dependency

* Definition: Outcome of instruction A determines whether or not

instruction B should be executed or not.
e Jump instruction example below:

« jne L1 determines whether irmovg $1,

executed

« But Jne doesn’t know its outcome until after its Execute stage

]

Srax should be

2

3

4

5

X0rg %srax, Ssrax F

D

6

jne L1 # Not taken

nop

nop

irmovg $1, %rax
L1 irmovg $4, S%rcx

irmovg $3, %rax

# Fall Through
# Target
# Target + 1

F

7

m O m

8

m O/ mZ

omZ S

9

mom=Z s

<

Mmoo mZZ S

om=zZ =
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Control Dependency: Return Example

0x000:
O0x00a:
O0x013:
Ox01d:
0x020:
O0x02a:
O0x02b:
0x035:
O0x03f:
0x049:
0x100:

1rmovqg
call p
irmovg
halt

irmovg
ret

1rmovqg
1rmovqg
irmovg
irmovg

Stack:

Stack, $Srsp #
#
$5,%rsi i

S-1,%rdi #

$1, $rax
$2,%rcx
$3, srdx
S4,%rbx

= H o

Intialize stack pointer

Procedure call

Return point

procedure

Should
Should
Should
Should

Stack:

not be
not be
not be
not be

executed
executed
executed
executed

Stack pointer

19



Control Dependency: Correct Return

O0x0206:

Ox013:

ret F E| M| W
nop D| E| M| W
nop F|{ D| E| M| W
nop F| D| E| M| W
irmovg $5,%rsi F| D| E| M
W
valM = 0x013
F
valC <5
rB €< %$rsi
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Delay Slots

XO0rg %Srax, srax

==

L1l irmovg $4, %r
irmovg $3, %rax

1

F

N, Can we make use of
the 2 wasted slots?

# Fall Through
# Target

# Target + 1

m| O m

mo mZ

W

M | W

E MW

Dl E M W

F D E| M| W
F I D  E M
F| D E
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Delay Slots

1 2 3 4 5 6 7 8 9
XO0rg %Srax, srax F D E M W
Jae L1 I F D E M W
’ ™, Can we make use of F 1D E MW
the 2 wasted slots?
F D E M W
1 T O g™ # Fall Through F D E M W
L1 irmovg $4, %rcx # Target F D E M
irmovg $3, %rax # Target + 1 F D E
1f (cond) {
do_A();
} else {
do_B() 7
}
do C();
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Delay Slots

1 2 3 4 5 6 7 8 9

XOrg %rax, %srax F D E M W
! ™ Can we make use of " :::) E '\é \|</|V W
the 2 wasted slots?
F/ D E M| W
fffffffff o ST .2 # Fall Through F/' D E M W
L1 irmovg $4, %rcx # Target F D E M
irmovg $3, %rax # Target + 1 F D E

if (cond) {

do_A();
Have to make sure do C doesn’t \ elge {
dependon do Aand do B!!!
do_B() 7
}
do C();
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Delay Slots

1

XO0rg %Srax, srax F

N, Can we make use of
the 2 wasted slots?

# Fall Through
CxX # Target

# Target + 1

L1 dirmovg $4;<%

do C() ;
_ if (cond) {
A less obvious
example do A();
} else {
do_B() 7
}

m| O m

Mmoo mZ

W
M | W
E MW
Dl E M W
F D E| M| W
F I D  E M
F | D | E
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Delay Slots

XO0rg %Srax, srax

= =y 1 o .
/// ~

L1 dirmovg $4,<%

do C() ;
_ if (cond)
A less obvious
example do A();
} else {
do_B() 7
}

™, Can we make use of
the 2 wasted slots?

{

# Fall Through
CxX # Target

# Target + 1

i 2 3 4 5 6 7 8 9
F D E M W
F D E | M | W
F D E | M W
F D E M W
F D E M W
F D E M
F D E
add A, B
or C, D
sub E, F
Jle 0x200
add A, C
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Delay Slots

1 2 3 4 5 6 7 8
XO0rg %Srax, srax F D E M W
e Ll }}“"Can we make use of — :3 E '\é VI\X W
the 2 wasted slots?
F D E M| W
Ottt # Fall Through F D E M| W
L1 irmovg $4, %rcx # Target F D E M
irmovg $3, %rax # Target + 1 F D
do C(); add A, B add A, B
_ if (cond) { or C, D sub E, F
A less obvious ,
examp'e dO_A(); sub E, F jle 0x200
} else { Jle 0x200 or C, D
do B(); add A, C add A, C
}
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Delay Slots

1 2 3 4 5 6 7 8 9

XO0rg %Srax, srax F D E M W
AT ! \ Can we make use of — :::) E '\é K/IV W
the 2 wasted slots?
F D E M| W
~~~~~~~~ <7 K - # Fall Through F/ D E M W
L1 irmovg $4, %rcx # Target F D E M
irmovg $3, %rax # Target + 1 F| D|E
do C(); add A, B add A, B
_ if (cond) { or C, D sub E, F
A less obvious ,
examp'e dO_A(); sub E, F jle 0x200
} else { Jle 0x200 or C, D
do B(); add A, C add A, C
J Why don’t we move

the sub instruction?
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Resolving Control Dependencies

e Software Mechanisms

» Adding NOPs: requires compiler to insert nops, which also take
memory space — not a good idea

* Delay slot: insert instructions that do not depend on the effect
of the preceding instruction. These instructions will execute
even if the preceding branch is taken — old RISC approach

* Hardware mechanisms
e Stalling
e Branch Prediction
* Return Address Stack
* We will discuss them more later

23



Data Dependencies

1 irmovg $50, S%rax
2 addq $rax, 5%rbx

3 mrmovqg 100 (%rbx) ,

$rdx
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Data Dependencies

1 irmovg $50, S%rax
2 addq $rax, 3rbx
3 mrmovqg 100 (%rbx), %rdx

e Result from one instruction used as operand for another
» Read-after-write (RAW) dependency

« \Very common in actual programs

« Must make sure our pipeline handles these properly
» Get correct results

* Minimize performance impact

24



Data Dependencies in Single-Cycle Machines

Combinational I:
lodi
ogic g
Clock
OP1
OP2 <
OP3

Time

In Single-Cycle Implementation:
» Each operation starts only after the previous operation finishes.

Dependency always satisfied.



Data Dependencies in Pipeline Machines

Comb. R Comb. Comb. R
logic e logic logic e
A g B C g
lock
o1 [ A ] BJ[C Cloc
OP2 A B C
OP3 A B C
OP4 A B C
Time

Data Hazards happen when:

» Result does not feed back around in time for next operation
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Data Dependencies in Pipeline Machines

Comb. R Comb. R Comb. R
logic e logic e logic e
A g B g C g
Clock
ori[A [ B | CJ o
OP2 Al B | C
OP3 A | B | C
OP4 A B C
Time

Data Hazards happen when:
» Result does not feed back around in time for next operation



Data Dependencies: No Nop

2 3 4 5 6 7

0x000:
0x00a:
0x014:
Ox01l6:

1

irmovg $10, $rdx F

irmovg $3,%rax
addg %rdx, srax

halt

Remember registers get
updated in the Write-back stage

D E| M| W
F| D| E| M| W
F| D| E| M| W
F| D| E| M
Cycle 4
M
M_valE =10
M_dstE = %rdx
E
e valE €0+3=3
E_dstE =%rax
D
— E,
valA <R[%rdx] =04 | er
valB < R[%rax] =0
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Data Dependencies: No Nop

2 3 4 5 6 7

0x000:
0x00a:
0x014:
Ox01l6:

1

irmovg $10, $rdx

irmovg $3,%rax
addg %rdx, srax

halt

Remember registers get
updated in the Write-back stage

addq reads wrong %rdx and %rax

F| D| E| M| W
F| D| E| M| W
F| D| E| M| W
F| D| E| M
Cycle 4
M
M_valE =10
M_dstE = %rdx
E
e valE €0+3=3
E_dstE =%rax
D
— E,
valA <R[%rdx] =04 | er
valB < R[%rax] =0
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Data Dependencies:

0x000:
0x00a:
0x014:
0x015:
0x017:

addq still reads wrong %rdx and %rax

irmovg $10, $rdx
irmovg $3,%rax
nop

addg %rdx, srax

halt

1 Nop

2 3 4 5 6 7 8
F| Dl E| M| W
F| DI E| M| W
F| DI E| M| W
F| Dl E| M| W
F| D| E| M
W
R[%rdx] €10
M
M_valE =3

M_dstE =%rax

D

4/

valA <R[%rdx]=0,
valB < R[%$rax]=0

— Error
/
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Data Dependencies: 2 Nop’s

0x000:
0x00a:
0x014:
0x015:
0x01l6:
0x018:

addq reads the correct %rdx,
but %rax still wrong

irmovg $10, $rdx
irmovg $3,%rax
nop

nop

addg 5%rdx, $rax

halt

1 2 3 4 5 6 7 8 9 10
F| D| E| M| W
F| D| E| M| W
F| D| E| M| W
F| D| E| M| W
F| D| E| M| W
F| D| E| M| W
Cycle 6
W

R[srax] <3

D

valA < R[%5rdx]=1Q
valB €< R[%$rax]=0

_— Error
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Data Dependencies: 3 Nop’s

0x000:
0x00a:
0x014:
0x015:
0x01l6:
0x017:
0x019:

addq reads the correct %rdx

irmovg $10, $rdx
irmovg $3,%rax
nop

nop

nop

addg 5%rdx, $rax

halt

and %rax

1 2 3 4 5 6 7 8 9 10 1
F| D| E| M| W
F| D| E| M| W
F| D| E| M| W
F| D| E| M| W
F| D{ E| M| W
F| D| E| M| W
F| D| E| M| W
Cycle 6
W
R[srax] <3
Cycle 7
D

valA <R[%5rdx]=10
valB < R[%$rax]=3
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Resolving Data Dependencies

e Software Mechanisms

» Adding NOPs: requires compiler to insert nops, which also take
memory space — not a good idea

* Hardware mechanisms
e Stalling
e Forwarding
e Out-of-order execution
* We will discuss them more later
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Branch Prediction

Static Prediction
e Always Taken
e Always Not-taken
Dynamic Prediction
e Dynamically predict taken/not-taken for each specific jump instruction
If prediction is correct: pipeline moves forward without stalling
If mispredicted: kill mis-executed instructions, start from the correct target

32



Static Prediction



Static Prediction

Observation: Two uses of jumps

® People use jumps to check corner cases. These branches are mostly
not taken because corner cases are rare.

e People use jumps to implement loops. These branches are mostly
taken because a loop takes multiple iterations.
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Static Prediction

Observation: Two uses of jumps

® People use jumps to check corner cases. These branches are mostly
not taken because corner cases are rare.

e People use jumps to implement loops. These branches are mostly
taken because a loop takes multiple iterations.

cmpg $rsi, srdi
Jle .corner case
<do A>

.corner case:
<do B>

ret
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Static Prediction

Observation: Two uses of jumps

® People use jumps to check corner cases. These branches are mostly
not taken because corner cases are rare.

e People use jumps to implement loops. These branches are mostly
taken because a loop takes multiple iterations.

cmpg $rsi, srdi

Jle .corner case

<do A> \
.corner case:

<do B> Mostly not taken

ret
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Static Prediction

Observation: Two uses of jumps

® People use jumps to check corner cases. These branches are mostly
not taken because corner cases are rare.

e People use jumps to implement loops. These branches are mostly
taken because a loop takes multiple iterations.

Cllmpq $rsi, srdi <before>
Jle .corner case Ll: <body>
<do A>
— \ cmpg B, A
.corner case: o
<do B> Mostly not taken J .

ret <after>
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Static Prediction

Observation: Two uses of jumps

® People use jumps to check corner cases. These branches are mostly
not taken because corner cases are rare.

e People use jumps to implement loops. These branches are mostly
taken because a loop takes multiple iterations.

CIMpq srsi,srdi <before>
Jle -COLNEL Case .L1: <body> Mostly taken
<do A>

_ \ cmpg B, A

.corner case:

<do B> Mostly not taken J1 L1
ret <after>
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Static Prediction

Observation: Two uses of jumps

® People use jumps to check corner cases. These branches are mostly
not taken because corner cases are rare.

e People use jumps to implement loops. These branches are mostly
taken because a loop takes multiple iterations.

Strategy:
e Forward jumps (i.e., if-else): always predict not-taken
e Backward jumps (i.e., loop): always predict taken

CIMpq srsi,srdi <before>
Jle -COLNEL Case .L1: <body> Mostly taken
<do A>

_ \ cmpg B, A

.corner case:

<do B> Mostly not taken J1 L1
ret <after>

33



Static Prediction

Knowing branch prediction strategy helps us write faster code
e Any difference between the following two code snippets”?

¢ \What if you know that hardware uses the always non-taken
branch prediction?

if (cond) { 1f (!cond) {
do A() do B()
} else | } else {

do B () do A()
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Dynamic Prediction

e Simplest idea:

* |f last time taken, predict taken; if last time not-taken, predict
not-taken

* Called 1-bit branch predictor
* Works nicely for loops
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Dynamic Prediction

e Simplest idea:

* |f last time taken, predict taken; if last time not-taken, predict
not-taken

* Called 1-bit branch predictor
* Works nicely for loops

for (1i=0; 1 <5; i++) {..}
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e Simplest idea:

* |f last time taken, predict taken; if last time not-taken, predict
not-taken

* Called 1-bit branch predictor
* Works nicely for loops

for (1i=0; 1 <5; i++) {..}
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Dynamic Prediction

 With 1-bit prediction, we change our mind instantly if mispredict

* Might be too quick. Thus 2-bit branch prediction: we have to
mispredict twice in a row before changing our mind

36
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