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Last Lecture: Memory Hierarchy

* Fundamental tradeoft
¢ Fast memory: small
® | arge memory: slow
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Locality

* Principle of Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used recently

* Temporal locality: C 7

e Recently referenced items are likely
to be referenced again in the near future

e Spatial locality: (—7

e ltems with nearby addresses tend
to be referenced close together in time




Locality Example

sum = 0O;

for (1 = 0; 1 < n; i++)
sum += a[i];

return sum;

e Data references

« Spatial Locality: Reference array elements in succession (stride-1
reference pattern)

 Temporal Locality: Reference variable sum each iteration.

* |nstruction references
« Spatial Locality: Reference instructions in sequence.
« Temporal Locality: Cycle through loop repeatedly.
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Example Memory

. LO:
HlerarChy Regs CPU registers hold words
Smaller, retrieved from the L1 cache.
faster |_1/ L1 cache
and (SRAM) L1 cache holds cache lines
costlier retrieved from the L2 cache.
(per byte) L2: Izg;i?\?)e
storage L2 cache holds cache lines
devices retrieved from L3 cache
L3: L3 cache
(SRAM)
L3 cache holds cache lines
retrieved from main memory.
Larger, :
slower, L4: Main memory
and (DRAM) Main memory holds disk
cheaper blocks retrieved from
(per byte) local disks.
storage | . Local secondary storage
devices (local disks)
Local disks hold files
retrieved from disks
on remote servers
L6: Remote secondary storage

(e.g., Web servers)
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Cache lllustrations
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Cache lllustrations
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Cache lllustrations
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Cache lllustrations: Hit
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Cache lllustrations: Hit

CPU

Cache
(small but fast)

Memory
(big but slow)

Request: 14
8 9 14 3
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Data in address b is needed

Lookup
problem:

where to look
for block 14?
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Cache lllustrations: Hit

CPU

Cache
(small but fast)

Memory
(big but slow)

Request: 14
8 9 14 3
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Data in address b is needed

Address b is in cache: Hit!
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Cache lllustrations: Miss
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Cache lllustrations: Miss
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Cache lllustrations: Miss

CPU

Cache
(small but fast)

Memory
(big but slow)

Request: 12
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8 9 10 11
12 13 14 15

Data in address b is needed

Address b is not in
cache: Miss!
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Cache lllustrations: Miss
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Cache lllustrations: Miss
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Cache lllustrations: Miss

CPU
Request: 12 Data in address b is needed
Cache 2 3 12 3 Address b is not in
(small but fast) cache: Miss!
Address b is fetched from
12 Request: 12
memory
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Cache lllustrations: Miss

CPU
Request: 12 Data in address b is needed
A : .
Cache 2 5 12 3 ddress b is not in
(small but fast) cache: Miss!
Address b is fetched from
Request: 12
memory
0 1 2 3
Memory 2 . e -
(big but slow) Address b is stored in cache
8 9 10 11
12 13 14 15
000000000000 OCGOGOG OO
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Cache Hit Rate

* Cache hit is when you find the data in the cache
e Hit rate indicates the effectiveness of the cache

Hit Rate = # Hits

# Accesses



Two Fundamental Issues in Cache Management

* Placement
* \Where in the cache is data placed?
* Or more importantly, how can | find my data”
* Random placement”? Pros vs. cons
* Replacement
« Given more than one location to place, where is data placed?
e Or, what to kick out”?

13



Cache Management: Explicit

- Under explicit software control.

- Requirements:

- Cache and memory have different address spaces

- Different memory access instructions for cache and memory

- Often hard/impossible to get right

Main

Memory [
(DRAM)

Software-
Managed
Cache
(Local
SRAM)

Registers

-

* Examples of software-managed cache

* Sony Cell Broadband Engine (PS3): Local store
* DSPs: Scratchpad memory
* GPUs: “Shared memory”

* Stream Processors: Stream register file

., ALUs
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Want Automatic Management

* Software-managed cache is nice, but
e explicit management is painful
e often cannot tell statically what will be reused
* code portability suffers too

* Caches are thus mostly hardware-managed

* \When we say cache today, it almost always means hardware-
managed cache

e Software-managed cache is often called scratchpad memory

* Cray never believed in hardware-managed cache (“Caches are
for wimps!”)

Cray: https://en.wikipedia.org/wiki/Cray

143



Baseline Cache & Memory

Cache

Content Valid?

00
01
10
11

N K

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory

4 cache locations

e Also called cache-line

e FEvery location has a valid bit
16 memory locations

For now, assume cache location
Size == memory location size

Assume each memory location can
only reside in one cache-line

Cache is smaller than memory
(obviously)

e Thus, not all memory locations
can be cached at the same time
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Cache Placement

Cache

CA

addr

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory

Use memory address as a name

Apply a function to the name to
generate a cache address to
access

What are reasonable functions?
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Function to Address Cache

Cache

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
CA 1010

1011

1100

1101
1110
1111

addr

Memory

e Simplest function is a subset
of address bits

e Six combinations in total
* CA = ADDR[3],ADDR[2]
* CA = ADDR[3],ADDR[1]
« CA = ADDR[3],ADDR[0]
« CA = ADDR[2],ADDR[1]
- CA = ADDR[2],ADDR[0]
« CA = ADDR[1],ADDR[0]

* Direct-Mapped Cache
 CA = ADDR[1],ADDR[0]

18



Direct-Mapped Cache

Cache

AT

addr

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory

* Direct-Mapped Cache
 CA = ADDR[1],ADDR[0]

* Always use the lower order
address bits

19



Direct-Mapped Cache

Cache

AT

addr

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory

* Direct-Mapped Cache
 CA = ADDR[1],ADDR[0]

* Always use the lower order
address bits

* Multiple addresses can be
mapped to the same location
* £E.g.,, 0010 and 1010

How many / which
blocks map to the

2nd cache block,
l.e. CA=01?
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Direct-Mapped Cache

Cache

AT

addr

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory

* Direct-Mapped Cache
 CA = ADDR[1],ADDR[0]

* Always use the lower order
address bits

* Multiple addresses can be
mapped to the same location
* £E.g.,, 0010 and 1010

e How do we differentiate
between different memory
locations that are mapped to
the same cache location?

* Add a tag field for that purpose

« ADDR[3] and ADDRJ2] in this
particular example
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Direct-Mapped Cache

Cache

AT

addr

addr [3:2]
addr [3:2]
addr [3:2]
addr [3:2]
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Memory

* Direct-Mapped Cache
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address bits
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* £E.g.,, 0010 and 1010
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the same cache location?

* Add a tag field for that purpose
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particular example
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Direct-Mapped Cache
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* Always use the lower order
address bits

* Multiple addresses can be
mapped to the same location
* £E.g.,, 0010 and 1010

e How do we differentiate
between different memory
locations that are mapped to
the same cache location?

* Add a tag field for that purpose

« ADDR[3] and ADDRJ2] in this
particular example
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Example: Direct-Mapped Cache

Cache

addr[1:0]

‘T

addr

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101

Memory

Q0 |T0

for(i=0;i<4; ++i){
A += memli];

}

for(i=0;i<4; ++i){
B "= (meml[i] + A);

e Assume mem == 0b1000
e Read 0b1000
e Read 0b1001
e Read 0b1010
e Read 0Ob1011
e Read 0b1000; cache hit?
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Example: Direct-Mapped Cache

Cache Memory for (i=0;i<4; ++i) {
0000 A += mem|i;
0001 )
0010
0011 for(i=0;i<4; ++i){
0100 . - .
0101 B *= (mem][i] + A);
0110 )
0111
1000 a
18% g e Assume mem == 0b1000
1011 d e Read 0b1000 <=
1100

Yo « Read 0b1001
Oadiai « Read 0b1010

T e Read Ob1011
addr @ e Read 0b1000; cache hit?

20



Example: Direct-Mapped Cache

Cache Memory for (i=0;i<4; ++i) {
0000 A += memli];
0001 !
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0100 . - .
0101 B *= (mem][i] + A);
0110 }
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1000 a
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Yo « Read 0b1001 -«
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addr @ e Read 0b1000; cache hit?
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Example: Direct-Mapped Cache

Cache Memory for (i=0; i< 4; ++i) {
0000 A += mem]il;
0001 ]
0010
0011 for(i=0;i<4; ++i){
0100 . - .
o101 B *= (meml[i] + A):
0110 }
0111
1000 a
1001 B e Assume mem == 0b1000
1010 C
1011 d e Read 0b1000
1100

O e Read 0b1001
addr{1:0} @ Somo e Read 0b1010 <+

T e Read Ob1011
addr @ e Read 0b1000; cache hit?
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Example: Direct-Mapped Cache

Cache Memory for (i=0; i< 4; ++i) {
0000 A += mem]il;
0001 ]
0010
0011 for(i=0;i<4; ++i){
0100 . - .
o101 B *= (meml[i] + A):
0110 }
0111
1000 a
1001 B e Assume mem == 0b1000
1010 C
1011 d e Read 0b1000
1100

v o1 * Read 0b1001
Oadiai « Read 0b1010

5 e Read Ob1011 <4
addr @ e Read 0b1000; cache hit?
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Example: Direct-Mapped Cache

Cache Memory for (i=0; i< 4; ++i) {
0000 A += mem]il;
0001 ]
0010
0011 for(i=0;i<4; ++i){
0100 . - .
o101 B *= (meml[i] + A):
0110 }
0111
1000 a
1001 B e Assume mem == 0b1000
1010 C
1011 d e Read 0b1000
1100

M 1101 e Read 0b1001

Oadiai « Read 0b1010

T e Read Ob1011
addr @ e Read 0b1000; cache hit? <=
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One Possible Direct-Mapped Cache Implementation

Cache

. Cache
SRAM

f

tag + data

|(DRAM)

Memory

Mem

data

Cache state is RAM!

Implement cache as a single
SRAM

Need appropriate comparators

Memory is implemented as a
DRAM

21



Conflicts

Cache

addr[1:0]

‘T

addr

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101

Memory

O |TQ

Assume the following memory
access stream:

22



Conflicts

Cache

addr[1:0]

‘T

addr

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101

Memory

O |TQ

Assume the following memory
access stream:

e Read 1000
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Conflicts

Cache

AT

addr

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101

Memory

O |TQ

Assume the following memory
access stream:

e Read 1000
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Conflicts

Cache

\/
(=) Hiz
addr @

O |TQ

Assume the following memory
access stream:

e Read 1000
e Read 1001
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Conflicts

Cache

\/
(=) Hiz
addr @

O |TQ

Assume the following memory
access stream:

e Read 1000
e Read 1001
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Conflicts

Cache

AT

addr

O |TQ

Assume the following memory
access stream:

e Read 1000
e Read 1001
e Read 1010

22



Conflicts

Cache

AT

addr

O |TQ

Assume the following memory
access stream:

e Read 1000
e Read 1001
e Read 1010
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Conflicts

Cache

AT

addr

O |TQ

Assume the following memory
access stream:

e Read 1000
e Read 1001
e Read 1010

e Read 1101 (kick out 1001)

22



Conflicts

Cache

AT

addr

O |TQ

Assume the following memory
access stream:

e Read 1000

® Read 1001

e Read 1010

e Read 1101 (kick out 1001)
e addr[1:0]: 01

22



Conflicts

Cache

AT

addr

O |TQ

Assume the following memory
access stream:

e Read 1000

® Read 1001

e Read 1010

e Read 1101 (kick out 1001)
e addr[1:0]: 01
® addr[3:2]: 11
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Conflicts

Cache

AT

addr

O |TQ

Assume the following memory
access stream:

e Read 1000

® Read 1001

e Read 1010

e Read 1101 (kick out 1001)
e addr[1:0]: 01
® addr[3:2]: 11
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Conflicts

Cache

AT

addr

O |TQ

Assume the following memory
access stream:

e Read 1000

® Read 1001

e Read 1010

e Read 1101 (kick out 1001)
e addr[1:0]: 01
® addr[3:2]: 11

¢ Read 1001 -> Miss!
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Conflicts

Cache

AT

addr

O |TQ

Assume the following memory
access stream:

e Read 1000

® Read 1001

e Read 1010

e Read 1101 (kick out 1001)
e addr[1:0]: 01
® addr[3:2]: 11

¢ Read 1001 -> Miss!

e \Why? Each memory location
IS mapped to only one cache
location

22



Sets

e Each cacheable memory location

Cache Memory is mapped to a set of cache
0000 Iocatllons
0001 e A setis one or more cache
0010 locations
0011 . .
0100 e Set size is the number of locations
0101 INn a set, also called associativity
0110
0111
1000
1001
1010

1011
1100
1101
1110
1111

23



2 Way Set Associative

2 sets, each set has two entries

Only need one bit, addr[0] to index into
the cache now

Correspondingly, the tag needs 3 bits:
Addr[3:1]

Either entry can store any address that
gets mapped to that set

24



2 Way Set Associative

2 sets, each set has two entries

Only need one bit, addr[0] to index into
the cache now

Correspondingly, the tag needs 3 bits:
Addr[3:1]

Either entry can store any address that
gets mapped to that set

Now with the same access stream:
e Read 1000

e Read 1001

e Read 1010

e Read 1101 (1001 can still stay)
* Read 1001 -> Hit!
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4 Way Set Associative

e One single set that contains all the cache locations
e Also called Fully-Associative Cache
e Every entry can store any cache-line that maps to that set

o | N [ W NN w—
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4 Way Set Associative

e One single set that contains all the cache locations
e Also called Fully-Associative Cache

e Every entry can store any cache-line that maps to that set

Assuming the same access stream
* Read 1000
e Read 1001
e Read 1010
* Read 1101

® Read 1001 -> Hit!

25



Associative verses Direct Mapped Trade-offs

e Direct-Mapped cache
* Generally lower hit rate
* Simpler, Faster

e Associative cache

* Generally higher hit rate. Better utilization of cache resources
* Slower. Why?

\ 4
addr @ addr @ Hit?

26



Cache Access Summary (So far...)

* Assuming b bits in a memory address

* The b bits are split into two halves:
» Lower s bits used as index to find a set. Total sets S = 23
* The higher (b - s) bits are used for the tag

e Associativity n is independent of the the split between index and
tag

b S 0
tag ‘ index ‘

Memory
Address

Virtual or physical memory address?

27



Locality

* Principle of Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used recently

* Temporal locality: C 7

e Recently referenced items are likely
to be referenced again in the near future

e Spatial locality: (—7

e ltems with nearby addresses tend
to be referenced close together in time




>

Example Memory

. LO:
HlerarChy Regs CPU registers hold words
Smaller, retrieved from the L1 cache.
faster |_1/ L1 cache
and (SRAM) L1 cache holds cache lines
costlier retrieved from the L2 cache.
(per byte) L2: Izg;i?\?)e
storage L2 cache holds cache lines
devices retrieved from L3 cache
L3: L3 cache
(SRAM)
L3 cache holds cache lines
retrieved from main memory.
Larger, :
slower, L4: Main memory
and (DRAM) Main memory holds disk
cheaper blocks retrieved from
(per byte) local disks.
storage | . Local secondary storage
devices (local disks)
Local disks hold files
retrieved from disks
on remote servers
L6: Remote secondary storage

(e.g., Web servers)




Locality again

* So far: temporal locality
e What about spatial?
* |dea: Each cache location (cache line) store multiple bytes

28



Cache-Line Size of 2

Cache

AT

v
@—» Hit?

addr

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory

Q0 |TL

* Read 1000
e Read 1001 (Hit!)
* Read 1010
* Read 1011 (Hit!)

What's the
hit ratio?
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Cache Access Summary

* Assuming b bits in a memory address
e The b bits are split into three fields:

* Lower [ bits are used for byte offset within a cache line. Cache line
size L =2

* Next s bits used as index to find a set. Total sets S = 2°
* The higher (b - | - s) bits are used for the tag

e Associativity n is independent of the the split between index and tag

b [+s / 0
tag index ‘ offset ‘

Memory
Address

30



Handling Reads

* Read miss: Put into cache
* Any reason not to put into cache?
* Read hit: Nothing special. Enjoy the hit!
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Handling Writes (Hit)

e Intricacy: data value is modified!
e Implication: value in cache will be different from that in memory!

e \When do we write the modified data in a cache to the next level?
e \/Vrite through: At the time the write happens
e \/\rite back: When the cache line is evicted

e \Write-back
e + Can consolidate multiple writes to the same block before eviction. Potentially

saves bandwidth between cache and memory + saves energy
e - Need a bit in the tag store indicating the block is “dirty/modified”

e \Write-through
e + Simpler
e + Memory is up to date
¢ - More bandwidth intensive; no coalescing of writes

¢ - Requires transfer of the whole cache line (although only one byte might have
been modified)
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Handling Writes (Miss)

e Do we allocate a cache line on a write miss?
e \\/rite-allocate: Allocate on write miss
o Non-\Write-Allocate: No-allocate on write miss

e Allocate on write miss
e + Can consolidate writes instead of writing each of them
individually to memory
e + Simpler because write misses can be treated the same way
as read misses

e Non-allocate
e + Conserves cache space if locality of writes is low (potentially
better cache hit rate)
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Instruction vs. Data Caches

e Separate or Unified?

e Unified:
e + Dynamic sharing of cache space: no overprovisioning that might
happen with static partitioning (i.e., split Inst and Data caches)
e - |nstructions and data can thrash each other (i.e., no guaranteed
space for either)
¢ - [nst and Data are accessed in different places in the pipeline.
Where do we place the unified cache for fast access?

e First level caches are almost always split
e Mainly for the last reason above

e Second and higher levels are almost always unified
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Eviction/Replacement Policy
I s D D e

* Which cache line should be replaced?
¢ Direct mapped? Only one place!
e Associative caches? Multiple places!
* For associative cache:
e Any invalid cache line first
e [f all are valid, consult the replacement policy
e Randomly pick one?7??

e |deally: Replace the cache line that’s least likely going to be
used again

e Approximation: Least recently used (LRU)

35



Implementing LRU

* Question: 4-way set associative cache:
¢ \What do you need to implement LRU perfectly?
e Will the same mechanism work?
¢ Essentially have to track the ordering of all cache lines
¢ How many possible orderings are there?
¢ \What are the hardware structures needed”?
¢ |n reality, true LRU is never implemented. Too complex.

¢ Google Pseudo-LRU
Address stream:

Cache Lines I (5 ' '!i Ong
* AT ON
LRU index (2 bits) 1 . Wit on 3

What to update now??? « Miss, evict 1
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General Rule: Bigger == Slower

o T R e

* How big should the cache be?

* Too small and too much memory traffic

* Too large and cache slows down execution (high latency)
* Make multiple levels of cache

 Small L1 backed up by larger L2

* Joday’s processors typically have 3 cache levels
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Summary

e Assumptions:
* memory access (~100ns) >> cache access (~1ns)
« cache smaller, faster, more expensive than memory
* Programs exhibit femporal locality
 if an item is referenced, it will tend to be referenced again soon

e Programs exhibit spatial locality

« [f an item is referenced, the next item in memory is likely to be
accessed soon
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