CSC 252 Computer Organization

The Memory Hierarchy Part II

Chen Ding
Professor

Required reading:
Guest lecture

March 26 2019 Sections 6.4 and 6.5

Last Lecture: Memory Hierarchy

* Fundamental tradeoft
¢ Fast memory: small
® | arge memory: slow

CPU Main
rRE ||| Cache | < > Memory >
(Latch) (SRAM) (DRAM)

Hard Disk

How Things Have Progressed

A
N
N

1995 low- 2GB

mid range 5ms

2009 low- 750GB

mid range 4ms

www.dell.com, $449 including

2015 256GB

mid range 10us

30 XPOINT™ MEMORY MEDIA

Breaks the memory/storage barrier

MEMORY + STORAGE

3D XPoint™
SRAM DRAM g La‘fg“f Tlg%)(()ox NAND SSD HDD
Latency: 1X Latency: ~10X sl Latency: ~100,000X Latency: ~10 Million X
Size of Data: 1X Size of Data: ~100X , Size of Data: ~1,000X Size of Data: ~10,000X

NVM Solutions Group Intel® Optane™ Technology Workshop

https://cdn.arstechnica.net/wp-content/uploads/2017/03/IntelR-Optane TM-Technology-Workshop-
Analyst-and-Press-Slides-3-15...-4.jpeg

Chen Ding, University of Rochester

Locality

* Principle of Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used recently

* Temporal locality: C 7

e Recently referenced items are likely
to be referenced again in the near future

e Spatial locality: (—7

e ltems with nearby addresses tend
to be referenced close together in time

Locality Example

sum = 0O;

for (1 = 0; 1 < n; i++)
sum += a[i];

return sum;

e Data references

« Spatial Locality: Reference array elements in succession (stride-1
reference pattern)

 Temporal Locality: Reference variable sum each iteration.

* |nstruction references
« Spatial Locality: Reference instructions in sequence.
« Temporal Locality: Cycle through loop repeatedly.

>

Example Memory

. LO:
HlerarChy Regs CPU registers hold words
Smaller, retrieved from the L1 cache.
faster |_1/ L1 cache
and (SRAM) L1 cache holds cache lines
costlier retrieved from the L2 cache.
(per byte) L2: Izg;i?\?)e
storage L2 cache holds cache lines
devices retrieved from L3 cache
L3: L3 cache
(SRAM)
L3 cache holds cache lines
retrieved from main memory.
Larger, :
slower, L4: Main memory
and (DRAM) Main memory holds disk
cheaper blocks retrieved from
(per byte) local disks.
storage | . Local secondary storage
devices (local disks)
Local disks hold files
retrieved from disks
on remote servers
L6: Remote secondary storage

(e.g., Web servers)

Cache lllustrations

CPU

Memory

(big but slow)

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Cache lllustrations

CPU

Cache
(small but fast)| =2 S | I | -

0 1 2 3
Memory
(big but slow) | == 2 ° !

8 9 10 11

12 13 14 15

o 0000000000 0O0C0OCGOGEOGOO

Cache lllustrations

CPU

Cache
(small but fast)| =2 S | I | -

0 1 2 3
Memory
(big but slow) | == 2 ° !

8 9 10 11

12 13 14 15

o 0000000000 0O0C0OCGOGEOGOO

Cache lllustrations

CPU

Cache
(small but fast)

Memory
(big but slow)

14

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Placement
problem:
Where does
block 4 go?

Cache lllustrations

CPU

Cache
(small but fast)| — S | I | -

0 1 2 3
Memory
(big but slow) | == 2 ° !

8 9 10 11

12 13 14 15

o 0000000000 0O0C0OCGOGEOGOO

Cache lllustrations

CPU

Cache
(small but fast)| — S | I | -

0 1 2 3
Memory
(big but slow) | == 2 ° !

8 9 10 11

12 13 14 15

o 0000000000 0O0C0OCGOGEOGOO

Cache lllustrations

CPU

Cache
(small but fast)

Memory
(big but slow)

4 9 14 3
10
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Where does
10 go?

Cache lllustrations

CPU
Cache
(small but fast)| == o [10 |[3
0 1 2 3
Memory
(big but slow) | = 5 6 7
8 9 10 11
0 0000000000000 0 00

Cache lllustrations: Hit

CPU

Cache
(small but fast)| =2 S | I | -

0 1 2 3
Memory
(big but slow) | == 2 ° !

8 9 10 11

12 13 14 15

O 000000000000 OCGOGEOGOO

Cache lllustrations: Hit

CPU

Cache
(small but fast)

Memory
(big but slow)

Request: 14
8 9 14 3
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Data in address b is needed

Lookup
problem:

where to look
for block 14?

10

Cache lllustrations: Hit

CPU

Cache
(small but fast)

Memory
(big but slow)

Request: 14
8 9 14 3
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Data in address b is needed

Address b is in cache: Hit!

10

Cache lllustrations: Miss

CPU

Cache
(small but fast)| =2 S | I | -

0 1 2 3
Memory
(big but slow) | == 2 ° !

8 9 10 11

12 13 14 15

O 000000000000 OCGOGEOGOO

Cache lllustrations: Miss

CPU
Request: 12
Cache
8 9 14 3
(small but fast)
0 1 2 3
Memory
. 4 5 6 7
(big but slow)
8 9 10 11
12 13 14 15
000000000000 OCGOGOG OO

Cache lllustrations: Miss

CPU

Cache
(small but fast)

Memory
(big but slow)

Request: 12
8 9 14 3
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Data in address b is needed

Address b is not in
cache: Miss!

11

Cache lllustrations: Miss

CPU
Request: 12 Data in address b is needed
Cache 2 3 12 3 Address b is not in
(small but fast) cache: Miss!
Address b is fetched from
Request: 12
memory
0 1 2 3
Mgmory 4 5 6 7
(big but slow)
8 9 10 11
12 13 14 15
O 000000000000 OCGOGEOGOO

Cache lllustrations: Miss

CPU
Request: 12 Data in address b is needed
Cache 2 3 12 3 Address b is not in
(small but fast) cache: Miss!
Address b is fetched from
Request: 12
memory
0 1 2 3
Mgmory 4 5 6 7
(big but slow)
8 9 10 11
12 13 14 15
O 000000000000 OCGOGEOGOO

Cache lllustrations: Miss

CPU
Request: 12 Data in address b is needed
Cache 2 3 12 3 Address b is not in
(small but fast) cache: Miss!
Address b is fetched from
12 Request: 12
memory
0 1 2 3
Memory s [5 [s I[7 Where does
(big but slow)
8 9 10 11 12 90')
12 13 14 15
O 000000000000 OCGOGEOGOO

11

Cache lllustrations: Miss

CPU
Request: 12 Data in address b is needed
A : .
Cache 2 5 12 3 ddress b is not in
(small but fast) cache: Miss!
Address b is fetched from
Request: 12
memory
0 1 2 3
Memory 2 . e -
(big but slow) Address b is stored in cache
8 9 10 11
12 13 14 15
000000000000 OCGOGOG OO

11

Cache Hit Rate

* Cache hit is when you find the data in the cache
e Hit rate indicates the effectiveness of the cache

Hit Rate = # Hits

Accesses

Two Fundamental Issues in Cache Management

* Placement
* \Where in the cache is data placed?
* Or more importantly, how can | find my data”
* Random placement”? Pros vs. cons
* Replacement
« Given more than one location to place, where is data placed?
e Or, what to kick out”?

13

Cache Management: Explicit

- Under explicit software control.

- Requirements:

- Cache and memory have different address spaces

- Different memory access instructions for cache and memory

- Often hard/impossible to get right

Main

Memory [
(DRAM)

Software-
Managed
Cache
(Local
SRAM)

Registers

-

* Examples of software-managed cache

* Sony Cell Broadband Engine (PS3): Local store
* DSPs: Scratchpad memory
* GPUs: “Shared memory”

* Stream Processors: Stream register file

., ALUs

14

Want Automatic Management

* Software-managed cache is nice, but
e explicit management is painful
e often cannot tell statically what will be reused
* code portability suffers too

* Caches are thus mostly hardware-managed

* \When we say cache today, it almost always means hardware-
managed cache

e Software-managed cache is often called scratchpad memory

* Cray never believed in hardware-managed cache (“Caches are
for wimps!”)

Cray: https://en.wikipedia.org/wiki/Cray

143

Baseline Cache & Memory

Cache

Content Valid?

00
01
10
11

N K

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory

4 cache locations

e Also called cache-line

e FEvery location has a valid bit
16 memory locations

For now, assume cache location
Size == memory location size

Assume each memory location can
only reside in one cache-line

Cache is smaller than memory
(obviously)

e Thus, not all memory locations
can be cached at the same time

16

Cache Placement

Cache

CA

addr

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory

Use memory address as a name

Apply a function to the name to
generate a cache address to
access

What are reasonable functions?

17

Function to Address Cache

Cache

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
CA 1010

1011

1100

1101
1110
1111

addr

Memory

e Simplest function is a subset
of address bits

e Six combinations in total
* CA = ADDR[3],ADDR[2]
* CA = ADDR[3],ADDR[1]
« CA = ADDR[3],ADDR[0]
« CA = ADDR[2],ADDR[1]
- CA = ADDR[2],ADDR[0]
« CA = ADDR[1],ADDR[0]

* Direct-Mapped Cache
 CA = ADDR[1],ADDR[0]

18

Direct-Mapped Cache

Cache

AT

addr

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory

* Direct-Mapped Cache
 CA = ADDR[1],ADDR[0]

* Always use the lower order
address bits

19

Direct-Mapped Cache

Cache

AT

addr

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory

* Direct-Mapped Cache
 CA = ADDR[1],ADDR[0]

* Always use the lower order
address bits

* Multiple addresses can be
mapped to the same location
* £E.g.,, 0010 and 1010

How many / which
blocks map to the

2nd cache block,
l.e. CA=01?

19

Direct-Mapped Cache

Cache

AT

addr

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory

* Direct-Mapped Cache
 CA = ADDR[1],ADDR[0]

* Always use the lower order
address bits

* Multiple addresses can be
mapped to the same location
* £E.g.,, 0010 and 1010

e How do we differentiate
between different memory
locations that are mapped to
the same cache location?

* Add a tag field for that purpose

« ADDR[3] and ADDRJ2] in this
particular example

19

Direct-Mapped Cache

Cache

AT

addr

addr [3:2]
addr [3:2]
addr [3:2]
addr [3:2]

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory

* Direct-Mapped Cache
 CA = ADDR[1],ADDR[0]

* Always use the lower order
address bits

* Multiple addresses can be
mapped to the same location
* £E.g.,, 0010 and 1010

e How do we differentiate
between different memory
locations that are mapped to
the same cache location?

* Add a tag field for that purpose

« ADDR[3] and ADDRJ2] in this
particular example

19

Direct-Mapped Cache

Cache

AT

addr

addr [3:2]
addr [3:2]
addr [3:2]
addr [3:2]

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101

Memory

* Direct-Mapped Cache
 CA = ADDR[1],ADDR[0]

* Always use the lower order
address bits

* Multiple addresses can be
mapped to the same location
* £E.g.,, 0010 and 1010

e How do we differentiate
between different memory
locations that are mapped to
the same cache location?

* Add a tag field for that purpose

« ADDR[3] and ADDRJ2] in this
particular example

19

Example: Direct-Mapped Cache

Cache

addr[1:0]

‘T

addr

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101

Memory

Q0 |T0

for(i=0;i<4; ++i){
A += memli];

}

for(i=0;i<4; ++i){
B "= (meml[i] + A);

e Assume mem == 0b1000
e Read 0b1000
e Read 0b1001
e Read 0b1010
e Read 0Ob1011
e Read 0b1000; cache hit?

20

Example: Direct-Mapped Cache

Cache Memory for (i=0;i<4; ++i) {
0000 A += mem|i;
0001)
0010
0011 for(i=0;i<4; ++i){
0100 . - .
0101 B *= (mem][i] + A);
0110)
0111
1000 a
18% g e Assume mem == 0b1000
1011 d e Read 0b1000 <=
1100

Yo « Read 0b1001
Oadiai « Read 0b1010

T e Read Ob1011
addr @ e Read 0b1000; cache hit?

20

Example: Direct-Mapped Cache

Cache Memory for (i=0;i<4; ++i) {
0000 A += memli];
0001 !
0010
0011 for(i=0;i<4; ++i){
0100 . - .
0101 B *= (mem][i] + A);
0110 }
0111
1000 a
o g e Assume mem == 0b1000
1011 d e Read 0b1000
1100

Yo « Read 0b1001 -«
Oadiai « Read 0b1010

T e Read Ob1011
addr @ e Read 0b1000; cache hit?

20

Example: Direct-Mapped Cache

Cache Memory for (i=0; i< 4; ++i) {
0000 A += mem]il;
0001]
0010
0011 for(i=0;i<4; ++i){
0100 . - .
o101 B *= (meml[i] + A):
0110 }
0111
1000 a
1001 B e Assume mem == 0b1000
1010 C
1011 d e Read 0b1000
1100

O e Read 0b1001
addr{1:0} @ Somo e Read 0b1010 <+

T e Read Ob1011
addr @ e Read 0b1000; cache hit?

20

Example: Direct-Mapped Cache

Cache Memory for (i=0; i< 4; ++i) {
0000 A += mem]il;
0001]
0010
0011 for(i=0;i<4; ++i){
0100 . - .
o101 B *= (meml[i] + A):
0110 }
0111
1000 a
1001 B e Assume mem == 0b1000
1010 C
1011 d e Read 0b1000
1100

v o1 * Read 0b1001
Oadiai « Read 0b1010

5 e Read Ob1011 <4
addr @ e Read 0b1000; cache hit?

20

Example: Direct-Mapped Cache

Cache Memory for (i=0; i< 4; ++i) {
0000 A += mem]il;
0001]
0010
0011 for(i=0;i<4; ++i){
0100 . - .
o101 B *= (meml[i] + A):
0110 }
0111
1000 a
1001 B e Assume mem == 0b1000
1010 C
1011 d e Read 0b1000
1100

M 1101 e Read 0b1001

Oadiai « Read 0b1010

T e Read Ob1011
addr @ e Read 0b1000; cache hit? <=

20

One Possible Direct-Mapped Cache Implementation

Cache

. Cache
SRAM

f

tag + data

|(DRAM)

Memory

Mem

data

Cache state is RAM!

Implement cache as a single
SRAM

Need appropriate comparators

Memory is implemented as a
DRAM

21

Conflicts

Cache

addr[1:0]

‘T

addr

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101

Memory

O |TQ

Assume the following memory
access stream:

22

Conflicts

Cache

addr[1:0]

‘T

addr

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101

Memory

O |TQ

Assume the following memory
access stream:

e Read 1000

22

Conflicts

Cache

AT

addr

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101

Memory

O |TQ

Assume the following memory
access stream:

e Read 1000

22

Conflicts

Cache

\/
(=) Hiz
addr @

O |TQ

Assume the following memory
access stream:

e Read 1000
e Read 1001

22

Conflicts

Cache

\/
(=) Hiz
addr @

O |TQ

Assume the following memory
access stream:

e Read 1000
e Read 1001

22

Conflicts

Cache

AT

addr

O |TQ

Assume the following memory
access stream:

e Read 1000
e Read 1001
e Read 1010

22

Conflicts

Cache

AT

addr

O |TQ

Assume the following memory
access stream:

e Read 1000
e Read 1001
e Read 1010

22

Conflicts

Cache

AT

addr

O |TQ

Assume the following memory
access stream:

e Read 1000
e Read 1001
e Read 1010

e Read 1101 (kick out 1001)

22

Conflicts

Cache

AT

addr

O |TQ

Assume the following memory
access stream:

e Read 1000

® Read 1001

e Read 1010

e Read 1101 (kick out 1001)
e addr[1:0]: 01

22

Conflicts

Cache

AT

addr

O |TQ

Assume the following memory
access stream:

e Read 1000

® Read 1001

e Read 1010

e Read 1101 (kick out 1001)
e addr[1:0]: 01
® addr[3:2]: 11

22

Conflicts

Cache

AT

addr

O |TQ

Assume the following memory
access stream:

e Read 1000

® Read 1001

e Read 1010

e Read 1101 (kick out 1001)
e addr[1:0]: 01
® addr[3:2]: 11

22

Conflicts

Cache

AT

addr

O |TQ

Assume the following memory
access stream:

e Read 1000

® Read 1001

e Read 1010

e Read 1101 (kick out 1001)
e addr[1:0]: 01
® addr[3:2]: 11

¢ Read 1001 -> Miss!

22

Conflicts

Cache

AT

addr

O |TQ

Assume the following memory
access stream:

e Read 1000

® Read 1001

e Read 1010

e Read 1101 (kick out 1001)
e addr[1:0]: 01
® addr[3:2]: 11

¢ Read 1001 -> Miss!

e \Why? Each memory location
IS mapped to only one cache
location

22

Sets

e Each cacheable memory location

Cache Memory is mapped to a set of cache
0000 Iocatllons
0001 e A setis one or more cache
0010 locations
0011 . .
0100 e Set size is the number of locations
0101 INn a set, also called associativity
0110
0111
1000
1001
1010

1011
1100
1101
1110
1111

23

2 Way Set Associative

2 sets, each set has two entries

Only need one bit, addr[0] to index into
the cache now

Correspondingly, the tag needs 3 bits:
Addr[3:1]

Either entry can store any address that
gets mapped to that set

24

2 Way Set Associative

2 sets, each set has two entries

Only need one bit, addr[0] to index into
the cache now

Correspondingly, the tag needs 3 bits:
Addr[3:1]

Either entry can store any address that
gets mapped to that set

Now with the same access stream:
e Read 1000

e Read 1001

e Read 1010

e Read 1101 (1001 can still stay)
* Read 1001 -> Hit!

24

4 Way Set Associative

e One single set that contains all the cache locations
e Also called Fully-Associative Cache
e Every entry can store any cache-line that maps to that set

o | N [W NN w—

25

4 Way Set Associative

e One single set that contains all the cache locations
e Also called Fully-Associative Cache

e Every entry can store any cache-line that maps to that set

Assuming the same access stream
* Read 1000
e Read 1001
e Read 1010
* Read 1101

® Read 1001 -> Hit!

25

Associative verses Direct Mapped Trade-offs

e Direct-Mapped cache
* Generally lower hit rate
* Simpler, Faster

e Associative cache

* Generally higher hit rate. Better utilization of cache resources
* Slower. Why?

\ 4
addr @ addr @ Hit?

26

Cache Access Summary (So far...)

* Assuming b bits in a memory address

* The b bits are split into two halves:
» Lower s bits used as index to find a set. Total sets S = 23
* The higher (b - s) bits are used for the tag

e Associativity n is independent of the the split between index and
tag

b S 0
tag ‘ index ‘

Memory
Address

Virtual or physical memory address?

27

Locality

* Principle of Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used recently

* Temporal locality: C 7

e Recently referenced items are likely
to be referenced again in the near future

e Spatial locality: (—7

e ltems with nearby addresses tend
to be referenced close together in time

>

Example Memory

. LO:
HlerarChy Regs CPU registers hold words
Smaller, retrieved from the L1 cache.
faster |_1/ L1 cache
and (SRAM) L1 cache holds cache lines
costlier retrieved from the L2 cache.
(per byte) L2: Izg;i?\?)e
storage L2 cache holds cache lines
devices retrieved from L3 cache
L3: L3 cache
(SRAM)
L3 cache holds cache lines
retrieved from main memory.
Larger, :
slower, L4: Main memory
and (DRAM) Main memory holds disk
cheaper blocks retrieved from
(per byte) local disks.
storage | . Local secondary storage
devices (local disks)
Local disks hold files
retrieved from disks
on remote servers
L6: Remote secondary storage

(e.g., Web servers)

Locality again

* So far: temporal locality
e What about spatial?
* |dea: Each cache location (cache line) store multiple bytes

28

Cache-Line Size of 2

Cache

AT

v
@—» Hit?

addr

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory

Q0 |TL

* Read 1000
e Read 1001 (Hit!)
* Read 1010
* Read 1011 (Hit!)

What's the
hit ratio?

29

Cache Access Summary

* Assuming b bits in a memory address
e The b bits are split into three fields:

* Lower [bits are used for byte offset within a cache line. Cache line
size L =2

* Next s bits used as index to find a set. Total sets S = 2°
* The higher (b - | - s) bits are used for the tag

e Associativity n is independent of the the split between index and tag

b [+s / 0
tag index ‘ offset ‘

Memory
Address

30

Handling Reads

* Read miss: Put into cache
* Any reason not to put into cache?
* Read hit: Nothing special. Enjoy the hit!

383

Handling Writes (Hit)

e Intricacy: data value is modified!
e Implication: value in cache will be different from that in memory!

e \When do we write the modified data in a cache to the next level?
e \/Vrite through: At the time the write happens
e \/\rite back: When the cache line is evicted

e \Write-back
e + Can consolidate multiple writes to the same block before eviction. Potentially

saves bandwidth between cache and memory + saves energy
e - Need a bit in the tag store indicating the block is “dirty/modified”

e \Write-through
e + Simpler
e + Memory is up to date
¢ - More bandwidth intensive; no coalescing of writes

¢ - Requires transfer of the whole cache line (although only one byte might have
been modified)

32

Handling Writes (Miss)

e Do we allocate a cache line on a write miss?
e \\/rite-allocate: Allocate on write miss
o Non-\Write-Allocate: No-allocate on write miss

e Allocate on write miss
e + Can consolidate writes instead of writing each of them
individually to memory
e + Simpler because write misses can be treated the same way
as read misses

e Non-allocate
e + Conserves cache space if locality of writes is low (potentially
better cache hit rate)

33

Instruction vs. Data Caches

e Separate or Unified?

e Unified:
e + Dynamic sharing of cache space: no overprovisioning that might
happen with static partitioning (i.e., split Inst and Data caches)
e - |nstructions and data can thrash each other (i.e., no guaranteed
space for either)
¢ - [nst and Data are accessed in different places in the pipeline.
Where do we place the unified cache for fast access?

e First level caches are almost always split
e Mainly for the last reason above

e Second and higher levels are almost always unified

34

Eviction/Replacement Policy
I s D D e

* Which cache line should be replaced?
¢ Direct mapped? Only one place!
e Associative caches? Multiple places!
* For associative cache:
e Any invalid cache line first
e [f all are valid, consult the replacement policy
e Randomly pick one?7??

e |deally: Replace the cache line that’s least likely going to be
used again

e Approximation: Least recently used (LRU)

35

Implementing LRU

* Question: 4-way set associative cache:
¢ \What do you need to implement LRU perfectly?
e Will the same mechanism work?
¢ Essentially have to track the ordering of all cache lines
¢ How many possible orderings are there?
¢ \What are the hardware structures needed”?
¢ |n reality, true LRU is never implemented. Too complex.

¢ Google Pseudo-LRU
Address stream:

Cache Lines I (5 ' '!i Ong
* AT ON
LRU index (2 bits) 1 . Wit on 3

What to update now??? « Miss, evict 1

37

General Rule: Bigger == Slower

o T R e

* How big should the cache be?

* Too small and too much memory traffic

* Too large and cache slows down execution (high latency)
* Make multiple levels of cache

 Small L1 backed up by larger L2

* Joday’s processors typically have 3 cache levels

343

Summary

e Assumptions:
* memory access (~100ns) >> cache access (~1ns)
« cache smaller, faster, more expensive than memory
* Programs exhibit femporal locality
 if an item is referenced, it will tend to be referenced again soon

e Programs exhibit spatial locality

« [f an item is referenced, the next item in memory is likely to be
accessed soon

394

