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Locality

* Principle of Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used recently

* Temporal locality: C 7

e Recently referenced items are likely
to be referenced again in the near future

e Spatial locality: (—7

e ltems with nearby addresses tend
to be referenced close together in time




>

Example Memory

. LO:
HlerarChy Regs CPU registers hold words
Smaller, retrieved from the L1 cache.
faster |_1/ L1 cache
and (SRAM) L1 cache holds cache lines
costlier retrieved from the L2 cache.
(per byte) L2: Izg;i?\?)e
storage L2 cache holds cache lines
devices retrieved from L3 cache
L3: L3 cache
(SRAM)
L3 cache holds cache lines
retrieved from main memory.
Larger, :
slower, L4: Main memory
and (DRAM) Main memory holds disk
cheaper blocks retrieved from
(per byte) local disks.
storage | . Local secondary storage
devices (local disks)
Local disks hold files
retrieved from disks
on remote servers
L6: Remote secondary storage

(e.g., Web servers)




Today

* Review: Cache memory organization and operation

Optimizing lrregular and dynamic applications [32]



Cache Access

E = 2¢ lines per set
A

Address of word:

t bits s bits | b bits

“ N
S = 25 sets { e

eoee tag set block
index offset




Cache Access

S = 25 sets {

E = 2¢ lines per set
A

* [locate set

Address of word:

t bits s bits | b bits

— A

tag set block
index offset




Cache Access

S = 25 sets {

E = 2¢ lines per set

A

* Locate set

* Check if any line in set
has matching tag

* Yes + line valid: hit

Address of word:

t bits s bits | b bits

S~

tag set block
index offset

Vv

tag

B-1

A

|
valid bit

7

B = 2P bytes per cache block (the data)



Cache Access

S = 25 sets {

E = 2¢ lines per set

A

* Locate set

* Check if any line in set
has matching tag

* Yes + line valid: hit

* Locate data starting
at offset

Address of word:

t bits s bits | b bits

— A

tag set block
index offset

data begins at this offset
\"} tag 112 ] ceceee B-1 CaChe Ilne p——
! S — cache block?
valid bit

B = 2P bytes per cache block (the data)



Example: Direct Mapped Cache

Direct mapped: One line per set
Assume: cache block size 8 bytes

Address of char:

valid? + match: assume yes = hit

t bits 0..01 | 100

v tag ol1]2]|3]al5]6]|7

block offset

Byte 4 is here Cache line ==
cache block?

If tag doesn’t match: old line is evicted and replaced



Direct-Mapped Cache Simulation

t=1

s=2

b

=1

X

XX

X

Set 0
Setl
Set 2
Set 3

4-bit address space, i.e., Memory = 16 bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):

0 0000,],
1 0001,],
7 0111,],
8 1000,],
0 0000,
v Tag Line
0 MI[O-1]
1 0 M[6-7]

miss
hit
miss
miss
miss

1



E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

Address of short int:

'} tag 0|112]314|5]6]|7

tag

t bits 0..01 | 100
v tag 0|112]|3|4]5]|6]|7 tag 5167
vl [tag | [o]1]2[3]2]5][6]7 tag | 5]6]7 find set
v tag 0|112]|3|4]5]|6]|7 tag 5167
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E-way Set Associative Cache (Here: E = 2)

E =2: Two lines per set
Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

compare both

valid? + |match: yes = hit

'} tag 011|2|314|5]|6]7 v tag 0]1]12]3]4]|5]6]7

block offset

short int (2 Bytes) is here

No match:
* One line in set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...
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2-Way Set Associative Cache Simulation

t=2 s=1 b=1
XX X X 4-bit address space, i.e., Memory = 16 bytes

S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

0 0000,],
1 0001,],
7 0111,],
8 1000, ],
0 0000, ]
v Tag Block
seto |0 1° |7
0
Set1 L
0




2-Way Set Associative Cache Simulation

t=2

s=1

b

=1

XX

X

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

0 0000,],
1 0001,],
7 0111,],
8 1000, ],
0 0000, ]
v Tag Block
seto |0 1° |7
0
Set1 L
0

miss
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2-Way Set Associative Cache Simulation

t=2

s=1

b

=1

XX

X

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

Set 0

Set1l

0

1
7
8
0
v

Tag

0000,],
0001,],
0111,],
1000,],
0000,]

Block

00

M[O-1]

miss

15
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2-Way Set Associative Cache Simulation

t=2

s=1

b

=1

XX

X

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

Set 0

Set1l

0

1
7
8
0
v

Tag

0000,],
0001,],
0111,],
1000,],
0000,]

Block

00

M[O-1]

10

M[8-9]

01

M[6-7

miss
hit

miss

miss

15



2-Way Set Associative Cache Simulation

t=2

s=1

b

=1

XX

X

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

Set 0

Set1l

0

1
7
8
0
v

Tag

0000,],
0001,],
0111,],
1000,],
0000,]

Block

00

M[O-1]

10

M[8-9]

01

M[6-7

miss
hit

miss

miss
hit

15



Today

e Performance impact of caches
» Analytical Model

Optimizing lrregular and dynamic applications [32]
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Cache Performance Metrics

e Miss Rate

e Fraction of memory references not found in cache
(misses / accesses)
=1 —hit rate
 Typical numbers (in percentages):
e 3-10% for L1

« can be quite small (e.g., < 1%) for L2, depending on
size, etc.

17



Cache Performance Metrics

e Hit Time
e Time to deliver a line in the cache to the processor

e includes time to determine whether the line is in the
cache

e Typical numbers:
* 1~4 clock cycle for L1
e 5~10 clock cycles for L2

18



Cache Performance Metrics

* Miss Penalty
o Additional time required because of a miss
o Typically 50-200 cycles for main memory
 [rend: increasing!

19



Let’s think about those numbers

* Huge difference between a hit and a miss
o Could be 100x, if just L1 and main memory

* Compare 97% hit rate with 99% hit rate

e ASsume:
cache hit time of 1 cycle
miss penalty of 100 cycles

« Average access time:

97% hit rate: 1 cycle + 0.03 * 100 cycles = 4 cycles
99% hit rate: 1 cycle + 0.01 * 100 cycles = 2 cycles

* Think of it as reducing the miss rate from 3% to 1% (3X
improvement) rather than improving hit rate

* Improving hit rate by even a little bit helps overall speed a lot

20



Writing Cache Friendly Code

* Make the common case go fast
* Inner loops get executed most often. So focus on those

* Minimize the misses in the inner loops
« Repeated references to variables are good (temporal locality)
 Stride-1 reference patterns are good (spatial locality)

21



Today

e Performance impact of caches

« Rearranging loops to improve spatial locality

Optimizing lrregular and dynamic applications [32]
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Matrix Multiplication Example

« Multiply N x N matrices /* i3k */

« Matrix elements are doubles (8 bytes)

« O(N°) total operations sum = 0.0; <
for (k=0; k<n; k++)

sum += a[i] [k] * b[k][j];
c[i][]]

}

sum,

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {

Variable sum

held in register

>

[0 = X
A

v

k

>

J

|

23



Miss Rate Analysis for Matrix Multiply

* Assume:
« Block size = 32B (big enough for four doubles)
o Matrix dimension (N) is very large
o Approximate 1/N as 0.0
e Cache is not even big enough to hold multiple rows

* Analysis Method:

o Look at access pattern of inner loop

>

= X
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Layout of C Arrays in Memory (review)

* C arrays allocated in row-major order
e each row in contiguous memory locations

* Stepping through columns in one row:
e for (1 = 0; 1 < N; 1++)
sum += al[0] [1];
 accesses successive elements
« cache line size (32) > size of an element (8 bytes), exploiting spatial locality!
e missrate=8/32=25%

g

25



Layout of C Arrays in Memory (review)

* C arrays allocated in row-major order
e each row in contiguous memory locations

* Stepping through rows in one column:
e for (1 = 0; J < n; J++)
sum += al[1][0];
e accesses distant elements
e no spatial locality!
e miss rate =1 (i.e. 100%)

>

]

M
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Matrix Multiplication (ijk)

/* ijk */
for (i=0; i<n; i++)

sum = 0.0;
for (k=0; k<n;

c[1][j] = sum;

}

{

for (j=0; j<n; J++) {

k++)

sum += a[i] [k] * b[k][]j];

matmult/mm. c

Misses per inner loop iteration:

A
0.25

B
1.0

0.0

Inner loop:
. .
o 1
A B
A A

Row-wise Column-
wise

(i

Fixed

27



Matrix Multiplication (jik)

/* jik */
for (j=0; j<n; Jj++) {
for (1i=0; i<n; i++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i][k] * b[k][3j];
c[i][3j] = sum

}

matmult/mm.c

Misses per inner loop iteration:
A B C

0.25 1.0 0.0

Inner loop:
.
e 1
A B
A A

Row-wise Column-
wise

(i)

Fixed

28



Matrix Multiplication (Kij)

/* kij */

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {

r = a[1] [k];

for (j=0; j<n; Jj++)
c[i][J] += r * b[k][]]’

} matmult/mm. c

Inner loop:

(i,k)
|

Misses per inner loop iteration:
A B
0.0 0.25

A

Fixed

0.25

=
B C

A A

Row-wise Row-wise

29



Matrix Multiplication (ikj)

/* ikj */
for (1=0; i<kn; i++) {
for (k=0; k<n; k++) {
r = a[i] [k];
for (j=0; j<n; Jj++)
c[i][J] += r * b[k][]];

} matmult/mm. c

Misses per inner loop iteration:
A B
0.0 0.25

Inner loop:

(i,k)
|

A

Fixed

C
0.25

=
B C

A A

Row-wise Row-wise
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Matrix Multiplication (jki)

/* jki */
for (3j=0; j<n; j++) {
for (k=0; k<n; k++) {
r = b[k][]J]’
for (i=0; i<n; i++)
c[i] [J] += a[i][k] * r;

} matmult/mm. c

Misses per inner loop iteration:
A B
1.0 0.0

Inner loop:
(*,k)
| \ (k.j)
[ |
A B
A A
Column- Fixed
wise
C
1.0

C
A

Column-
wise

31



Matrix Multiplication (kji)

/* kji */
for (k=0; k<n; k++) {
for (j=0; j<n; Jj++) {
r = b[k][]]~
for (1=0; i<n; 1i++)
c[i][j] += al[il[k] * r;

} matmult/mm. c

Misses per inner loop iteration:
A B
1.0 0.0

(@]

1.0

Inner loop:

(*,k)

| \ (k.j)
|
A B
A A
Column- Fixed

wise

Column-
wise

32



for (i=0; i<n; i++) {
for (3=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i][k] * b[k][j]:
c[i] [J] = sum;
}
}

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i] [k]’
for (3j=0; j<n; Jj++)
c[i][3] += r * b[k]I[]];
}
}

for (3=0; j<n; j++) {
for (k=0; k<n; k++) {
r = b[k] []]’
for (i=0; i<n; i++)
c[i][j] += alill[k] * r;

Summary of Matrix Multiplication

ijk (& jik):
e 2 |oads, O stores
e misses/iter = 1.25

kij (& ikj):
e 2 |loads, 1 store
* misses/iter = 0.5

jki (& kiji):
e 2 |oads, 1 store
e misses/iter = 2.0

33



Core i7 Matrix Multiply Performance

Cycles per inner loop iteration

100 -

10 -

ki / kii

o Kji
o jik
& k]

@ jKi

@ ik

©=/ .
kij / ikj

50 100 150 200 250 300 350 400 450 500 550 600 650 700

Array size (n)
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Today
e Performance impact of caches

« Using blocking to improve temporal locality

Optimizing lrregular and dynamic applications [32]
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Example: Matrix Multiplication

c = (double *) calloc(sizeof (double), n*n);

/* Multiply n X n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
for (k = 0; k < n; k++)
c[i*n + j] += a[i*n + k] * b[k*n + j];

Il
*

36



Cache Miss Analysis

* Assume:
o Matrix elements are doubles
e Cache block = 8 doubles

o Cache size C << n (much smaller than n)

* First iteration: - ~
« n/8+n=9n/8 misses

Il
*
g

>

Il
*

8 wide
37



Cache Miss Analysis

* Assume:
o Matrix elements are doubles
e Cache block = 8 doubles
o Cache size C << n (much smaller than n)

e Second iteration:
e Again:
n/8 + n =9n/8 misses

¢ Total misses:
e 9n/8 *n?=(9/8) * n3

8 wide

38



Blocked Matrix Multiplication

¢ = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {

int i, j, k;

for (i = 0; i < n; i+=B)

for (j = 0, j < n; j+=B)
for (k = 0; k < n; k+=B)
/* B x B mini matrix multiplications */
for (il = i; il < i+B; i++)
for (j1 = j; jl < j+B; j++)
for (k1 = k; k1l < k+B; k++)

c[il*n+jl] += a[il*n + kl]*b[kl*n + jl1];

1
C a b
= *
N i1 [ O I

Block size B x B

matmult/bmm. c



Cache Miss Analysis

* Assume:
e Cache block = 8 doubles
e Cache size C << n (much smaller than n)
e Three blocks M fit into cache: 3B?< C

n/B blocks
* First (block) iteration: A

I
*
—HRERR°

Block size Bx B
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Cache Miss Analysis

* Assume:
e Cache block = 8 doubles
e Cache size C << n (much smaller than n)
e Three blocks M fit into cache: 3B?< C

n/B blocks
* First (block) iteration: A

o B2/8 misses for each block & BEEEER
« 2n/B * B2/8 = nB/4

Il
*
—HERER

BIock sizeBxB

40



Cache Miss Analysis

* Assume:
e Cache block = 8 doubles
e Cache size C << n (much smaller than n)
e Three blocks M fit into cache: 3B?< C

. _ n/B blocks
* Second (block) iteration: — A
« Same as first iteration [] ] ] ]
« 2n/B * B2/8 = nB/4 -— *
® TOta| miSSGS: Block Size B xB

e nB/4 * (n/B)? =n3/(4B)

41



Blocking Summary

* No blocking: (9/8) * n3
e Blocking: 1/(4B) * n3

* Suggest largest possible block size B, but limit 3B2 < C!

e Reason for dramatic difference:
o Matrix multiplication has inherent temporal locality:
 Input data: 3n?, computation 2n3
e Every array elements used O(n) times!
e But program has to be written properly

42



Cache Summary

* Cache memories can have significant performance impact

* You can write your programs to exploit this!
e Focus on the inner loops, where bulk of computations and memory
accesses occur.
e Try to maximize spatial locality by reading data objects with sequentially
with stride 1.

o Try to maximize temporal locality by using a data object as often as
possible once it’s read from memory.

43



Dynamic Optimizations

[PLDI'99, with Ken Kennedy]

3/26/19

Chen Ding
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Unknown Access

“"Every problem can be solved by adding one more level of indirection.”
- Irregular and dynamic applications

- Irregular data structures are unknown until run time
- Data and their uses may change during the computation

- For example

- Molecular dynamics
- Sparse matrix

- Problems

- How to optimize at run time?
- How to automate?

3/26/19 Chen Ding 52




Example packing

[originm;
array £[1] £[2]  £[3]
" data L
£[8], £[800], f[8], f[2],

. aCcess j/\

‘transformed
_array £[8] £[800] £[2]

g Software remapping:
f[t[i]] = flremap[t[i]]] = f[t’[i]]
S fli] =2 flremapl[i]] = f[i] )

3/26/19 Chen Ding 53




Dynamic Optimizations

- Locality grouping & Dynamic packing

run-time versions of computation fusion & data grouping
linear time and space cost

- Compiler support

analyze data indirections

find all optimization candidates

use run-time maps fo guarantee correctness
remove unnecessary remappings

- pointer update
- array alignment

- The first set of compiler-generated run-time
transformations

3/26/19

Chen Ding
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packing Directive: apply packing using interactions

for each pair (i,j) in interactions
compute force( force[i], force[]] )
end for

for each object 1

update location( location[i], force[i] )
end for

3/26/19 Chen Ding 55




apply packing(interactions[*],force[*],inter map[*])
for each pair (i,j) in interactions

compute force( force[inter map[i]],

force[inter map[]j]] )

end for \ indirections

for each object 1 “{/
update location(location[i], force[inter ¥map[i]])
end for

3/26/19 Chen Ding 56




apply packing(interactions[*], force[*],
inter map[*], update map[*])
update indirection array(interactions[*],
update map[*])
transform data array(location[*],update map[*])

for each pair (i,j) in interactions
compute force( force[i], force[]] )
end for

for each object 1
update location( location[i], force[i] )
end for

3/26/19 Chen Ding
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Indirection Analysis

pointer 4

ndirect-
access

alignment

3/26/19

Chen Ding
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DoD/Magi

- A real application from DoD Philips Lab

particle hydrodynamics

almost 10,000 lines of code

user supplied input of 28K particles

22 arrays in major phases, split into 26

- Optimizations

grouped into 6 arrays

inserted 1114 indirections to guarantee correctness
optimization reorganized 19 more arrays

removed 379 indirections in loops

reorganized 45 arrays 4 times during execution

3/26/19

Chen Ding
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= original B data regrouping base packing
opt packing

S

0.5

0.25

0

z

326/1Exe. time L1 misses ChenDing L2 misses TLB misses 60



