
CSC 252: Computer Organization 
 Spring 2019: Lecture 19 

Instructor: John Criswell

Department of Computer Science

University of Rochester

Action Items:
• Programming Assignment 5 is out
• Trivia 5 is out

Carnegie Mellon

So Far in CSC252…

<startup>
inst1
inst2
inst3
…
instn
<shutdown>

• Processors do only one thing:

• From startup to shutdown, a CPU simply reads and executes

(interprets) a sequence of instructions, one at a time
• This sequence is the CPU’s control flow (or flow of control)

!2

Physical control flow

Time

Carnegie Mellon

Altering the Control Flow
• Up to now: two mechanisms for changing control flow:

• Jumps and branches
• Call and return
React to changes in program state

!3

Carnegie Mellon

Altering the Control Flow
• Up to now: two mechanisms for changing control flow:

• Jumps and branches
• Call and return
React to changes in program state

• Insufficient for a useful system: Difficult to react to changes in
system state
• Data arrives from a disk or a network adapter
• Instruction divides by zero
• User hits Ctrl-C at the keyboard
• System timer expires

!3

Carnegie Mellon

Altering the Control Flow
• Up to now: two mechanisms for changing control flow:

• Jumps and branches
• Call and return
React to changes in program state

• Insufficient for a useful system: Difficult to react to changes in
system state
• Data arrives from a disk or a network adapter
• Instruction divides by zero
• User hits Ctrl-C at the keyboard
• System timer expires

• System needs mechanisms for “exceptional control flow”

!3

Carnegie Mellon

Today
• Exceptions/Interrupts

!4

Carnegie Mellon

Exceptions

• An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)

• Kernel is the memory-resident part of the OS
• Examples of events: Divide by 0, arithmetic overflow, page fault, I/O

request completes, typing Ctrl-C

!5

User code Kernel code

I_current

Carnegie Mellon

Exceptions

• An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)

• Kernel is the memory-resident part of the OS
• Examples of events: Divide by 0, arithmetic overflow, page fault, I/O

request completes, typing Ctrl-C

!5

User code Kernel code

Event I_current

Carnegie Mellon

Exceptions

• An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)

• Kernel is the memory-resident part of the OS
• Examples of events: Divide by 0, arithmetic overflow, page fault, I/O

request completes, typing Ctrl-C

!5

User code Kernel code

ExceptionEvent I_current

Carnegie Mellon

Exceptions

• An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)

• Kernel is the memory-resident part of the OS
• Examples of events: Divide by 0, arithmetic overflow, page fault, I/O

request completes, typing Ctrl-C

!5

User code Kernel code

Exception
Exception
processing
by exception
handler

Event I_current

Carnegie Mellon

Exceptions

• An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)

• Kernel is the memory-resident part of the OS
• Examples of events: Divide by 0, arithmetic overflow, page fault, I/O

request completes, typing Ctrl-C

!5

User code Kernel code

Exception
Exception
processing
by exception
handler

• Return to I_current
•Return to I_next
•Abort

Event I_current

Carnegie Mellon

Exceptions

• An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)

• Kernel is the memory-resident part of the OS
• Examples of events: Divide by 0, arithmetic overflow, page fault, I/O

request completes, typing Ctrl-C

!5

User code Kernel code

Exception
Exception
processing
by exception
handler

• Return to I_current
•Return to I_next
•Abort

Event I_current
I_next

Carnegie Mellon

Asynchronous Exceptions (Interrupts)
• Caused by events external to the processor

• Events that can happen at any time. Computers have little control.
• Indicated by setting the processor’s interrupt pin
• Handler returns to “next” instruction

!6

Carnegie Mellon

Asynchronous Exceptions (Interrupts)
• Caused by events external to the processor

• Events that can happen at any time. Computers have little control.
• Indicated by setting the processor’s interrupt pin
• Handler returns to “next” instruction

• Examples:
• Timer interrupt

• Every few ms, an external timer chip triggers an interrupt

!6

Carnegie Mellon

Asynchronous Exceptions (Interrupts)
• Caused by events external to the processor

• Events that can happen at any time. Computers have little control.
• Indicated by setting the processor’s interrupt pin
• Handler returns to “next” instruction

• Examples:
• Timer interrupt

• Every few ms, an external timer chip triggers an interrupt
• Used by the kernel to take back control from user programs

• I/O interrupt from external device
• Hitting Ctrl-C at the keyboard
• Arrival of a packet from a network
• Arrival of data from a disk

!6

Carnegie Mellon

Interrupts in a Processor

!7

Processor

Chipset
Bus

ke
yb
oa
rd

di
sk

ne
tw
or
k

Interrupt
Signal
Lines

Carnegie Mellon

Synchronous Exceptions
• Caused by events that occur as a result of executing an instruction:

!8

Carnegie Mellon

Synchronous Exceptions
• Caused by events that occur as a result of executing an instruction:

• Traps
• Intentional
• Examples: system calls, breakpoint traps, special instructions
• Returns control to “next” instruction

!8

Carnegie Mellon

Synchronous Exceptions
• Caused by events that occur as a result of executing an instruction:

• Traps
• Intentional
• Examples: system calls, breakpoint traps, special instructions
• Returns control to “next” instruction

• Faults
• Unintentional but possibly recoverable
• Examples: page faults (recoverable), protection faults (the

infamous Segmentation Fault!) (unrecoverable in Linux), floating
point exceptions (unrecoverable in Linux)

• Either re-executes faulting (“current”) instruction or aborts

!8

Carnegie Mellon

Synchronous Exceptions
• Caused by events that occur as a result of executing an instruction:

• Traps
• Intentional
• Examples: system calls, breakpoint traps, special instructions
• Returns control to “next” instruction

• Faults
• Unintentional but possibly recoverable
• Examples: page faults (recoverable), protection faults (the

infamous Segmentation Fault!) (unrecoverable in Linux), floating
point exceptions (unrecoverable in Linux)

• Either re-executes faulting (“current”) instruction or aborts
• Aborts

• Unintentional and unrecoverable
• Examples: parity error, machine check
• Aborts current program

!8

Carnegie Mellon

Fault Example: Page Fault
• User writes to memory location
• That memory location is not found in memory  

because it is currently on disk
• Trigger a Page Fault (recoverable), the exception handler loads the

data from disk to memory (will discuss in detail later in the class)

!9

 80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

Carnegie Mellon

Fault Example: Page Fault
• User writes to memory location
• That memory location is not found in memory  

because it is currently on disk
• Trigger a Page Fault (recoverable), the exception handler loads the

data from disk to memory (will discuss in detail later in the class)

!9

 80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User code

movl

Carnegie Mellon

Fault Example: Page Fault
• User writes to memory location
• That memory location is not found in memory  

because it is currently on disk
• Trigger a Page Fault (recoverable), the exception handler loads the

data from disk to memory (will discuss in detail later in the class)

!9

 80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User code Kernel code

Exception: page fault
Copy page from
disk to memory

movl

Carnegie Mellon

Fault Example: Page Fault
• User writes to memory location
• That memory location is not found in memory  

because it is currently on disk
• Trigger a Page Fault (recoverable), the exception handler loads the

data from disk to memory (will discuss in detail later in the class)

!9

 80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User code Kernel code

Exception: page fault
Copy page from
disk to memoryReturn and

reexecute movl

movl

Carnegie Mellon

Fault Example: Page Fault
• User writes to memory location
• That memory location is not found in memory  

because it is currently on disk
• Trigger a Page Fault (recoverable), the exception handler loads the

data from disk to memory (will discuss in detail later in the class)

!9

 80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User code Kernel code

Exception: page fault
Copy page from
disk to memoryReturn and

reexecute movl

movl

Carnegie Mellon

Fault Example: Protection Fault

!10

 80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

Carnegie Mellon

Fault Example: Protection Fault

!10

 80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User code

movl

Carnegie Mellon

Fault Example: Protection Fault

!10

 80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User code Kernel code

Exception: page fault
movl

Carnegie Mellon

Fault Example: Protection Fault

!10

 80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User code Kernel code

Exception: page fault

Detect invalid
address

movl

Carnegie Mellon

Fault Example: Protection Fault

!10

 80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User code Kernel code

Exception: page fault

Detect invalid
address

movl

Signal process
and abort

Carnegie Mellon

Fault Example: Protection Fault
• Access illegal memory location (e.g., dereferencing a null pointer)

!10

 80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User code Kernel code

Exception: page fault

Detect invalid
address

movl

Signal process
and abort

Carnegie Mellon

Fault Example: Protection Fault
• Access illegal memory location (e.g., dereferencing a null pointer)
• First trigger a Page Fault, the exception handler decides that this is

unrecoverable, so simply aborts

!10

 80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User code Kernel code

Exception: page fault

Detect invalid
address

movl

Signal process
and abort

Carnegie Mellon

Fault Example: Protection Fault
• Access illegal memory location (e.g., dereferencing a null pointer)
• First trigger a Page Fault, the exception handler decides that this is

unrecoverable, so simply aborts
• User process exits with “segmentation fault”

!10

 80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User code Kernel code

Exception: page fault

Detect invalid
address

movl

Signal process
and abort

Carnegie Mellon

Others’ Definitions
• The textbook’s definitions are not universally accepted

• Intel (http://www.intel.com/cd/ids/developer/asmo-na/eng/microprocessors/ia32/xeon/19250.htm?page=2)

• Interrupt: An exception that comes from outside of the processor. There are two
kinds of exceptions: local and external. A local exception is generated from a
program. External exceptions are usually generated by external I/O devices and
received at exception pins.

• PowerPC Architecture

• Interrupts “allow the processor to change state as a result of external signals, errors, or

unusual conditions arising in the execution of instructions”
• PowerPC 604

• Everything is an exception
• Motorola 68K

• Everything is an exception
• VAX

• Interrupts: device, software, urgent
• Exceptions: faults, traps, aborts

!11

Carnegie Mellon

When Do You Call the Handler?
• Interrupts: when convenient. Typically wait until the current

instructions in the pipeline are finished

• Exceptions: typically immediately as programs can’t continue

without resolving the exception (think of page fault)

•Maskable verses Unmaskable

• Interrupts can be individually masked (i.e., ignored by CPU)
• Synchronous exceptions are usually unmaskable

• Some interrupts are intentionally unmaskable

• Called non-maskable interrupts (NMI)
• Indicating a critical error has occurred, and that the system is

probably about to crash

!12

Carnegie Mellon

Where Do You Restart?
• Interrupts/Traps

!13

Carnegie Mellon

Where Do You Restart?
• Interrupts/Traps

• Handler returns to the following instruction

!13

Carnegie Mellon

Where Do You Restart?
• Interrupts/Traps

• Handler returns to the following instruction
• Faults

• Exception handler returns to the instruction that caused the
exception, i.e., re-execute it!

• Aborts
• Never returns to the program

!13

Carnegie Mellon

Where to Find Exception Handlers?
• Each type of event has a  

unique exception number k

• k = index into exception
table

• Exception table lives in
memory. Its start address is
stored in a special register

• Handler k is called each
time exception k occurs

!14

0
1
2 ...

n-1

Exception
Table

Code for
exception handler 0

Code for
exception handler 1

Code for
exception handler 2

Code for
exception handler n-1

...

Exception
numbers

Carnegie Mellon

Nested Exceptions
• One interrupt/exception occurs when another is already active

• Priority maintained

• Can fundamentally do it

• Subroutine calls within subroutine calls
• Handlers need to save appropriate state

!15

Carnegie Mellon

Concurrent Interrupts
•More than one interrupts happen at the same time

• Pre-defined priority

• The chipset arbitrates which one to respond to first

!16

