
CSC 252: Computer Organization 
 Spring 2019: Lecture 21 

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Action Items:
• Programming Assignment 5 is out

Carnegie Mellon

Announcement
• Programming Assignment 5 is due 11:59pm, Monday, April 15.

• Your shell should emit output that is identical to the reference

solution (except the PID). If you output does not match the
reference solution, you get a 0. NO exceptions will be made.

!2

Due

Carnegie Mellon

Today
• Process Control

• Signals: The Way to Communicate with Processes

!3

Carnegie Mellon

Process Address Space

!4

Kernel space

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write data segment
(.data, .bss)

Read-only code segment
(.init, .text, .rodata)

Loaded from
the executable
file

Program
Counter

Carnegie Mellon

Process Address Space

!4

Kernel space

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write data segment
(.data, .bss)

Read-only code segment
(.init, .text, .rodata)

Loaded from
the executable
file

Program
Counter

Carnegie Mellon

What Happens at fork()?

!5

Code Segment
int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) {
 /* Child */
 x++; // 2
 exit(0);
 }

 /* Parent */
 x--; // 0
 exit(0);
}

Carnegie Mellon

What Happens at fork()?

!5

Stack
x = 1

Code Segment
int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) {
 /* Child */
 x++; // 2
 exit(0);
 }

 /* Parent */
 x--; // 0
 exit(0);
}

Parent Address Space

Carnegie Mellon

What Happens at fork()?

!5

Stack
x = 1

Code Segment
int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) {
 /* Child */
 x++; // 2
 exit(0);
 }

 /* Parent */
 x--; // 0
 exit(0);
}

Parent
Process

Program

Counter

Parent Address Space

Carnegie Mellon

What Happens at fork()?

!5

Stack
x = 1

Code Segment
int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) {
 /* Child */
 x++; // 2
 exit(0);
 }

 /* Parent */
 x--; // 0
 exit(0);
}

Parent
Process

Program

Counter

Parent Address Space Child Address Space

Stack
x = 1

Code Segment
int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) {
 /* Child */
 x++; // 2
 exit(0);
 }

 /* Parent */
 x--; // 0
 exit(0);
}

Carnegie Mellon

What Happens at fork()?

!5

Stack
x = 1

Code Segment
int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) {
 /* Child */
 x++; // 2
 exit(0);
 }

 /* Parent */
 x--; // 0
 exit(0);
}

Parent
Process

Program

Counter

Parent Address Space Child Address Space

Stack
x = 1

Code Segment
int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) {
 /* Child */
 x++; // 2
 exit(0);
 }

 /* Parent */
 x--; // 0
 exit(0);
}

Child
Process

Program

Counter

Carnegie Mellon

Creating Processes
• Parent process creates a new child process by calling fork
• Child get an identical (but separate) copy of the parent’s (virtual)

address space (i.e., same stack copies, code, etc.)

•int fork(void)

• Returns 0 to the child process
• Returns child’s PID to the parent process

!6

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!7

CPU
Registers

Stack
Heap

Code
Data

Process 2
Stack
Heap

Code
Data

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!7

CPU
Registers

Stack
Heap

Code
Data

Process 2
Stack
Heap

Code
Data

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!7

CPU
Registers

Stack
Heap

Code
Data

Saved
registers

Process 2
Stack
Heap

Code
Data

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!7

CPU
Registers

Stack
Heap

Code
Data

Saved
registers

Process 2
Stack
Heap

Code
Data

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!7

CPU
Registers

Stack
Heap

Code
Data

Saved
registers

Process 2
Stack
Heap

Code
Data

Saved
registers

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!7

CPU
Registers

Stack
Heap

Code
Data

Saved
registers

Process 2
Stack
Heap

Code
Data

Saved
registers

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!7

CPU
Registers

Stack
Heap

Code
Data

Saved
registers

Process 2
Stack
Heap

Code
Data

Saved
registers

Saved
registers

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!7

CPU
Registers

Stack
Heap

Code
Data

Saved
registers

Process 2
Stack
Heap

Code
Data

Saved
registers

Saved
registers

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!7

CPU
Registers

Stack
Heap

Code
Data

Saved
registers

Process 2
Stack
Heap

Code
Data

Saved
registers

Saved
registers

Process N
Stack
Heap

Code
Data

Carnegie Mellon

!8

 char *myargv[] = {“/bin/ls”, “-lt”, “/usr/include”};
 char *environ[] = {“USER=droh”, “PWD=“/usr/droh”};

 if ((pid = Fork()) == 0) { /* Child runs program */
 if (execve(myargv[0], myargv, environ) < 0) {
 printf("%s: Command not found.\n", myargv[0]);
 exit(1);
 }
 }

Executes “/bin/ls –lt /usr/include” in child process using
current environment:

execve: Loading and Running Programs

Carnegie Mellon

execve: Loading and Running Programs
•int execve(char *filename, char *argv[], char *envp[])

!9

Carnegie Mellon

execve: Loading and Running Programs
•int execve(char *filename, char *argv[], char *envp[])
• Loads and runs in the current process:

• Executable file filename
• Argument list argv

• By convention argv[0]==filename
• Environment variable list envp

• “name=value” strings (e.g., USER=droh)

!9

Carnegie Mellon

execve: Loading and Running Programs
•int execve(char *filename, char *argv[], char *envp[])
• Loads and runs in the current process:

• Executable file filename
• Argument list argv

• By convention argv[0]==filename
• Environment variable list envp

• “name=value” strings (e.g., USER=droh)

• Overwrites code, data, and stack

• Retains PID, open files and signal context

!9

Carnegie Mellon

execve: Loading and Running Programs
•int execve(char *filename, char *argv[], char *envp[])
• Loads and runs in the current process:

• Executable file filename
• Argument list argv

• By convention argv[0]==filename
• Environment variable list envp

• “name=value” strings (e.g., USER=droh)

• Overwrites code, data, and stack

• Retains PID, open files and signal context

• Called once and never returns

• …except if there is an error

!9

Carnegie Mellon

execve Example

!10

envp[n] = NULL
envp[n-1]

envp[0]
…

myargv[argc] = NULL
myargv[2]

myargv[0]
myargv[1]

“/bin/ls”
“-lt”
“/usr/include”

“USER=droh”

“PWD=/usr/droh”

environ

myargv

 if ((pid = Fork()) == 0) { /* Child runs program */
 if (execve(myargv[0], myargv, environ) < 0) {
 printf("%s: Command not found.\n", myargv[0]);
 exit(1);
 }
 }

Executes “/bin/ls –lt /usr/include” in child process using
current environment:

(argc == 3)

Carnegie Mellon

Summary
• Processes

• At any given time, system has multiple active processes
• Only one can execute at a time on a single core, though
• Each process appears to have total control of processor + private memory space

• Spawning processes

• Call fork
• One call, two returns

• Process completion

• Call exit
• One call, no return

• Reaping and waiting for processes

• Call wait or waitpid

• Loading and running programs

• Call execve (or variant)
• One call, (normally) no return

!11

Carnegie Mellon

Today
• Process Control

• Signals: The Way to Communicate with Processes

!12

Carnegie Mellon

Signals

• A signal is a small message that notifies a process that an
event of some type has occurred in the system

• Sent from the OS kernel
• Could be requested by another process, by user, or automatically by

the kernel
• Signal type is identified by small integer ID’s (1-30)

!13

Carnegie Mellon

Signals

• A signal is a small message that notifies a process that an
event of some type has occurred in the system

• Sent from the OS kernel
• Could be requested by another process, by user, or automatically by

the kernel
• Signal type is identified by small integer ID’s (1-30)

!13

ID Name Default Action Corresponding Event
2 SIGINT Terminate User typed ctrl-c
9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate Segmentation violation
14 SIGALRM Terminate Timer signal
17 SIGCHLD Ignore Child stopped or terminated

Carnegie Mellon

Signal Concepts: Sending a Signal
• Kernel sends (delivers) a signal to a destination process by

updating some state in the context of the destination
process

• Kernel sends a signal for one of the following reasons:

!14

Carnegie Mellon

Signal Concepts: Sending a Signal
• Kernel sends (delivers) a signal to a destination process by

updating some state in the context of the destination
process

• Kernel sends a signal for one of the following reasons:
• Kernel has detected a system event such as:

!14

Carnegie Mellon

Signal Concepts: Sending a Signal
• Kernel sends (delivers) a signal to a destination process by

updating some state in the context of the destination
process

• Kernel sends a signal for one of the following reasons:
• Kernel has detected a system event such as:

• Exception: divide-by-zero (SIGFPE)

!14

Carnegie Mellon

Signal Concepts: Sending a Signal
• Kernel sends (delivers) a signal to a destination process by

updating some state in the context of the destination
process

• Kernel sends a signal for one of the following reasons:
• Kernel has detected a system event such as:

• Exception: divide-by-zero (SIGFPE)
• Interrupt: user pressing Ctrl + C (SIGINT)

!14

Carnegie Mellon

Signal Concepts: Sending a Signal
• Kernel sends (delivers) a signal to a destination process by

updating some state in the context of the destination
process

• Kernel sends a signal for one of the following reasons:
• Kernel has detected a system event such as:

• Exception: divide-by-zero (SIGFPE)
• Interrupt: user pressing Ctrl + C (SIGINT)
• The termination of a child process (SIGCHLD)

!14

Carnegie Mellon

Signal Concepts: Sending a Signal
• Kernel sends (delivers) a signal to a destination process by

updating some state in the context of the destination
process

• Kernel sends a signal for one of the following reasons:
• Kernel has detected a system event such as:

• Exception: divide-by-zero (SIGFPE)
• Interrupt: user pressing Ctrl + C (SIGINT)
• The termination of a child process (SIGCHLD)

• Another process has invoked the kill system call to explicitly
request the kernel to send a signal to the destination process.

!14

Carnegie Mellon

Signal Concepts: Sending a Signal
• Kernel sends (delivers) a signal to a destination process by

updating some state in the context of the destination
process

• Kernel sends a signal for one of the following reasons:
• Kernel has detected a system event such as:

• Exception: divide-by-zero (SIGFPE)
• Interrupt: user pressing Ctrl + C (SIGINT)
• The termination of a child process (SIGCHLD)

• Another process has invoked the kill system call to explicitly
request the kernel to send a signal to the destination process.
• Note: kill doesn’t mean you are going to kill the target process. It is just a

system call that allows you to send signals. Of course the signal you send
could be SIGKILL.

!14

Carnegie Mellon

Signal Concepts: Receiving a Signal

• A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

• Some possible ways to react:

!15

Carnegie Mellon

Signal Concepts: Receiving a Signal

• A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

• Some possible ways to react:
• Ignore the signal (do nothing)

!15

Carnegie Mellon

Signal Concepts: Receiving a Signal

• A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

• Some possible ways to react:
• Ignore the signal (do nothing)
• Terminate the process

!15

Carnegie Mellon

Signal Concepts: Receiving a Signal

• A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

• Some possible ways to react:
• Ignore the signal (do nothing)
• Terminate the process
• Catch the signal by executing a user-level function called signal handler

!15

Carnegie Mellon

Signal Concepts: Receiving a Signal

• A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

• Some possible ways to react:
• Ignore the signal (do nothing)
• Terminate the process
• Catch the signal by executing a user-level function called signal handler

• Similar to a hardware exception handler being called in response
to an asynchronous interrupt:

!15

Carnegie Mellon

Signal Concepts: Receiving a Signal

• A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

• Some possible ways to react:
• Ignore the signal (do nothing)
• Terminate the process
• Catch the signal by executing a user-level function called signal handler

• Similar to a hardware exception handler being called in response
to an asynchronous interrupt:

!15

(2) Control passes
to signal handler

(3) Signal
handler runs

(4) Signal handler
returns to
next instruction

Icurr
Inext

(1) Signal received
by process

Carnegie Mellon

Sending Signals with /bin/kill Program

• /bin/kill program sends
arbitrary signal to a process

• Examples

• /bin/kill –9 24818  

Send SIGKILL to process 24818
• /bin/kill itself doesn’t kill the

process. 9 is the ID for the SIGKILL
signal, which kills the process

!16

linux> ./forks 16
Child1: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps
 PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24818 pts/2 00:00:02 forks
24819 pts/2 00:00:02 forks
24820 pts/2 00:00:00 ps

Carnegie Mellon

Sending Signals with /bin/kill Program

• /bin/kill program sends
arbitrary signal to a process

• Examples

• /bin/kill –9 24818  

Send SIGKILL to process 24818
• /bin/kill itself doesn’t kill the

process. 9 is the ID for the SIGKILL
signal, which kills the process

!16

linux> ./forks 16
Child1: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps
 PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24818 pts/2 00:00:02 forks
24819 pts/2 00:00:02 forks
24820 pts/2 00:00:00 ps

Carnegie Mellon

Process Groups

• Every process belongs to exactly one process group

!17

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10
pgid=10

Foreground
process group
20

Background
process group 32

Background
process group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

Carnegie Mellon

Process Groups

• Every process belongs to exactly one process group

!17

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10
pgid=10

Foreground
process group
20

Background
process group 32

Background
process group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

getpgrp()  
Return process group of current
process
setpgid()  
Change process group of a process
(see text for details)

Carnegie Mellon

Sending Signals with /bin/kill Program

• /bin/kill program
sends arbitrary signal to a
process or process group

• Examples

• /bin/kill –9 –24817  

Send SIGKILL to every process
in process group 24817

!18

linux> ./forks 16
Child1: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps
 PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24818 pts/2 00:00:02 forks
24819 pts/2 00:00:02 forks
24820 pts/2 00:00:00 ps
linux> /bin/kill -9 -24817
linux> ps
 PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps
linux>

Carnegie Mellon

Sending Signals with /bin/kill Program

• /bin/kill program
sends arbitrary signal to a
process or process group

• Examples

• /bin/kill –9 –24817  

Send SIGKILL to every process
in process group 24817

!18

linux> ./forks 16
Child1: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps
 PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24818 pts/2 00:00:02 forks
24819 pts/2 00:00:02 forks
24820 pts/2 00:00:00 ps
linux> /bin/kill -9 -24817
linux> ps
 PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps
linux>

Carnegie Mellon

Sending Signals from the Keyboard
• Typing ctrl-c causes the kernel to send a SIGINT to every

process in the foreground process group.

• SIGINT – default action is to terminate each process

• Typing ctrl-z causes the kernel to send a SIGTSTP to
every job in the foreground process group.

• SIGTSTP – default action is to stop (suspend) each process

!19

Carnegie Mellon

Example of ctrl-c and ctrl-z

!20

bluefish> ./forks 17
Child: pid=28108 pgrp=28107
Parent: pid=28107 pgrp=28107

<types ctrl-z>
Suspended
bluefish> ps w
 PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28107 pts/8 T 0:01 ./forks 17
28108 pts/8 T 0:01 ./forks 17
28109 pts/8 R+ 0:00 ps w

bluefish> fg
./forks 17
<types ctrl-c>
bluefish> ps w
 PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28110 pts/8 R+ 0:00 ps w

STAT (process state)
Legend:

First letter:
S: sleeping
T: stopped
R: running

Second letter:
s: session leader
+: foreground proc group

See “man ps” for more
details

Carnegie Mellon

Sending Signals from the Keyboard
• Can you guess how Ctrl + C might be implemented?

!21

Carnegie Mellon

Sending Signals from the Keyboard
• Can you guess how Ctrl + C might be implemented?

• Ctrl + C sends a keyboard interrupt to the CPU, which triggers an
interrupt handler

!21

Carnegie Mellon

Sending Signals from the Keyboard
• Can you guess how Ctrl + C might be implemented?

• Ctrl + C sends a keyboard interrupt to the CPU, which triggers an
interrupt handler

• The interrupt handler, executed by the kernel, triggers certain piece of
the kernel, which generates the signal, which is then delivered to the
target process

!21

Carnegie Mellon

Sending Signals with kill Function

!22

void fork12()
{
 pid_t pid[N];
 int i;
 int child_status;

 for (i = 0; i < N; i++)
 if ((pid[i] = fork()) == 0) {
 /* Child: Infinite Loop */
 while(1)
 ;
 }

 for (i = 0; i < N; i++) {
 printf("Killing process %d\n", pid[i]);
 kill(pid[i], SIGINT);
 }

 for (i = 0; i < N; i++) {
 pid_t wpid = wait(&child_status);
 if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",
 wpid, WEXITSTATUS(child_status));
 else
 printf("Child %d terminated abnormally\n", wpid);
 }
}

forks.c

Carnegie Mellon

Pending and Blocked Signals

• A signal is pending if sent but not yet received
• There can be at most one pending signal of any particular type
• That is: Signals are not queued

• If a process has a pending signal of type k, then subsequent
signals of type k that are sent to that process are discarded

• A pending signal is received at most once

!23

Carnegie Mellon

Pending and Blocked Signals

• A signal is pending if sent but not yet received
• There can be at most one pending signal of any particular type
• That is: Signals are not queued

• If a process has a pending signal of type k, then subsequent
signals of type k that are sent to that process are discarded

• A pending signal is received at most once

• A process can block the receipt of certain signals

!23

Carnegie Mellon

Pending and Blocked Signals

• A signal is pending if sent but not yet received
• There can be at most one pending signal of any particular type
• That is: Signals are not queued

• If a process has a pending signal of type k, then subsequent
signals of type k that are sent to that process are discarded

• A pending signal is received at most once

• A process can block the receipt of certain signals
• Blocked signals can be delivered, but will not be received until the

signal is unblocked

!23

Carnegie Mellon

Pending/Blocked Bits

• Kernel maintains pending and blocked bit vectors in the
context of each process

• pending: represents the set of pending signals

• Kernel sets bit k in pending when a signal of type k is delivered
• Kernel clears bit k in pending when a signal of type k is received

• blocked: represents the set of blocked signals

• Can be set and cleared by using the sigprocmask function
• Also referred to as the signal mask.

!24

Carnegie Mellon

Receiving Signals
• Kernel handles signals delivered to a process p when it

switches p from kernel mode to user mode (e.g., after a
context switch)

!25

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

Carnegie Mellon

Receiving Signals

• Kernel is returning from an exception handler and is ready
to pass control to process p

!26

Carnegie Mellon

Receiving Signals

• Kernel is returning from an exception handler and is ready
to pass control to process p

• Kernel computes the set of pending & nonblocked signals
for process p (PNB set)

!26

Carnegie Mellon

Receiving Signals

• Kernel is returning from an exception handler and is ready
to pass control to process p

• Kernel computes the set of pending & nonblocked signals
for process p (PNB set)

• If (PNB is empty)

!26

Carnegie Mellon

Receiving Signals

• Kernel is returning from an exception handler and is ready
to pass control to process p

• Kernel computes the set of pending & nonblocked signals
for process p (PNB set)

• If (PNB is empty)
• Pass control to next instruction in the logical flow for p

!26

Carnegie Mellon

Receiving Signals

• Kernel is returning from an exception handler and is ready
to pass control to process p

• Kernel computes the set of pending & nonblocked signals
for process p (PNB set)

• If (PNB is empty)
• Pass control to next instruction in the logical flow for p

• Else

!26

Carnegie Mellon

Receiving Signals

• Kernel is returning from an exception handler and is ready
to pass control to process p

• Kernel computes the set of pending & nonblocked signals
for process p (PNB set)

• If (PNB is empty)
• Pass control to next instruction in the logical flow for p

• Else
• Choose least nonzero bit k in pnb and force process p to receive

signal k

!26

Carnegie Mellon

Receiving Signals

• Kernel is returning from an exception handler and is ready
to pass control to process p

• Kernel computes the set of pending & nonblocked signals
for process p (PNB set)

• If (PNB is empty)
• Pass control to next instruction in the logical flow for p

• Else
• Choose least nonzero bit k in pnb and force process p to receive

signal k
• The receipt of the signal triggers some action by p

!26

Carnegie Mellon

Receiving Signals

• Kernel is returning from an exception handler and is ready
to pass control to process p

• Kernel computes the set of pending & nonblocked signals
for process p (PNB set)

• If (PNB is empty)
• Pass control to next instruction in the logical flow for p

• Else
• Choose least nonzero bit k in pnb and force process p to receive

signal k
• The receipt of the signal triggers some action by p
• Repeat for all nonzero k in pnb

!26

Carnegie Mellon

Receiving Signals

• Kernel is returning from an exception handler and is ready
to pass control to process p

• Kernel computes the set of pending & nonblocked signals
for process p (PNB set)

• If (PNB is empty)
• Pass control to next instruction in the logical flow for p

• Else
• Choose least nonzero bit k in pnb and force process p to receive

signal k
• The receipt of the signal triggers some action by p
• Repeat for all nonzero k in pnb
• Pass control to next instruction in logical flow for p

!26

Carnegie Mellon

Default Actions

• Each signal type has a predefined default action, which is
one of:

• The process terminates
• The process stops until restarted by a SIGCONT signal
• The process ignores the signal

!27

Carnegie Mellon

Installing Signal Handlers
• The signal function modifies the default action associated

with the receipt of signal signum:
• handler_t *signal(int signum, handler_t *handler)

!28

Carnegie Mellon

Installing Signal Handlers
• The signal function modifies the default action associated

with the receipt of signal signum:
• handler_t *signal(int signum, handler_t *handler)

• Different values for handler:

!28

Carnegie Mellon

Installing Signal Handlers
• The signal function modifies the default action associated

with the receipt of signal signum:
• handler_t *signal(int signum, handler_t *handler)

• Different values for handler:
• SIG_IGN: ignore signals of type signum

!28

Carnegie Mellon

Installing Signal Handlers
• The signal function modifies the default action associated

with the receipt of signal signum:
• handler_t *signal(int signum, handler_t *handler)

• Different values for handler:
• SIG_IGN: ignore signals of type signum
• SIG_DFL: revert to the default action on receipt of signals of type signum

!28

Carnegie Mellon

Installing Signal Handlers
• The signal function modifies the default action associated

with the receipt of signal signum:
• handler_t *signal(int signum, handler_t *handler)

• Different values for handler:
• SIG_IGN: ignore signals of type signum
• SIG_DFL: revert to the default action on receipt of signals of type signum
• Otherwise, handler is the address of a user-level function (signal handler)

!28

Carnegie Mellon

Installing Signal Handlers
• The signal function modifies the default action associated

with the receipt of signal signum:
• handler_t *signal(int signum, handler_t *handler)

• Different values for handler:
• SIG_IGN: ignore signals of type signum
• SIG_DFL: revert to the default action on receipt of signals of type signum
• Otherwise, handler is the address of a user-level function (signal handler)

• Called when process receives signal of type signum

!28

Carnegie Mellon

Installing Signal Handlers
• The signal function modifies the default action associated

with the receipt of signal signum:
• handler_t *signal(int signum, handler_t *handler)

• Different values for handler:
• SIG_IGN: ignore signals of type signum
• SIG_DFL: revert to the default action on receipt of signals of type signum
• Otherwise, handler is the address of a user-level function (signal handler)

• Called when process receives signal of type signum
• Referred to as “installing” the handler

!28

Carnegie Mellon

Installing Signal Handlers
• The signal function modifies the default action associated

with the receipt of signal signum:
• handler_t *signal(int signum, handler_t *handler)

• Different values for handler:
• SIG_IGN: ignore signals of type signum
• SIG_DFL: revert to the default action on receipt of signals of type signum
• Otherwise, handler is the address of a user-level function (signal handler)

• Called when process receives signal of type signum
• Referred to as “installing” the handler
• Executing handler is called “catching” or “handling” the signal

!28

Carnegie Mellon

Installing Signal Handlers
• The signal function modifies the default action associated

with the receipt of signal signum:
• handler_t *signal(int signum, handler_t *handler)

• Different values for handler:
• SIG_IGN: ignore signals of type signum
• SIG_DFL: revert to the default action on receipt of signals of type signum
• Otherwise, handler is the address of a user-level function (signal handler)

• Called when process receives signal of type signum
• Referred to as “installing” the handler
• Executing handler is called “catching” or “handling” the signal
• When the handler executes its return statement, control passes

back to instruction in the control flow of the process that was
interrupted by receipt of the signal

!28

Carnegie Mellon

Signal Handling Example

!29

void sigint_handler(int sig) /* SIGINT handler */
{
 printf("So you think you can stop the bomb with ctrl-c, do you?\n");
 sleep(2);
 printf("Well...");
 fflush(stdout);
 sleep(1);
 printf("OK. :-)\n");
 exit(0);
}

int main()
{
 /* Install the SIGINT handler */
 if (signal(SIGINT, sigint_handler) == SIG_ERR)
 unix_error("signal error");

 /* Wait for the receipt of a signal */
 pause();

 return 0;
} sigint.c

Carnegie Mellon

View Signal Handlers as Concurrent Flows

!30

Signal delivered
to process A

Signal received
by process A

Process A Process B

user code (main)

kernel code

user code (main)

kernel code

user code (handler)

context switch

context switch

kernel code

user code (main)

Icurr

Inext

Carnegie Mellon

Nested Signal Handlers
• Handlers can be interrupted by other handlers

!31

(2) Control passes
to handler S

 Main program

(5) Handler T
returns to
handler S

Icurr

Inext

(1) Program
catches signal s

 Handler S Handler T

(3) Program
catches signal t

(4) Control passes
to handler T

(6) Handler S
returns to
main program

(7) Main program
resumes

Carnegie Mellon

Blocking Signals

!32

 sigset_t mask, prev_mask;

 sigemptyset(&mask);
 sigaddset(&mask, SIGINT);

 /* Block SIGINT and save previous blocked set */
 sigprocmask(SIG_BLOCK, &mask, &prev_mask);

 /* Code region that will not be interrupted by SIGINT */

 /* Restore previous blocked set, unblocking SIGINT */
 sigprocmask(SIG_SETMASK, &prev_mask, NULL);

• Explicit blocking and unblocking signal

• sigprocmask function
• sigemptyset – Create empty set
• sigfillset – Add every signal number to set
• sigaddset – Add signal number to set
• sigdelset – Delete signal number from set

Carnegie Mellon

Safe Signal Handling

• Handlers are tricky because they are concurrent with main
program and may share the same global data structures.

!33

Carnegie Mellon

Safe Signal Handling

• Handlers are tricky because they are concurrent with main
program and may share the same global data structures.

!33

static int x = 5;
void handler(int sig)
{
 x = 10;
}

int main(int argc, char **argv)
{
 int pid, y = 0;
 Signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 if (x == 5)
 y = x * 2; // You’d expect y == 10
 exit(0);
}

Carnegie Mellon

Safe Signal Handling

• Handlers are tricky because they are concurrent with main
program and may share the same global data structures.

!33

static int x = 5;
void handler(int sig)
{
 x = 10;
}

int main(int argc, char **argv)
{
 int pid, y = 0;
 Signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 if (x == 5)
 y = x * 2; // You’d expect y == 10
 exit(0);
}

What if the following happens:

Carnegie Mellon

Safe Signal Handling

• Handlers are tricky because they are concurrent with main
program and may share the same global data structures.

!33

static int x = 5;
void handler(int sig)
{
 x = 10;
}

int main(int argc, char **argv)
{
 int pid, y = 0;
 Signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 if (x == 5)
 y = x * 2; // You’d expect y == 10
 exit(0);
}

What if the following happens:
• Parent process executes and

finishes if (x == 5)

Carnegie Mellon

Safe Signal Handling

• Handlers are tricky because they are concurrent with main
program and may share the same global data structures.

!33

static int x = 5;
void handler(int sig)
{
 x = 10;
}

int main(int argc, char **argv)
{
 int pid, y = 0;
 Signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 if (x == 5)
 y = x * 2; // You’d expect y == 10
 exit(0);
}

What if the following happens:
• Parent process executes and

finishes if (x == 5)
• Context switch to child,

which then terminates, sends
a SIGCHLD signal

Carnegie Mellon

Safe Signal Handling

• Handlers are tricky because they are concurrent with main
program and may share the same global data structures.

!33

static int x = 5;
void handler(int sig)
{
 x = 10;
}

int main(int argc, char **argv)
{
 int pid, y = 0;
 Signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 if (x == 5)
 y = x * 2; // You’d expect y == 10
 exit(0);
}

What if the following happens:
• Parent process executes and

finishes if (x == 5)
• Context switch to child,

which then terminates, sends
a SIGCHLD signal

• Another context switch back
to parent, and now the kernel
needs to execute the
SIGCHLD handler

Carnegie Mellon

Safe Signal Handling

• Handlers are tricky because they are concurrent with main
program and may share the same global data structures.

!33

static int x = 5;
void handler(int sig)
{
 x = 10;
}

int main(int argc, char **argv)
{
 int pid, y = 0;
 Signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 if (x == 5)
 y = x * 2; // You’d expect y == 10
 exit(0);
}

What if the following happens:
• Parent process executes and

finishes if (x == 5)
• Context switch to child,

which then terminates, sends
a SIGCHLD signal

• Another context switch back
to parent, and now the kernel
needs to execute the
SIGCHLD handler

• When return to parent
process, y == 20!

Carnegie Mellon

Safe Signal Handling

• Handlers are tricky because they are concurrent with main
program and may share the same global data structures.

• Programmers have no control over the execution ordering between the

main program and the signal handler, that is:
• when a signal happens/delivers (depends on user or other process)
• when the signal handler will be executed (depends on kernel)

• If not careful, shared data structures can be corrupted

!34

Carnegie Mellon

Fixing the Signal Handling Bug

!35

static int x = 5;
void handler(int sig)
{
 x = 10;
}

int main(int argc, char **argv)
{
 int pid;
 sigset_t mask_all, prev_all;
 sigfillset(&mask_all);
 signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 Sigprocmask(SIG_BLOCK, &mask_all, &prev_all);
 if (x == 5)
 y = x * 2; // You’d expect y == 10
 Sigprocmask(SIG_SETMASK, &prev_all, NULL);

 exit(0);
}

• Block all signals before
accessing a shared,
global data structure.

• Can’t use a lock (later
in this course)

Carnegie Mellon

Async-Signal-Safety

• Function is async-signal-safe if either reentrant (e.g., no
access to global variables) or non-interruptible by signals.

!36

Carnegie Mellon

Async-Signal-Safety

• Function is async-signal-safe if either reentrant (e.g., no
access to global variables) or non-interruptible by signals.

• Posix guarantees 117 functions to be async-signal-safe

!36

Carnegie Mellon

Async-Signal-Safety

• Function is async-signal-safe if either reentrant (e.g., no
access to global variables) or non-interruptible by signals.

• Posix guarantees 117 functions to be async-signal-safe
• Source: “man 7 signal”

!36

Carnegie Mellon

Async-Signal-Safety

• Function is async-signal-safe if either reentrant (e.g., no
access to global variables) or non-interruptible by signals.

• Posix guarantees 117 functions to be async-signal-safe
• Source: “man 7 signal”
• Popular functions on the list:

!36

Carnegie Mellon

Async-Signal-Safety

• Function is async-signal-safe if either reentrant (e.g., no
access to global variables) or non-interruptible by signals.

• Posix guarantees 117 functions to be async-signal-safe
• Source: “man 7 signal”
• Popular functions on the list:

• _exit, write, wait, waitpid, sleep, kill

!36

Carnegie Mellon

Async-Signal-Safety

• Function is async-signal-safe if either reentrant (e.g., no
access to global variables) or non-interruptible by signals.

• Posix guarantees 117 functions to be async-signal-safe
• Source: “man 7 signal”
• Popular functions on the list:

• _exit, write, wait, waitpid, sleep, kill
• Popular functions that are not on the list:

!36

Carnegie Mellon

Async-Signal-Safety

• Function is async-signal-safe if either reentrant (e.g., no
access to global variables) or non-interruptible by signals.

• Posix guarantees 117 functions to be async-signal-safe
• Source: “man 7 signal”
• Popular functions on the list:

• _exit, write, wait, waitpid, sleep, kill
• Popular functions that are not on the list:

• printf, sprintf, malloc, exit

!36

Carnegie Mellon

Async-Signal-Safety

• Function is async-signal-safe if either reentrant (e.g., no
access to global variables) or non-interruptible by signals.

• Posix guarantees 117 functions to be async-signal-safe
• Source: “man 7 signal”
• Popular functions on the list:

• _exit, write, wait, waitpid, sleep, kill
• Popular functions that are not on the list:

• printf, sprintf, malloc, exit
• Unfortunate fact: write is the only async-signal-safe output

function

!36

Carnegie Mellon

Another Unsafe Signal Handler Example

!37

Carnegie Mellon

Another Unsafe Signal Handler Example
• Assume a program wants to do the following:

• The parent creates multiple child processes
• When each child process is created, add the child PID to a

queue
• When a child process terminates, the parent process

removes the child PID from the queue

!37

Carnegie Mellon

Another Unsafe Signal Handler Example
• Assume a program wants to do the following:

• The parent creates multiple child processes
• When each child process is created, add the child PID to a

queue
• When a child process terminates, the parent process

removes the child PID from the queue
• One possible implementation:

• An array for keeping the child PIDs
• Use a loop to fork child, and add PID to the array after fork
• Install a handler for SIGCHLD in parent process
• The SIGCHLD handler removes the child PID

!37

Carnegie Mellon

First Attempt
void handler(int sig)
{
 pid_t pid;

 while ((pid = wait(NULL)) > 0) { /* Reap child */
 /* Delete the child from the job list */
 deletejob(pid);
 }
}

int main(int argc, char **argv)
{
 int pid;

 Signal(SIGCHLD, handler);
 initjobs(); /* Initialize the job list */

 while (1) {
 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }
 /* Add the child to the job list */
 addjob(pid);
 }
 exit(0);
}

!38

Carnegie Mellon

First Attempt
void handler(int sig)
{
 pid_t pid;

 while ((pid = wait(NULL)) > 0) { /* Reap child */
 /* Delete the child from the job list */
 deletejob(pid);
 }
}

int main(int argc, char **argv)
{
 int pid;

 Signal(SIGCHLD, handler);
 initjobs(); /* Initialize the job list */

 while (1) {
 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }
 /* Add the child to the job list */
 addjob(pid);
 }
 exit(0);
}

!38

The following can happen:

Carnegie Mellon

First Attempt
void handler(int sig)
{
 pid_t pid;

 while ((pid = wait(NULL)) > 0) { /* Reap child */
 /* Delete the child from the job list */
 deletejob(pid);
 }
}

int main(int argc, char **argv)
{
 int pid;

 Signal(SIGCHLD, handler);
 initjobs(); /* Initialize the job list */

 while (1) {
 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }
 /* Add the child to the job list */
 addjob(pid);
 }
 exit(0);
}

!38

The following can happen:
• Child runs, and terminates

Carnegie Mellon

First Attempt
void handler(int sig)
{
 pid_t pid;

 while ((pid = wait(NULL)) > 0) { /* Reap child */
 /* Delete the child from the job list */
 deletejob(pid);
 }
}

int main(int argc, char **argv)
{
 int pid;

 Signal(SIGCHLD, handler);
 initjobs(); /* Initialize the job list */

 while (1) {
 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }
 /* Add the child to the job list */
 addjob(pid);
 }
 exit(0);
}

!38

The following can happen:
• Child runs, and terminates
• Kernel sends SIGCHLD

Carnegie Mellon

First Attempt
void handler(int sig)
{
 pid_t pid;

 while ((pid = wait(NULL)) > 0) { /* Reap child */
 /* Delete the child from the job list */
 deletejob(pid);
 }
}

int main(int argc, char **argv)
{
 int pid;

 Signal(SIGCHLD, handler);
 initjobs(); /* Initialize the job list */

 while (1) {
 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }
 /* Add the child to the job list */
 addjob(pid);
 }
 exit(0);
}

!38

The following can happen:
• Child runs, and terminates
• Kernel sends SIGCHLD
• Context switch to parent,

but before it can run, kernel
has to handle SIGCHLD first

Carnegie Mellon

First Attempt
void handler(int sig)
{
 pid_t pid;

 while ((pid = wait(NULL)) > 0) { /* Reap child */
 /* Delete the child from the job list */
 deletejob(pid);
 }
}

int main(int argc, char **argv)
{
 int pid;

 Signal(SIGCHLD, handler);
 initjobs(); /* Initialize the job list */

 while (1) {
 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }
 /* Add the child to the job list */
 addjob(pid);
 }
 exit(0);
}

!38

The following can happen:
• Child runs, and terminates
• Kernel sends SIGCHLD
• Context switch to parent,

but before it can run, kernel
has to handle SIGCHLD first

• The handler deletes the job,
which does nothing

Carnegie Mellon

First Attempt
void handler(int sig)
{
 pid_t pid;

 while ((pid = wait(NULL)) > 0) { /* Reap child */
 /* Delete the child from the job list */
 deletejob(pid);
 }
}

int main(int argc, char **argv)
{
 int pid;

 Signal(SIGCHLD, handler);
 initjobs(); /* Initialize the job list */

 while (1) {
 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }
 /* Add the child to the job list */
 addjob(pid);
 }
 exit(0);
}

!38

The following can happen:
• Child runs, and terminates
• Kernel sends SIGCHLD
• Context switch to parent,

but before it can run, kernel
has to handle SIGCHLD first

• The handler deletes the job,
which does nothing

• The parent process resumes
and adds a terminated child
to job list

Carnegie Mellon

Second Attempt
void handler(int sig)
{
 sigset_t mask_all, prev_all;
 pid_t pid;

 sigfillset(&mask_all);
 while ((pid = wait(NULL)) > 0) {
 sigprocmask(SIG_BLOCK, &mask_all, &prev_all);
 deletejob(pid);
 sigprocmask(SIG_SETMASK, &prev_all, NULL);
 }
}
int main(int argc, char **argv)
{
 int pid;
 sigset_t mask_all, prev_all;

 sigfillset(&mask_all);
 signal(SIGCHLD, handler);
 initjobs(); /* Initialize the job list */

 while (1) {
 if ((pid = Fork()) == 0) {
 Execve("/bin/date", argv, NULL);
 }
 sigprocmask(SIG_BLOCK, &mask_all, &prev_all);
 addjob(pid);
 sigprocmask(SIG_SETMASK, &prev_all, NULL);
 }
 exit(0);
}

!39

Carnegie Mellon

Third Attempt (The Correct One)

!40

int main(int argc, char **argv)
{
 int pid;
 sigset_t mask_all, mask_one, prev_one;

 Sigfillset(&mask_all);
 Sigemptyset(&mask_one);
 Sigaddset(&mask_one, SIGCHLD);
 Signal(SIGCHLD, handler);
 initjobs(); /* Initialize the job list */

 while (1) {
 Sigprocmask(SIG_BLOCK, &mask_one, &prev_one); /* Block SIGCHLD */
 if ((pid = Fork()) == 0) { /* Child process */
 Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
 Execve("/bin/date", argv, NULL);
 }
 Sigprocmask(SIG_BLOCK, &mask_all, NULL); /* Parent process */
 addjob(pid); /* Add the child to the job list */
 Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
 }
 exit(0);
}

Carnegie Mellon

Today
• Process Control

• Signals

• Non-local Jumps (if time permits)

!41

Carnegie Mellon

setjmp/longjmp Example
Goal: return directly to original caller
from a deeply-nested function

!42

/* Deeply nested function foo */
void foo(void)
{
 if (error1)
 longjmp(buf, 1);
 bar();
}

void bar(void)
{
 if (error2)
 longjmp(buf, 2);
}

jmp_buf buf;

int error1 = 0;
int error2 = 1;

void foo(void), bar(void);

int main()
{
 switch(setjmp(buf)) {
 case 0:
 foo();
 break;
 case 1:
 printf("Error1\n");
 break;
 case 2:
 printf("Error2\n");
 break;
 default:
 printf("Unknown error\n");
 }
 exit(0);
}

Carnegie Mellon

Nonlocal Jumps: setjmp/longjmp

• Powerful (but dangerous) user-level mechanism for
transferring control to an arbitrary location

• Controlled to way to break the procedure call / return discipline
• Useful for error recovery and signal handling

•int setjmp(jmp_buf j)
• Must be called before longjmp
• Identifies a return site for a subsequent longjmp
• Called once, returns one or more times

• Implementation:

• Remember where you are by storing the current register context,

stack pointer, and PC value in jmp_buf
• Return 0

!43

Carnegie Mellon

setjmp/longjmp

•void longjmp(jmp_buf j, int i)
• Meaning:

• return from the setjmp remembered by jump buffer j again ...
• … this time returning i instead of 0

• Called after setjmp
• Called once, but never returns

!44

Carnegie Mellon

setjmp/longjmp

•void longjmp(jmp_buf j, int i)
• Meaning:

• return from the setjmp remembered by jump buffer j again ...
• … this time returning i instead of 0

• Called after setjmp
• Called once, but never returns

•longjmp Implementation:
• Restore register context (stack pointer, base pointer, PC value) from

jump buffer j
• Set %eax (the return value) to i
• Jump to the location indicated by the PC stored in jump buf j

!44

Carnegie Mellon

Limitations of Nonlocal Jumps

• Works within stack discipline

• Can only long jump to environment of function that has been called

but not yet completed

!45

jmp_buf env;

P1()
{
 if (setjmp(env)) {
 /* Long Jump to here */
 } else {
 P2();
 }
}

P2()
{ . . . P2(); . . . P3(); }

P3()
{
 longjmp(env, 1);
}

P1

P2

P2

P2

P3

env
P1

Before longjmp After longjmp

Carnegie Mellon

!46

jmp_buf env;

P1()
{
 P2(); P3();
}

P2()
{
 if (setjmp(env)) {
 /* Long Jump to here */
 }
}

P3()
{
 longjmp(env, 1);
}

env

P1

P2

At setjmp

Limitations of Nonlocal Jumps

• This example violates stack principle

Carnegie Mellon

!46

jmp_buf env;

P1()
{
 P2(); P3();
}

P2()
{
 if (setjmp(env)) {
 /* Long Jump to here */
 }
}

P3()
{
 longjmp(env, 1);
}

env

P1

P2

At setjmp

P1

P3
env

At longjmp

X

P1

P2

P2 returns

env
X

Limitations of Nonlocal Jumps

• This example violates stack principle

