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Action Items: 
• Programming Assignment 5 is out
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Announcement
• Programming Assignment 5 is due 11:59pm, Monday, April 15.

• Your shell should emit output that is identical to the reference 

solution (except the PID). If you output does not match the 
reference solution, you get a 0. NO exceptions will be made.
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Due
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Today
• Process Control

• Signals: The Way to Communicate with Processes

!3



Carnegie Mellon
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What Happens at fork()?

!5

Code Segment
int main() 
{ 
  pid_t pid; 
  int x = 1; 

  pid = Fork();  
  if (pid == 0) { 
    /* Child */ 
    x++; // 2 
    exit(0); 
  } 

  /* Parent */ 
  x--; // 0 
  exit(0); 
}
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Creating Processes
• Parent process creates a new child process by calling fork 
• Child get an identical (but separate) copy of the parent’s (virtual) 

address space (i.e., same stack copies, code, etc.)

•int fork(void) 

• Returns 0 to the child process 
• Returns child’s PID to the parent process

!6
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  char *myargv[] = {“/bin/ls”, “-lt”, “/usr/include”}; 
  char *environ[] = {“USER=droh”, “PWD=“/usr/droh”}; 
   
  if ((pid = Fork()) == 0) {   /* Child runs program */                                                
      if (execve(myargv[0], myargv, environ) < 0) {                                                         
          printf("%s: Command not found.\n", myargv[0]);                                                  
          exit(1);                                                                                      
      }                                                                                                 
  }                                                                                                    

Executes “/bin/ls –lt /usr/include” in child process using 
current environment:

execve: Loading and Running Programs
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execve: Loading and Running Programs
•int execve(char *filename, char *argv[], char *envp[])
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execve: Loading and Running Programs
•int execve(char *filename, char *argv[], char *envp[])
• Loads and runs in the current process:


• Executable  file filename 
• Argument list argv 

• By convention argv[0]==filename
• Environment variable list envp 

• “name=value” strings (e.g., USER=droh)
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execve: Loading and Running Programs
•int execve(char *filename, char *argv[], char *envp[])
• Loads and runs in the current process:


• Executable  file filename 
• Argument list argv 

• By convention argv[0]==filename
• Environment variable list envp 

• “name=value” strings (e.g., USER=droh)

• Overwrites code, data, and stack

• Retains PID, open files and signal context

• Called once and never returns

• …except if there is an error
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execve Example
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envp[n] = NULL
envp[n-1]

envp[0]
…

myargv[argc] = NULL
myargv[2]

myargv[0]
myargv[1]

“/bin/ls”
“-lt”
“/usr/include”

“USER=droh”

“PWD=/usr/droh”

environ

myargv

  if ((pid = Fork()) == 0) {   /* Child runs program */                                                
      if (execve(myargv[0], myargv, environ) < 0) {                                                         
          printf("%s: Command not found.\n", myargv[0]);                                                  
          exit(1);                                                                                      
      }                                                                                                 
  }                                                                                                    

Executes “/bin/ls –lt /usr/include” in child process using 
current environment:

(argc == 3)
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Summary
• Processes


• At any given time, system has multiple active processes 
• Only one can execute at a time on a single core, though 
• Each process appears to have total control of  processor + private memory space 

• Spawning processes

• Call fork 
• One call, two returns 

• Process completion

• Call exit 
• One call, no return 

• Reaping and waiting for processes

• Call wait or waitpid 

• Loading and running programs

• Call execve (or variant) 
• One call, (normally) no return

!11
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Today
• Process Control

• Signals: The Way to Communicate with Processes
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Signals

• A signal is a small message that notifies a process that an 
event of some type has occurred in the system

• Sent from the OS kernel 
• Could be requested by another process, by user, or automatically by 

the kernel 
• Signal type is identified by small integer ID’s (1-30)

!13
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ID Name Default Action Corresponding Event
2 SIGINT Terminate User typed ctrl-c 
9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate Segmentation violation
14 SIGALRM Terminate Timer signal
17 SIGCHLD Ignore Child stopped or terminated
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Signal Concepts: Sending a Signal
• Kernel sends (delivers) a signal to a destination process by 

updating some state in the context of the destination 
process

• Kernel sends a signal for one of the following reasons:

!14
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Signal Concepts: Sending a Signal
• Kernel sends (delivers) a signal to a destination process by 

updating some state in the context of the destination 
process

• Kernel sends a signal for one of the following reasons:
• Kernel has detected a system event such as:

• Exception: divide-by-zero (SIGFPE)
• Interrupt: user pressing Ctrl + C (SIGINT)
• The termination of a child process (SIGCHLD)

• Another process has invoked the kill system call to explicitly 
request the kernel to send a signal to the destination process.
• Note: kill doesn’t mean you are going to kill the target process. It is just a 

system call that allows you to send signals. Of course the signal you send 
could be SIGKILL.

!14
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Signal Concepts: Receiving a Signal

• A destination process receives a signal when it is forced by 
the kernel to react in some way to the delivery of the signal

• Some possible ways to react:
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Sending Signals with /bin/kill Program

• /bin/kill program sends 
arbitrary signal to a process 

• Examples

• /bin/kill –9 24818  

Send SIGKILL to process 24818 
• /bin/kill itself doesn’t kill the 

process. 9 is the ID for the SIGKILL 
signal, which kills the process

!16

linux> ./forks 16  
Child1: pid=24818 pgrp=24817  
Child2: pid=24819 pgrp=24817  
  
linux> ps  
  PID TTY          TIME CMD  
24788 pts/2    00:00:00 tcsh  
24818 pts/2    00:00:02 forks  
24819 pts/2    00:00:02 forks  
24820 pts/2    00:00:00 ps 
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Process Groups

• Every process belongs to exactly one process group

!17
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Process Groups

• Every process belongs to exactly one process group

!17

Fore- 
ground 

job

Back- 
ground 
job #1

Back- 
ground 
job #2

Shell

Child Child

pid=10 
pgid=10

Foreground  
process group 
20

Background 
process group 32

Background 
process group 40

pid=20 
pgid=20

pid=32 
pgid=32

pid=40 
pgid=40

pid=21 
pgid=20

pid=22 
pgid=20

getpgrp()  
Return process group of current 
process 
setpgid()  
Change process group of a process 
(see text for details)
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Sending Signals with /bin/kill Program

• /bin/kill program 
sends arbitrary signal to a 
process or process group


• Examples

• /bin/kill –9 –24817  

Send SIGKILL to every process 
in process group 24817

!18

linux> ./forks 16  
Child1: pid=24818 pgrp=24817  
Child2: pid=24819 pgrp=24817  
  
linux> ps  
  PID TTY          TIME CMD  
24788 pts/2    00:00:00 tcsh  
24818 pts/2    00:00:02 forks  
24819 pts/2    00:00:02 forks  
24820 pts/2    00:00:00 ps  
linux> /bin/kill -9 -24817  
linux> ps   
  PID TTY          TIME CMD  
24788 pts/2    00:00:00 tcsh  
24823 pts/2    00:00:00 ps  
linux> 
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Sending Signals from the Keyboard
• Typing ctrl-c causes the kernel to send a SIGINT to every 

process in the foreground process group.

• SIGINT – default action is to terminate each process  

• Typing ctrl-z causes the kernel to send a SIGTSTP to 
every job in the foreground process group.

• SIGTSTP – default action is to stop (suspend) each process

!19
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Example of ctrl-c and ctrl-z

!20

bluefish> ./forks 17 
Child: pid=28108 pgrp=28107 
Parent: pid=28107 pgrp=28107 

<types ctrl-z> 
Suspended 
bluefish> ps w 
  PID TTY      STAT   TIME COMMAND 
27699 pts/8    Ss     0:00 -tcsh 
28107 pts/8    T      0:01 ./forks 17 
28108 pts/8    T      0:01 ./forks 17 
28109 pts/8    R+     0:00 ps w 

bluefish> fg 
./forks 17 
<types ctrl-c> 
bluefish> ps w 
  PID TTY      STAT   TIME COMMAND 
27699 pts/8    Ss     0:00 -tcsh 
28110 pts/8    R+     0:00 ps w 

STAT (process state) 
Legend: 

First letter: 
S: sleeping 
T: stopped 
R: running 

Second letter: 
s: session leader 
+: foreground proc group 

See “man ps” for more  
details
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Sending Signals from the Keyboard
• Can you guess how Ctrl + C might be implemented?

!21
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• Ctrl + C sends a keyboard interrupt to the CPU, which triggers an 
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Sending Signals from the Keyboard
• Can you guess how Ctrl + C might be implemented?

• Ctrl + C sends a keyboard interrupt to the CPU, which triggers an 
interrupt handler

• The interrupt handler, executed by the kernel, triggers certain piece of 
the kernel, which generates the signal, which is then delivered to the 
target process

!21
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Sending Signals with kill Function

!22

void fork12() 
{ 
    pid_t pid[N]; 
    int i; 
    int child_status; 

    for (i = 0; i < N; i++) 
        if ((pid[i] = fork()) == 0) { 
            /* Child: Infinite Loop */ 
            while(1) 
                ; 
        } 
     
    for (i = 0; i < N; i++) { 
        printf("Killing process %d\n", pid[i]); 
        kill(pid[i], SIGINT); 
    } 

    for (i = 0; i < N; i++) { 
        pid_t wpid = wait(&child_status); 
        if (WIFEXITED(child_status)) 
            printf("Child %d terminated with exit status %d\n", 
                   wpid, WEXITSTATUS(child_status)); 
        else 
            printf("Child %d terminated abnormally\n", wpid); 
    } 
}

forks.c
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Pending and Blocked Signals

• A signal is pending if sent but not yet received
• There can be at most one pending signal of any particular type
• That is: Signals are not queued

• If a process has a pending signal of type k, then subsequent 
signals of type k that are sent to that process are discarded

• A pending signal is received at most once

!23
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Pending and Blocked Signals

• A signal is pending if sent but not yet received
• There can be at most one pending signal of any particular type
• That is: Signals are not queued

• If a process has a pending signal of type k, then subsequent 
signals of type k that are sent to that process are discarded

• A pending signal is received at most once

• A process can block the receipt of certain signals
• Blocked signals can be delivered, but will not be received until the 

signal is unblocked

!23
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Pending/Blocked Bits 

• Kernel maintains pending and blocked bit vectors in the 
context of each process

• pending: represents the set of pending signals


• Kernel sets bit k in pending when a signal of type k is delivered 
• Kernel clears bit k in pending when a signal of type k is received  

• blocked: represents the set of blocked signals

• Can be set and cleared by using the sigprocmask function 
• Also referred to as the signal mask.

!24
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Receiving Signals
• Kernel handles signals delivered to a process p when it 

switches p from kernel mode to user mode (e.g., after a 
context switch)

!25

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time
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Receiving Signals

• Kernel is returning from an exception handler and is ready 
to pass control to process p
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Receiving Signals

• Kernel is returning from an exception handler and is ready 
to pass control to process p

• Kernel computes the set of pending & nonblocked signals 
for process p (PNB set)

• If  (PNB is empty) 
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Receiving Signals
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• Kernel computes the set of pending & nonblocked signals 
for process p (PNB set)

• If  (PNB is empty) 
• Pass control to next instruction in the logical flow for p
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Receiving Signals

• Kernel is returning from an exception handler and is ready 
to pass control to process p

• Kernel computes the set of pending & nonblocked signals 
for process p (PNB set)
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Receiving Signals

• Kernel is returning from an exception handler and is ready 
to pass control to process p

• Kernel computes the set of pending & nonblocked signals 
for process p (PNB set)

• If  (PNB is empty) 
• Pass control to next instruction in the logical flow for p

• Else
• Choose least nonzero bit k in pnb and force process p to receive 

signal k
• The receipt of the signal triggers some action by p
• Repeat for all nonzero k in pnb
• Pass control to next instruction in logical flow for p

!26



Carnegie Mellon

Default Actions

• Each signal type has a predefined default action, which is 
one of:

• The process terminates 
• The process stops until restarted by a SIGCONT signal 
• The process ignores the signal

!27
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Installing Signal Handlers
• The signal function modifies the default action associated 

with the receipt of signal signum:
• handler_t *signal(int signum, handler_t *handler)
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Installing Signal Handlers
• The signal function modifies the default action associated 

with the receipt of signal signum:
• handler_t *signal(int signum, handler_t *handler)

• Different values for handler:
• SIG_IGN: ignore signals of type signum
• SIG_DFL: revert to the default action on receipt of signals of type signum
• Otherwise, handler is the address of a user-level function (signal handler)

• Called when process receives signal of type signum
• Referred to as “installing” the handler
• Executing handler is called “catching” or “handling” the signal
• When the handler executes its return statement, control passes 

back to instruction in the control flow of the process that was 
interrupted by receipt of the signal
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Signal Handling Example

!29

void sigint_handler(int sig) /* SIGINT handler */ 
{ 
    printf("So you think you can stop the bomb with ctrl-c, do you?\n"); 
    sleep(2); 
    printf("Well..."); 
    fflush(stdout); 
    sleep(1); 
    printf("OK. :-)\n"); 
    exit(0); 
} 

int main() 
{ 
    /* Install the SIGINT handler */ 
    if (signal(SIGINT, sigint_handler) == SIG_ERR) 
        unix_error("signal error"); 

    /* Wait for the receipt of a signal */ 
    pause(); 

    return 0; 
} sigint.c
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View Signal Handlers as Concurrent Flows

!30

Signal delivered 
to process A

Signal received 
by process A

Process A Process B

user code (main)

kernel code

user code (main)

kernel code

user code (handler)

context switch

context switch

kernel code

user code (main)

Icurr

Inext
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Nested Signal Handlers 
• Handlers can be interrupted by other handlers

!31

(2) Control passes 
to handler S

 Main program

(5) Handler T
returns to 
handler S

Icurr

Inext

(1) Program 
catches signal s

 Handler S  Handler T

(3) Program 
catches signal t

(4)  Control passes 
to handler T

(6) Handler S
returns to 
main program

(7) Main program 
resumes 
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Blocking Signals

!32

    sigset_t mask, prev_mask; 

    sigemptyset(&mask); 
    sigaddset(&mask, SIGINT); 

    /* Block SIGINT and save previous blocked set */ 
    sigprocmask(SIG_BLOCK, &mask, &prev_mask); 

    /* Code region that will not be interrupted by SIGINT */ 

    /* Restore previous blocked set, unblocking SIGINT */ 
    sigprocmask(SIG_SETMASK, &prev_mask, NULL);

• Explicit blocking and unblocking signal

• sigprocmask function 
• sigemptyset – Create empty set 
• sigfillset – Add every signal number to set 
• sigaddset – Add signal number to set 
• sigdelset – Delete signal number from set
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Safe Signal Handling

• Handlers are tricky because they are concurrent with main 
program and may share the same global data structures.
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static int x = 5; 
void handler(int sig) 
{ 
    x = 10; 
} 

int main(int argc, char **argv) 
{ 
    int pid, y = 0; 
    Signal(SIGCHLD, handler); 

    if ((pid = Fork()) == 0) { /* Child */ 
        Execve("/bin/date", argv, NULL); 
    } 

    if (x == 5) 
        y = x * 2; // You’d expect y == 10 
    exit(0); 
}
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Safe Signal Handling

• Handlers are tricky because they are concurrent with main 
program and may share the same global data structures.
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static int x = 5; 
void handler(int sig) 
{ 
    x = 10; 
} 

int main(int argc, char **argv) 
{ 
    int pid, y = 0; 
    Signal(SIGCHLD, handler); 

    if ((pid = Fork()) == 0) { /* Child */ 
        Execve("/bin/date", argv, NULL); 
    } 

    if (x == 5) 
        y = x * 2; // You’d expect y == 10 
    exit(0); 
}

What if the following happens:
• Parent process executes and 

finishes if (x == 5)
• Context switch to child, 

which then terminates, sends 
a SIGCHLD signal

• Another context switch back 
to parent, and now the kernel 
needs to execute the 
SIGCHLD handler

• When return to parent 
process, y == 20!
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Safe Signal Handling

• Handlers are tricky because they are concurrent with main 
program and may share the same global data structures.

• Programmers have no control over the execution ordering between the 

main program and the signal handler, that is: 
• when a signal happens/delivers (depends on user or other process) 
• when the signal handler will be executed (depends on kernel) 

• If not careful, shared data structures can be corrupted

!34
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Fixing the Signal Handling Bug

!35

static int x = 5; 
void handler(int sig) 
{ 
    x = 10; 
} 

int main(int argc, char **argv) 
{ 
    int pid; 
    sigset_t mask_all, prev_all; 
    sigfillset(&mask_all); 
    signal(SIGCHLD, handler); 

    if ((pid = Fork()) == 0) { /* Child */ 
        Execve("/bin/date", argv, NULL); 
    } 

    Sigprocmask(SIG_BLOCK, &mask_all, &prev_all); 
    if (x == 5) 
        y = x * 2; // You’d expect y == 10 
    Sigprocmask(SIG_SETMASK, &prev_all, NULL); 

    exit(0); 
}

• Block all signals before 
accessing a shared, 
global data structure.


• Can’t use a lock (later 
in this course)
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Async-Signal-Safety 

• Function is async-signal-safe if either reentrant (e.g., no 
access to global variables) or non-interruptible by signals.
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Async-Signal-Safety 

• Function is async-signal-safe if either reentrant (e.g., no 
access to global variables) or non-interruptible by signals.

• Posix guarantees 117 functions to be async-signal-safe 
• Source: “man 7 signal”
• Popular functions on the list:

• _exit, write, wait, waitpid, sleep, kill
• Popular functions that are not on the list:

• printf,  sprintf, malloc, exit 
• Unfortunate fact: write is the only async-signal-safe output 

function

!36
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Another Unsafe Signal Handler Example
• Assume a program wants to do the following:


• The parent creates multiple child processes 
• When each child process is created, add the child PID to a 

queue 
• When a child process terminates, the parent process 

removes the child PID from the queue
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Another Unsafe Signal Handler Example
• Assume a program wants to do the following:


• The parent creates multiple child processes 
• When each child process is created, add the child PID to a 

queue 
• When a child process terminates, the parent process 

removes the child PID from the queue
• One possible implementation:


• An array for keeping the child PIDs 
• Use a loop to fork child, and add PID to the array after fork 
• Install a handler for SIGCHLD in parent process 
• The SIGCHLD handler removes the child PID
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First Attempt
void handler(int sig) 
{ 
    pid_t pid; 

    while ((pid = wait(NULL)) > 0) { /* Reap child */ 
        /* Delete the child from the job list */ 
        deletejob(pid); 
    } 
} 

int main(int argc, char **argv) 
{ 
    int pid; 

    Signal(SIGCHLD, handler); 
    initjobs(); /* Initialize the job list */ 

    while (1) { 
        if ((pid = Fork()) == 0) { /* Child */ 
            Execve("/bin/date", argv, NULL); 
        } 
        /* Add the child to the job list */ 
        addjob(pid); 
    } 
    exit(0); 
}
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First Attempt
void handler(int sig) 
{ 
    pid_t pid; 

    while ((pid = wait(NULL)) > 0) { /* Reap child */ 
        /* Delete the child from the job list */ 
        deletejob(pid); 
    } 
} 

int main(int argc, char **argv) 
{ 
    int pid; 

    Signal(SIGCHLD, handler); 
    initjobs(); /* Initialize the job list */ 

    while (1) { 
        if ((pid = Fork()) == 0) { /* Child */ 
            Execve("/bin/date", argv, NULL); 
        } 
        /* Add the child to the job list */ 
        addjob(pid); 
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The following can happen:
• Child runs, and terminates
• Kernel sends SIGCHLD
• Context switch to parent, 

but before it can run, kernel 
has to handle SIGCHLD first

• The handler deletes the job, 
which does nothing

• The parent process resumes 
and adds a terminated child 
to job list
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Second Attempt
void handler(int sig) 
{ 
    sigset_t mask_all, prev_all; 
    pid_t pid; 

    sigfillset(&mask_all); 
    while ((pid = wait(NULL)) > 0) { 
        sigprocmask(SIG_BLOCK, &mask_all, &prev_all); 
        deletejob(pid); 
        sigprocmask(SIG_SETMASK, &prev_all, NULL); 
    } 
} 
int main(int argc, char **argv) 
{ 
    int pid; 
    sigset_t mask_all, prev_all; 

    sigfillset(&mask_all); 
    signal(SIGCHLD, handler); 
    initjobs(); /* Initialize the job list */ 

    while (1) { 
        if ((pid = Fork()) == 0) { 
            Execve("/bin/date", argv, NULL); 
        } 
        sigprocmask(SIG_BLOCK, &mask_all, &prev_all); 
        addjob(pid); 
        sigprocmask(SIG_SETMASK, &prev_all, NULL); 
    } 
    exit(0); 
}

!39
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Third Attempt (The Correct One)

!40

int main(int argc, char **argv) 
{ 
    int pid; 
    sigset_t mask_all, mask_one, prev_one; 

    Sigfillset(&mask_all); 
    Sigemptyset(&mask_one); 
    Sigaddset(&mask_one, SIGCHLD); 
    Signal(SIGCHLD, handler); 
    initjobs(); /* Initialize the job list */ 

    while (1) { 
        Sigprocmask(SIG_BLOCK, &mask_one, &prev_one); /* Block SIGCHLD */ 
        if ((pid = Fork()) == 0) { /* Child process */ 
            Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */ 
            Execve("/bin/date", argv, NULL); 
        } 
        Sigprocmask(SIG_BLOCK, &mask_all, NULL); /* Parent process */ 
 addjob(pid);  /* Add the child to the job list */ 
        Sigprocmask(SIG_SETMASK, &prev_one, NULL);  /* Unblock SIGCHLD */ 
    } 
    exit(0); 
}
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Today
• Process Control

• Signals

• Non-local Jumps (if time permits)

!41



Carnegie Mellon

setjmp/longjmp Example
Goal: return directly to original caller 
from a deeply-nested function

!42

/* Deeply nested function foo */ 
void foo(void) 
{ 
    if (error1) 
 longjmp(buf, 1); 
    bar(); 
} 

void bar(void) 
{ 
    if (error2) 
        longjmp(buf, 2); 
}

jmp_buf buf; 

int error1 = 0; 
int error2 = 1; 

void foo(void), bar(void); 

int main() 
{ 
    switch(setjmp(buf)) { 
    case 0: 
        foo(); 
        break; 
    case 1: 
        printf("Error1\n"); 
        break; 
    case 2: 
        printf("Error2\n"); 
        break; 
    default: 
        printf("Unknown error\n"); 
    } 
    exit(0); 
}
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Nonlocal Jumps: setjmp/longjmp

• Powerful (but dangerous) user-level mechanism for 
transferring control to an arbitrary location

• Controlled to way to break the procedure call / return discipline 
• Useful for error recovery and signal handling 

•int setjmp(jmp_buf j) 
• Must be called before longjmp 
• Identifies a return site for a subsequent longjmp 
• Called once, returns one or more times 

• Implementation:

• Remember where you are by storing the current register context, 

stack pointer, and PC value in jmp_buf 
• Return 0

!43
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setjmp/longjmp

•void longjmp(jmp_buf j, int i)
• Meaning:

• return from the setjmp remembered by jump buffer j again ... 
• … this time returning i instead of 0

• Called after setjmp
• Called once, but never returns
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setjmp/longjmp

•void longjmp(jmp_buf j, int i)
• Meaning:

• return from the setjmp remembered by jump buffer j again ... 
• … this time returning i instead of 0

• Called after setjmp
• Called once, but never returns

•longjmp Implementation:
• Restore register context (stack pointer, base pointer, PC value) from 

jump buffer j
• Set %eax (the return value) to i
• Jump to the location indicated by the PC stored in jump buf j
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Limitations of Nonlocal Jumps

• Works within stack discipline

• Can only long jump to environment of function that has been called 

but not yet completed

!45

jmp_buf env; 

P1() 
{ 
  if (setjmp(env)) { 
    /* Long Jump to here */ 
  } else { 
    P2(); 
  } 
} 

P2() 
{  . . . P2(); . . . P3(); } 

P3() 
{ 
  longjmp(env, 1); 
}

P1

P2

P2

P2

P3

env
P1

Before longjmp After longjmp
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!46

jmp_buf env; 

P1() 
{ 
  P2(); P3(); 
} 

P2() 
{ 
   if (setjmp(env)) { 
    /* Long Jump to here */ 
  } 
} 

P3() 
{ 
  longjmp(env, 1); 
}

env

P1

P2

At setjmp

Limitations of Nonlocal Jumps

• This example violates stack principle
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jmp_buf env; 

P1() 
{ 
  P2(); P3(); 
} 

P2() 
{ 
   if (setjmp(env)) { 
    /* Long Jump to here */ 
  } 
} 

P3() 
{ 
  longjmp(env, 1); 
}

env

P1

P2

At setjmp

P1

P3
env

At longjmp

X

P1

P2

P2 returns

env
X

Limitations of Nonlocal Jumps

• This example violates stack principle


