
CSC 252: Computer Organization 
 Spring 2018: Lecture 22 

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Action Items:
• Programming Assignment 5 is out

Carnegie Mellon

Announcement
• Programming Assignment 5 is due 11:59pm, Monday, April 15.

• Your shell should emit output that is identical to the reference

solution (except the PID). If you output does not match the
reference solution, you get a 0. NO exceptions will be made.

!2

Due

Today

Carnegie Mellon

Process Address Space

!3

Kernel space

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write data segment
(.data, .bss)

Read-only code segment
(.init, .text, .rodata)

Loaded from
the executable
file

Program
Counter

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!4

CPU
Registers

Stack
Heap

Code
Data

Process 2
Stack
Heap

Code
Data

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Problem

!5

Stack
Heap

Code
Data

Process 2
Stack
Heap

Code
Data

Process N
Stack
Heap

Code
Data

• Space:

• Each process’s address space is huge (64-bit): can memory hold it

(16GB is just 34-bit)?
• There are multiple processes, increasing the overhead further

Carnegie Mellon

Memory
Process 1

Problem

!5

Stack
Heap

Code
Data

Process 2
Stack
Heap

Code
Data

Process N
Stack
Heap

Code
Data

• Space:

• Each process’s address space is huge (64-bit): can memory hold it

(16GB is just 34-bit)?
• There are multiple processes, increasing the overhead further

• Solution: store all the data in disk, and use memory only for
most recently used data

• Does this sound similar?

Carnegie Mellon

The Big Idea: Virtual Memory

!6

Carnegie Mellon

The Big Idea: Virtual Memory
•What Does a Programmer Want?

!6

Carnegie Mellon

The Big Idea: Virtual Memory
•What Does a Programmer Want?
• Infinitely large, infinitely fast memory

• Preferably automatically moved to where it is needed

!6

Carnegie Mellon

The Big Idea: Virtual Memory
•What Does a Programmer Want?
• Infinitely large, infinitely fast memory

• Preferably automatically moved to where it is needed
• Virtual memory to the rescue

• Present a large, uniform memory to programmers
• Data in virtual memory by default stays in disk
• Data moves to physical memory (DRAM) “on demand”
• Disks (~TBs) are much larger than DRAM (~GBs), but 10,000x slower.
• Effectively, virtual memory system transparently share the physical

memory across different processes
• Manage the sharing automatically: hardware-software collaborative

strategy (too complex for hardware alone)

!6

Carnegie Mellon

Today
• Virtual memory (VM) illustration

• VM basic concepts and operation

• Other critical benefits of VM

• Address translation

!7

Carnegie Mellon

A System Using Physical Addressing

• Used in “simple” systems like embedded microcontrollers in
devices like cars, elevators, and digital picture frames

!8

0:
1:

M-1:

Main memory

CPU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8:
...

4

Carnegie Mellon

A System Using Virtual Addressing

• Used in all modern servers, laptops, and smart phones

• One of the great ideas in computer science

•MMU: Memory Management Unit

!9

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8:
...

CPU
Virtual address

(VA)

CPU Chip

44100

Carnegie Mellon

Address Spaces

!10

Carnegie Mellon

Address Spaces
• Virtual address space: Set of N = 2n virtual addresses

• Virtual address space is a linear address space, but limited 

{0, 1, 2, 3, …, N-1}

!10

Carnegie Mellon

Address Spaces
• Virtual address space: Set of N = 2n virtual addresses

• Virtual address space is a linear address space, but limited 

{0, 1, 2, 3, …, N-1}

• Physical address space: Set of M = 2m physical addresses

• Physical address space is a also linear address space, but smaller

than virtual address space  
{0, 1, 2, 3, …, M-1}

!10

Carnegie Mellon

Today
• Virtual memory (VM) illustration

• VM basic concepts and operation

• Other critical benefits of VM

• Address translation

!11

Carnegie Mellon

VM Concepts
• Conceptually, virtual memory is an array of N contiguous blocks

stored on disk.

• The contents of the array on disk are “cached" in physical memory
• These blocks are called pages (size is P = 2p bytes)

!12

PP 2m-p-1

Physical memory

Empty

Empty

Uncached

VP 0
VP 1

VP 2n-p-1

Virtual memory
Unallocated
Cached
Uncached
Unallocated
Cached
Uncached

PP 0
PP 1

Empty
Cached

0

N-1
M-1

0

Virtual pages (VPs)
stored on disk

Physical pages (PPs)
cached in DRAM

offsetpage number

Carnegie Mellon

VM Concepts
• Conceptually, virtual memory is an array of N contiguous blocks

stored on disk.

• The contents of the array on disk are “cached" in physical memory
• These blocks are called pages (size is P = 2p bytes)

!12

PP 2m-p-1

Physical memory

Empty

Empty

Uncached

VP 0
VP 1

VP 2n-p-1

Virtual memory
Unallocated
Cached
Uncached
Unallocated
Cached
Uncached

PP 0
PP 1

Empty
Cached

0

N-1
M-1

0

Virtual pages (VPs)
stored on disk

Physical pages (PPs)
cached in DRAM

offsetpage numberWhat programmers see

Carnegie Mellon

Analogy for Address Translation: A Secure Hotel

!13

Carnegie Mellon

Analogy for Address Translation: A Secure Hotel

• Call a hotel looking for a guest; what happens?

• Front desk routes call to room, does not give out room number
• Guest’s name is a virtual address
• Room number is physical address
• Front desk is doing address translation!

!13

Carnegie Mellon

Analogy for Address Translation: A Secure Hotel

• Call a hotel looking for a guest; what happens?

• Front desk routes call to room, does not give out room number
• Guest’s name is a virtual address
• Room number is physical address
• Front desk is doing address translation!

• Benefits

• Ease of management: Guest could change rooms (physical

address). You can still find her without knowing it
• Protection: Guest could have block on calls, block on calls from

specific callers (permissions)
• Sharing: Multiple guests (virtual addresses) can share the same

room (physical address)

!13

Carnegie Mellon

Different Names in Different Places

• Programmer uses text-based names (symbolic address)

• int array[100];

!14

Symbolic
address

Carnegie Mellon

Different Names in Different Places

• Programmer uses text-based names (symbolic address)

• int array[100];

• Compiler maps names to flat, uniform space

• Starting point is relative, size specified

!14

Symbolic
address

Carnegie Mellon

Different Names in Different Places

• Programmer uses text-based names (symbolic address)

• int array[100];

• Compiler maps names to flat, uniform space

• Starting point is relative, size specified

!14

Symbolic
address

Compiler

Relative
address

Carnegie Mellon

Different Names in Different Places

• Programmer uses text-based names (symbolic address)

• int array[100];

• Compiler maps names to flat, uniform space

• Starting point is relative, size specified

• Assembler maps uniform space to virtual addresses

• Mechanical transformation (assume a start address)

!14

Symbolic
address

Compiler

Relative
address

Carnegie Mellon

Different Names in Different Places

• Programmer uses text-based names (symbolic address)

• int array[100];

• Compiler maps names to flat, uniform space

• Starting point is relative, size specified

• Assembler maps uniform space to virtual addresses

• Mechanical transformation (assume a start address)

!14

Symbolic
address

Compiler

Relative
address

Assembler

Virtual
Address

Carnegie Mellon

Different Names in Different Places

• Programmer uses text-based names (symbolic address)

• int array[100];

• Compiler maps names to flat, uniform space

• Starting point is relative, size specified

• Assembler maps uniform space to virtual addresses

• Mechanical transformation (assume a start address)

• Processor instructions use virtual addresses, translates to
physical addresses

!14

Symbolic
address

Compiler

Relative
address

Assembler

Virtual
Address

Carnegie Mellon

Different Names in Different Places

• Programmer uses text-based names (symbolic address)

• int array[100];

• Compiler maps names to flat, uniform space

• Starting point is relative, size specified

• Assembler maps uniform space to virtual addresses

• Mechanical transformation (assume a start address)

• Processor instructions use virtual addresses, translates to
physical addresses

!14

Symbolic
address

Compiler

Relative
address

Address
mapping

Physical
Address

Processor

Assembler

Virtual
Address

Carnegie Mellon

Different Names in Different Places

• Programmer uses text-based names (symbolic address)

• int array[100];

• Compiler maps names to flat, uniform space

• Starting point is relative, size specified

• Assembler maps uniform space to virtual addresses

• Mechanical transformation (assume a start address)

• Processor instructions use virtual addresses, translates to
physical addresses

!14

Symbolic
address

Compiler

Relative
address

Address
mapping

Physical
Address

Processor

Memory
(DRAM)Assembler

Virtual
Address

Carnegie Mellon

Enabling Data Structure: Page Table
• How do we track which virtual pages are mapped to physical

pages, and where they are mapped?

!15

Carnegie Mellon

Enabling Data Structure: Page Table
• How do we track which virtual pages are mapped to physical

pages, and where they are mapped?
• Use a table to track this. The table is called page table, in which

each virtual page has an entry

!15

Carnegie Mellon

Enabling Data Structure: Page Table
• How do we track which virtual pages are mapped to physical

pages, and where they are mapped?
• Use a table to track this. The table is called page table, in which

each virtual page has an entry
• Each entry records whether the particular virtual page is

mapped to the physical memory

!15

Carnegie Mellon

Enabling Data Structure: Page Table
• How do we track which virtual pages are mapped to physical

pages, and where they are mapped?
• Use a table to track this. The table is called page table, in which

each virtual page has an entry
• Each entry records whether the particular virtual page is

mapped to the physical memory
• If mapped, where in the physical memory it is mapped to?

!15

Carnegie Mellon

Enabling Data Structure: Page Table
• How do we track which virtual pages are mapped to physical

pages, and where they are mapped?
• Use a table to track this. The table is called page table, in which

each virtual page has an entry
• Each entry records whether the particular virtual page is

mapped to the physical memory
• If mapped, where in the physical memory it is mapped to?
• If not mapped, where on the disk is the virtual page?

!15

Carnegie Mellon

Enabling Data Structure: Page Table
• How do we track which virtual pages are mapped to physical

pages, and where they are mapped?
• Use a table to track this. The table is called page table, in which

each virtual page has an entry
• Each entry records whether the particular virtual page is

mapped to the physical memory
• If mapped, where in the physical memory it is mapped to?
• If not mapped, where on the disk is the virtual page?

• Do you need a page table for each process?

!15

Carnegie Mellon

Enabling Data Structure: Page Table
• How do we track which virtual pages are mapped to physical

pages, and where they are mapped?
• Use a table to track this. The table is called page table, in which

each virtual page has an entry
• Each entry records whether the particular virtual page is

mapped to the physical memory
• If mapped, where in the physical memory it is mapped to?
• If not mapped, where on the disk is the virtual page?

• Do you need a page table for each process?
• Per-process data structure; managed by the OS kernel

!15

Carnegie Mellon

Enabling Data Structure: Page Table
• A page table is an array of page table entries (PTEs) that maps

every virtual page to its physical page.

!16

Carnegie Mellon

Enabling Data Structure: Page Table
• A page table is an array of page table entries (PTEs) that maps

every virtual page to its physical page.

!16

Virtual memory
(disk)
VP 1
VP 2

VP 4
VP 6
VP 7

VP 3

Carnegie Mellon

null

null

Memory resident
page table

(DRAM)

Valid

0
1

0
1
0

1
0

1

PTE 0

PTE 7

Enabling Data Structure: Page Table
• A page table is an array of page table entries (PTEs) that maps

every virtual page to its physical page.

!16

Virtual memory
(disk)
VP 1
VP 2

VP 4
VP 6
VP 7

VP 3

Carnegie Mellon

null

null

Memory resident
page table

(DRAM)

Valid

0
1

0
1
0

1
0

1

PTE 0

PTE 7

Enabling Data Structure: Page Table
• A page table is an array of page table entries (PTEs) that maps

every virtual page to its physical page.

!16

Virtual memory
(disk)
VP 1
VP 2

VP 4
VP 6
VP 7

VP 3

Carnegie Mellon

null

null

Memory resident
page table

(DRAM)

Valid

0
1

0
1
0

1
0

1

PTE 0

PTE 7

Enabling Data Structure: Page Table
• A page table is an array of page table entries (PTEs) that maps

every virtual page to its physical page.

!16

Virtual memory
(disk)
VP 1
VP 2

VP 4
VP 6
VP 7

VP 3

Physical page
number or

disk address

Carnegie Mellon

null

null

Memory resident
page table

(DRAM)

Valid

0
1

0
1
0

1
0

1

PTE 0

PTE 7

Enabling Data Structure: Page Table
• A page table is an array of page table entries (PTEs) that maps

every virtual page to its physical page.

!16

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

PP 0
VP 2
VP 1

PP 3

VP 1
VP 2

VP 4
VP 6
VP 7

VP 3

Physical page
number or

disk address

Carnegie Mellon

null

null

Memory resident
page table

(DRAM)

Valid

0
1

0
1
0

1
0

1

PTE 0

PTE 7

Enabling Data Structure: Page Table
• A page table is an array of page table entries (PTEs) that maps

every virtual page to its physical page.

!16

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

PP 0
VP 2
VP 1

PP 3

VP 1
VP 2

VP 4
VP 6
VP 7

VP 3

Physical page
number or

disk address

Carnegie Mellon

Page Hit
• Page hit: reference to VM word that is in physical memory

!17

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1
VP 2

VP 4
VP 6
VP 7

VP 3

Carnegie Mellon

Page Hit
• Page hit: reference to VM word that is in physical memory

!17

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1
VP 2

VP 4
VP 6
VP 7

VP 3

Virtual address

Carnegie Mellon

Page Fault
• Page fault: reference to VM word that is not in physical memory

!18

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1
VP 2

VP 4
VP 6
VP 7

VP 3

Carnegie Mellon

Page Fault
• Page fault: reference to VM word that is not in physical memory

!18

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1
VP 2

VP 4
VP 6
VP 7

VP 3

Virtual address

Carnegie Mellon

Handling Page Fault
• Page miss causes page fault (an exception)

!19

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1
VP 2

VP 4
VP 6
VP 7

VP 3

Virtual address

Carnegie Mellon

Handling Page Fault
• Page miss causes page fault (an exception)
• Page fault handler selects a victim to be evicted (here VP 4)

!20

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1
VP 2

VP 4
VP 6
VP 7

VP 3

Virtual address

Carnegie Mellon

Handling Page Fault
• Page miss causes page fault (an exception)
• Page fault handler selects a victim to be evicted (here VP 4)

!21

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0
1

1
0
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1
VP 2

VP 4
VP 6
VP 7

VP 3

Virtual address

Carnegie Mellon

Handling Page Fault
• Page miss causes page fault (an exception)
• Page fault handler selects a victim to be evicted (here VP 4)
• Offending instruction is restarted: page hit!

!22

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0
1

1
0
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1
VP 2

VP 4
VP 6
VP 7

VP 3

Virtual address

Key point: Waiting until the miss to copy the page to
DRAM is known as demand paging

Carnegie Mellon

Allocating Pages
• Allocating a new page (VP 5) of virtual memory.

!23

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0
1

1
0
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1
VP 2

VP 4

VP 6
VP 7

VP 3

VP 5

null

Carnegie Mellon

Allocating Pages
• Allocating a new page (VP 5) of virtual memory.

!23

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0
1

1
0
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1
VP 2

VP 4

VP 6
VP 7

VP 3

VP 5

Carnegie Mellon

Allocating Pages
• Allocating a new page (VP 5) of virtual memory.

!23

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0
1

1
0
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1
VP 2

VP 4

VP 6
VP 7

VP 3

VP 5

Carnegie Mellon

Virtual Memory Exploits Locality (Again!)
• Virtual memory seems terribly inefficient, but it works because

of locality.

• At any point in time, programs tend to access a set of active
virtual pages called the working set

• Programs with better temporal locality will have smaller working sets

• If (working set size < main memory size)

• Good performance for one process after initial misses

• If (SUM(working set sizes) > main memory size)

• Thrashing: Performance meltdown where pages are swapped

(copied) in and out continuously

!24

Carnegie Mellon

Where Does Page Table Live?

!25

Carnegie Mellon

Where Does Page Table Live?
• It needs to be at a specific location where we can find it

• Some special SRAM?
• In main memory?
• On disk?

!25

Carnegie Mellon

Where Does Page Table Live?
• It needs to be at a specific location where we can find it

• Some special SRAM?
• In main memory?
• On disk?

• Assume 4KB page, 4GB main memory, each PTE is 8 Bytes

• 1M PTEs in a page table
• 8MB total size per page table
• Too big for on-chip SRAM
• Too slow to access in disk
• Put the page table in DRAM, with its start address stored in a

special register (Page Table Base Register)

!25

Carnegie Mellon

Today
• Virtual memory (VM) illustration

• VM basic concepts and operation

• Other critical benefits of VM

• Address translation

!26

Carnegie Mellon

VM as a Tool for Memory Management
• Key idea: each process has its own virtual address space

• It can view memory as a simple linear array
• Mapping scatters addresses through physical memory

• Well-chosen mappings can improve locality

!27

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1
(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

Carnegie Mellon

Virtual Memory Enables Isolations
• If all processes use physical address, it would be easy for one

program to modify the data of another program. This is
obviously a huge security and privacy issue.

!28

Carnegie Mellon

Virtual Memory Enables Isolations
• If all processes use physical address, it would be easy for one

program to modify the data of another program. This is
obviously a huge security and privacy issue.

• Early days (e.g., EDSAC in 50’s), ISA use physical address. To
address the security issue, a program is loaded to a different
address in memory every time it runs.

• not ideal: address in programs depend on where the program
is loaded in memory

!28

Carnegie Mellon

Virtual Memory Enables Isolations
• If all processes use physical address, it would be easy for one

program to modify the data of another program. This is
obviously a huge security and privacy issue.

• Early days (e.g., EDSAC in 50’s), ISA use physical address. To
address the security issue, a program is loaded to a different
address in memory every time it runs.

• not ideal: address in programs depend on where the program
is loaded in memory

•With virtual memory, addresses used by program are not the
same as what the processor uses to actually access memory.
This naturally isolates/protect programs.

!28

Carnegie Mellon

Simplifying Linking and Loading

!29

Kernel space

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write data segment
(.data, .bss)

Read-only code segment
(.init, .text, .rodata)

Loaded from
the executable
file

Program
Counter

Carnegie Mellon

Simplifying Linking and Loading
• Linking
• Each program has similar virtual

address space
• Code, data, and heap always

start at the same addresses.

!29

Kernel space

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write data segment
(.data, .bss)

Read-only code segment
(.init, .text, .rodata)

Loaded from
the executable
file

Program
Counter

Carnegie Mellon

Simplifying Linking and Loading
• Linking
• Each program has similar virtual

address space
• Code, data, and heap always

start at the same addresses.

• Loading

• execve allocates virtual pages

for .text and .data sections &
creates PTEs marked as invalid

• The .text and .data sections
are copied, page by page, on
demand by the VM system

!29

Kernel space

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write data segment
(.data, .bss)

Read-only code segment
(.init, .text, .rodata)

Loaded from
the executable
file

Program
Counter

Carnegie Mellon

Virtual Memory Enables Sharing
• Simplifying memory allocation

• Each virtual page can be mapped to any physical page
• A virtual page can be stored in different physical pages at different times

• Sharing code and data among processes

• Map virtual pages to the same physical page (here: PP 6)

!30

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1
(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

Carnegie Mellon

VM Provides Further Protection Opportunities

• Extend PTEs with permission bits

•MMU checks these bits on each access

!31

Process i: AddressREAD WRITE
PP 6Yes No
PP 4Yes Yes
PP 2Yes

VP 0:
VP 1:
VP 2:

• • •

Process j:

Yes

SUP
No
No
Yes

AddressREAD WRITE
PP 9Yes No
PP 6Yes Yes
PP 11Yes Yes

SUP
No
Yes
No

VP 0:
VP 1:
VP 2:

Physical
Address
Space

PP 2

PP 4

PP 6

PP 8
PP 9

PP 11

EXEC

Yes

EXEC

Yes
Yes

Yes

Yes

No

Carnegie Mellon

Today
• Virtual memory (VM) illustration

• VM basic concepts and operation

• Other critical benefits of VM

• Address translation

!32

Carnegie Mellon

So Far…

!33

Magic Memory
Management
Unit

User 1

User 2

User n

VA
data

PA

data

What does an MMU do?

• Translate address

• Enforce permissions
• Fetch from disk

Carnegie Mellon

Virtual page number (VPN)

Address Translation With a Page Table

!34

Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address

Physical address

0p-1pn-1

0p-1pm-1

Carnegie Mellon

Virtual page number (VPN)

Address Translation With a Page Table

!34

Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address

Physical address

Valid Physical page number (PPN)
Page table

0p-1pn-1

0p-1pm-1

Carnegie Mellon

Virtual page number (VPN)

Address Translation With a Page Table

!34

Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address

Physical address

Valid Physical page number (PPN)
Page table

Page table  
base register

(PTBR)

Physical page table
address for the current
process

0p-1pn-1

0p-1pm-1

Carnegie Mellon

Virtual page number (VPN)

Address Translation With a Page Table

!34

Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address

Physical address

Valid Physical page number (PPN)
Page table

Page table  
base register

(PTBR)

Physical page table
address for the current
process

0p-1pn-1

0p-1pm-1

Carnegie Mellon

Virtual page number (VPN)

Address Translation With a Page Table

!34

Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address

Physical address

Valid Physical page number (PPN)
Page table

Page table  
base register

(PTBR)

Physical page table
address for the current
process

Valid bit = 0:
Page not in memory

(page fault)

0p-1pn-1

0p-1pm-1

Carnegie Mellon

Virtual page number (VPN)

Address Translation With a Page Table

!34

Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address

Physical address

Valid Physical page number (PPN)
Page table

Page table  
base register

(PTBR)

Physical page table
address for the current
process

Valid bit = 0:
Page not in memory

(page fault)

0p-1pn-1

0p-1pm-1

Valid bit = 1

Carnegie Mellon

Address Translation: Page Hit

!35

MMU
Memory

CPU

CPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

Address Translation: Page Hit

1) Processor sends virtual address to MMU

!35

MMU
Memory

CPU

CPU Chip

VA
1

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

Address Translation: Page Hit

1) Processor sends virtual address to MMU

!35

MMU
Memory

CPU

CPU Chip

VA
1

PTEA
2

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

Address Translation: Page Hit

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

!35

MMU
Memory

CPU

CPU Chip

VA
1

PTEA
2

PTE
3

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

Address Translation: Page Hit

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) MMU sends physical address to cache/memory

!35

MMU
Memory

CPU

CPU Chip

VA
1

PTEA
2

PTE
3

PA
4

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

Address Translation: Page Hit

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

!35

MMU
Memory

CPU

CPU Chip

VA
1

PTEA
2

PTE
3

PA
4

Data
5

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

Address Translation: Page Fault

!36

MemoryCPU

CPU Chip

DiskMMU

Carnegie Mellon

Address Translation: Page Fault

1) Processor sends virtual address to MMU

!36

MemoryCPU

CPU Chip

VA
1

DiskMMU

Carnegie Mellon

Address Translation: Page Fault

1) Processor sends virtual address to MMU

!36

MemoryCPU

CPU Chip

VA
1

PTEA
2

DiskMMU

Carnegie Mellon

Address Translation: Page Fault

1) Processor sends virtual address to MMU
2-3) MMU fetches PTE from page table in memory

!36

MemoryCPU

CPU Chip

VA
1

PTEA
2

PTE
3 DiskMMU

Carnegie Mellon

Address Translation: Page Fault

1) Processor sends virtual address to MMU
2-3) MMU fetches PTE from page table in memory
4) Valid bit is zero, so MMU triggers page fault exception

!36

MemoryCPU

CPU Chip

VA
1

PTEA
2

PTE
3 Disk

4

Exception

MMU

Page fault handler

Carnegie Mellon

Address Translation: Page Fault

1) Processor sends virtual address to MMU
2-3) MMU fetches PTE from page table in memory
4) Valid bit is zero, so MMU triggers page fault exception

!36

MemoryCPU

CPU Chip

VA
1

PTEA
2

PTE
3 Disk

4

Exception

MMU

Page fault handler

Carnegie Mellon

Address Translation: Page Fault

1) Processor sends virtual address to MMU
2-3) MMU fetches PTE from page table in memory
4) Valid bit is zero, so MMU triggers page fault exception
5) Handler identifies victim (and, if dirty, pages it out to disk)

!36

MemoryCPU

CPU Chip

VA
1

PTEA
2

PTE
3 Disk

5

Victim page

4

Exception

MMU

Page fault handler

Carnegie Mellon

Address Translation: Page Fault

1) Processor sends virtual address to MMU
2-3) MMU fetches PTE from page table in memory
4) Valid bit is zero, so MMU triggers page fault exception
5) Handler identifies victim (and, if dirty, pages it out to disk)
6) Handler pages in new page and updates PTE in memory

!36

MemoryCPU

CPU Chip

VA
1

PTEA
2

PTE
3 Disk

5

Victim page

4

Exception

New page

6

MMU

Page fault handler

Carnegie Mellon

Address Translation: Page Fault

1) Processor sends virtual address to MMU
2-3) MMU fetches PTE from page table in memory
4) Valid bit is zero, so MMU triggers page fault exception
5) Handler identifies victim (and, if dirty, pages it out to disk)
6) Handler pages in new page and updates PTE in memory
7) Handler returns to original process, restarting faulting instruction

!36

MemoryCPU

CPU Chip

VA
1

PTEA
2

PTE
3 Disk

5

Victim page

4

Exception

New page

6

7
MMU

Page fault handler

Carnegie Mellon

Integrating VM and Cache

!37

CPU MMU Memory

CPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

L1
cache

Integrating VM and Cache

!37

CPU MMU Memory

CPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

L1
cache

Integrating VM and Cache

!37

CPU MMUVA Memory

CPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

L1
cache

Integrating VM and Cache

!37

CPU MMUVA

PTEA

Memory

CPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

L1
cache

Integrating VM and Cache

!37

CPU MMUVA

PTEA

Memory

PTEA

miss

PTEA

CPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

L1
cache

Integrating VM and Cache

!37

CPU MMUVA

PTEA

Memory

PTEA

miss

PTEA

PTECPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

L1
cache

Integrating VM and Cache

!37

CPU MMUVA

PTEA

Memory

PTEA

miss

PTE

PTEA

hit

PTEA

PTECPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

L1
cache

Integrating VM and Cache

!37

CPU MMUVA

PTEA

PA
Memory

PTEA

miss

PTE

PTEA

hit

PTEA

PTECPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

L1
cache

Integrating VM and Cache

!37

CPU MMUVA

PTEA

PA
Memory

PAPA

miss

PTEA

miss

PTE

PTEA

hit

PTEA

PTECPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

L1
cache

Integrating VM and Cache

!37

CPU MMUVA

PTEA

PA
Memory

PAPA

miss

PTEA

miss

PTE

PTEA

hit

PTEA

Data

PTECPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

L1
cache

Integrating VM and Cache

!37

CPU MMUVA

PTEA

PA
Memory

PAPA

miss

PTEA

miss

PTE

PTEA

hit

Data

PA

hit

PTEA

Data

PTECPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

