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Action Items: 
• Programming Assignment 5 is out



Carnegie Mellon

Announcement
• Programming Assignment 5 is due 11:59pm, Monday, April 15.

• Your shell should emit output that is identical to the reference 

solution (except the PID). If you output does not match the 
reference solution, you get a 0. NO exceptions will be made.
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Process Address Space

!3
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Memory
Process 1

Multiprocessing Illustration
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Memory
Process 1

Problem
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• Space:

• Each process’s address space is huge (64-bit): can memory hold it 

(16GB is just 34-bit)? 
• There are multiple processes, increasing the overhead further
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Memory
Process 1

Problem
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• Space:

• Each process’s address space is huge (64-bit): can memory hold it 

(16GB is just 34-bit)? 
• There are multiple processes, increasing the overhead further

• Solution: store all the data in disk, and use memory only for 
most recently used data

• Does this sound similar?
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• Infinitely large, infinitely fast memory


• Preferably automatically moved to where it is needed
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The Big Idea: Virtual Memory
•What Does a Programmer Want?
• Infinitely large, infinitely fast memory


• Preferably automatically moved to where it is needed
• Virtual memory to the rescue


• Present a large, uniform memory to programmers 
• Data in virtual memory by default stays in disk 
• Data moves to physical memory (DRAM) “on demand” 
• Disks (~TBs) are much larger than DRAM (~GBs), but 10,000x slower. 
• Effectively, virtual memory system transparently share the physical 

memory across different processes 
• Manage the sharing automatically: hardware-software collaborative 

strategy (too complex for hardware alone)
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Today  
• Virtual memory (VM) illustration

• VM basic concepts and operation

• Other critical benefits of VM

• Address translation
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A System Using Physical Addressing

• Used in “simple” systems like embedded microcontrollers in 
devices like cars, elevators, and digital picture frames

!8

0:
1:

M-1:

Main memory

CPU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8:
...

4



Carnegie Mellon

A System Using Virtual Addressing

• Used in all modern servers, laptops, and smart phones

• One of the great ideas in computer science

•MMU: Memory Management Unit
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Address Spaces
• Virtual address space: Set of N = 2n virtual addresses

• Virtual address space is a linear address space, but limited 

{0, 1, 2, 3, …, N-1}
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Address Spaces
• Virtual address space: Set of N = 2n virtual addresses

• Virtual address space is a linear address space, but limited 

{0, 1, 2, 3, …, N-1}

• Physical address space: Set of M = 2m physical addresses

• Physical address space is a also linear address space, but smaller 

than virtual address space  
{0, 1, 2, 3, …, M-1}

!10
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Today  
• Virtual memory (VM) illustration

• VM basic concepts and operation

• Other critical benefits of VM

• Address translation

!11
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VM Concepts
• Conceptually, virtual memory is an array of N contiguous blocks 

stored on disk. 

• The contents of the array on disk are “cached" in physical memory 
• These blocks are called pages (size is P = 2p bytes)
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VM Concepts
• Conceptually, virtual memory is an array of N contiguous blocks 

stored on disk. 

• The contents of the array on disk are “cached" in physical memory 
• These blocks are called pages (size is P = 2p bytes)
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Analogy for Address Translation: A Secure Hotel

• Call a hotel looking for a guest; what happens?

• Front desk routes call to room, does not give out room number 
• Guest’s name is a virtual address 
• Room number is physical address 
• Front desk is doing address translation!
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Analogy for Address Translation: A Secure Hotel

• Call a hotel looking for a guest; what happens?

• Front desk routes call to room, does not give out room number 
• Guest’s name is a virtual address 
• Room number is physical address 
• Front desk is doing address translation!

• Benefits

• Ease of management: Guest could change rooms (physical 

address). You can still find her without knowing it 
• Protection: Guest could have block on calls, block on calls from 

specific callers (permissions) 
• Sharing: Multiple guests (virtual addresses) can share the same 

room (physical address)

!13
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Different Names in Different Places

• Programmer uses text-based names (symbolic address)

• int array[100];

!14

Symbolic 
address



Carnegie Mellon
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• Programmer uses text-based names (symbolic address)

• int array[100];

• Compiler maps names to flat, uniform space

• Starting point is relative, size specified
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Different Names in Different Places

• Programmer uses text-based names (symbolic address)

• int array[100];

• Compiler maps names to flat, uniform space

• Starting point is relative, size specified

• Assembler maps uniform space to virtual addresses

• Mechanical transformation (assume a start address)
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Different Names in Different Places

• Programmer uses text-based names (symbolic address)
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• Assembler maps uniform space to virtual addresses
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Different Names in Different Places

• Programmer uses text-based names (symbolic address)

• int array[100];

• Compiler maps names to flat, uniform space

• Starting point is relative, size specified

• Assembler maps uniform space to virtual addresses

• Mechanical transformation (assume a start address)

• Processor instructions use virtual addresses, translates to 
physical addresses
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Different Names in Different Places

• Programmer uses text-based names (symbolic address)

• int array[100];

• Compiler maps names to flat, uniform space

• Starting point is relative, size specified

• Assembler maps uniform space to virtual addresses

• Mechanical transformation (assume a start address)

• Processor instructions use virtual addresses, translates to 
physical addresses
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Different Names in Different Places

• Programmer uses text-based names (symbolic address)

• int array[100];

• Compiler maps names to flat, uniform space

• Starting point is relative, size specified

• Assembler maps uniform space to virtual addresses

• Mechanical transformation (assume a start address)

• Processor instructions use virtual addresses, translates to 
physical addresses

!14
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Enabling Data Structure: Page Table
• How do we track which virtual pages are mapped to physical 

pages, and where they are mapped?
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Enabling Data Structure: Page Table
• How do we track which virtual pages are mapped to physical 

pages, and where they are mapped?
• Use a table to track this. The table is called page table, in which 

each virtual page has an entry
• Each entry records whether the particular virtual page is 

mapped to the physical memory
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Enabling Data Structure: Page Table
• How do we track which virtual pages are mapped to physical 

pages, and where they are mapped?
• Use a table to track this. The table is called page table, in which 

each virtual page has an entry
• Each entry records whether the particular virtual page is 

mapped to the physical memory
• If mapped, where in the physical memory it is mapped to?

!15
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Enabling Data Structure: Page Table
• How do we track which virtual pages are mapped to physical 

pages, and where they are mapped?
• Use a table to track this. The table is called page table, in which 

each virtual page has an entry
• Each entry records whether the particular virtual page is 

mapped to the physical memory
• If mapped, where in the physical memory it is mapped to?
• If not mapped, where on the disk is the virtual page?

!15
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Enabling Data Structure: Page Table
• How do we track which virtual pages are mapped to physical 

pages, and where they are mapped?
• Use a table to track this. The table is called page table, in which 

each virtual page has an entry
• Each entry records whether the particular virtual page is 

mapped to the physical memory
• If mapped, where in the physical memory it is mapped to?
• If not mapped, where on the disk is the virtual page?

• Do you need a page table for each process?

!15
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Enabling Data Structure: Page Table
• How do we track which virtual pages are mapped to physical 

pages, and where they are mapped?
• Use a table to track this. The table is called page table, in which 

each virtual page has an entry
• Each entry records whether the particular virtual page is 

mapped to the physical memory
• If mapped, where in the physical memory it is mapped to?
• If not mapped, where on the disk is the virtual page?

• Do you need a page table for each process?
• Per-process data structure; managed by the OS kernel

!15
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Enabling Data Structure: Page Table
• A page table is an array of page table entries (PTEs) that maps 

every virtual page to its physical page.
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Enabling Data Structure: Page Table
• A page table is an array of page table entries (PTEs) that maps 

every virtual page to its physical page.
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Enabling Data Structure: Page Table
• A page table is an array of page table entries (PTEs) that maps 

every virtual page to its physical page.
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Enabling Data Structure: Page Table
• A page table is an array of page table entries (PTEs) that maps 

every virtual page to its physical page.
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Enabling Data Structure: Page Table
• A page table is an array of page table entries (PTEs) that maps 

every virtual page to its physical page.
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Enabling Data Structure: Page Table
• A page table is an array of page table entries (PTEs) that maps 

every virtual page to its physical page.
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Page Hit
• Page hit: reference to VM word that is in physical memory
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Page Hit
• Page hit: reference to VM word that is in physical memory
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Page Fault
• Page fault: reference to VM word that is not in physical memory
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Page Fault
• Page fault: reference to VM word that is not in physical memory
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Handling Page Fault
• Page miss causes page fault (an exception)
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Handling Page Fault
• Page miss causes page fault (an exception) 
• Page fault handler selects a victim to be evicted (here VP 4)
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Handling Page Fault
• Page miss causes page fault (an exception) 
• Page fault handler selects a victim to be evicted (here VP 4)
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Handling Page Fault
• Page miss causes page fault (an exception) 
• Page fault handler selects a victim to be evicted (here VP 4) 
• Offending instruction is restarted: page hit!
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Allocating Pages
• Allocating a new page (VP 5) of virtual memory.
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Allocating Pages
• Allocating a new page (VP 5) of virtual memory.
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Allocating Pages
• Allocating a new page (VP 5) of virtual memory.
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Virtual Memory Exploits Locality (Again!)
• Virtual memory seems terribly inefficient, but it works because 

of locality. 


• At any point in time, programs tend to access a set of active 
virtual pages called the working set

• Programs with better temporal locality will have smaller working sets

• If ( working set size < main memory size ) 

• Good performance for one process after initial misses

• If ( SUM(working set sizes) > main memory size ) 

• Thrashing: Performance meltdown where pages are swapped 

(copied) in and out continuously

!24
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Where Does Page Table Live?

!25



Carnegie Mellon

Where Does Page Table Live?
• It needs to be at a specific location where we can find it


• Some special SRAM? 
• In main memory? 
• On disk?
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Where Does Page Table Live?
• It needs to be at a specific location where we can find it


• Some special SRAM? 
• In main memory? 
• On disk?

• Assume 4KB page, 4GB main memory, each PTE is 8 Bytes

• 1M PTEs in a page table 
• 8MB total size per page table 
• Too big for on-chip SRAM 
• Too slow to access in disk 
• Put the page table in DRAM, with its start address stored in a 

special register (Page Table Base Register)

!25
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Today  
• Virtual memory (VM) illustration

• VM basic concepts and operation

• Other critical benefits of VM

• Address translation
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VM as a Tool for Memory Management
• Key idea: each process has its own virtual address space


• It can view memory as a simple linear array
• Mapping scatters addresses through physical memory

• Well-chosen mappings can improve locality
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Virtual Memory Enables Isolations
• If all processes use physical address, it would be easy for one 

program to modify the data of another program. This is 
obviously a huge security and privacy issue.
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Virtual Memory Enables Isolations
• If all processes use physical address, it would be easy for one 

program to modify the data of another program. This is 
obviously a huge security and privacy issue.

• Early days (e.g., EDSAC in 50’s), ISA use physical address. To 
address the security issue, a program is loaded to a different 
address in memory every time it runs.


• not ideal: address in programs depend on where the program 
is loaded in memory

!28
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Virtual Memory Enables Isolations
• If all processes use physical address, it would be easy for one 

program to modify the data of another program. This is 
obviously a huge security and privacy issue.

• Early days (e.g., EDSAC in 50’s), ISA use physical address. To 
address the security issue, a program is loaded to a different 
address in memory every time it runs.


• not ideal: address in programs depend on where the program 
is loaded in memory

•With virtual memory, addresses used by program are not the 
same as what the processor uses to actually access memory. 
This naturally isolates/protect programs.
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Simplifying Linking and Loading

!29
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Simplifying Linking and Loading
• Linking 
• Each program has similar virtual 

address space 
• Code, data, and heap always 

start at the same addresses.
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Simplifying Linking and Loading
• Linking 
• Each program has similar virtual 

address space 
• Code, data, and heap always 

start at the same addresses.

• Loading 

• execve allocates virtual pages 

for .text and .data sections & 
creates PTEs marked as invalid

• The .text and .data sections 
are copied, page by page, on 
demand by the VM system

!29
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Virtual Memory Enables Sharing
• Simplifying memory allocation


• Each virtual page can be mapped to any physical page 
• A virtual page can be stored in different physical pages at different times

• Sharing code and data among processes

• Map virtual pages to the same physical page (here: PP 6)
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VM Provides Further Protection Opportunities

• Extend PTEs with permission bits

•MMU checks these bits on each access

!31
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SUP
No
No
Yes

AddressREAD WRITE
PP 9Yes No
PP 6Yes Yes
PP 11Yes Yes

SUP
No
Yes
No

VP 0:
VP 1:
VP 2:

Physical  
Address 
Space

PP 2

PP 4

PP 6

PP 8
PP 9

PP 11

EXEC

Yes

EXEC

Yes
Yes

Yes

Yes

No
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Today  
• Virtual memory (VM) illustration

• VM basic concepts and operation

• Other critical benefits of VM

• Address translation

!32
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So Far…
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Magic Memory  
Management 
Unit

User 1

User 2

User n

VA
data

PA

data

What does an MMU do?

• Translate address 

• Enforce permissions 
• Fetch from disk
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Virtual page number (VPN)

Address Translation With a Page Table
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Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address

Physical address

0p-1pn-1

0p-1pm-1
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Virtual page number (VPN)

Address Translation With a Page Table
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Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address

Physical address

Valid Physical page number (PPN)
Page table 

0p-1pn-1

0p-1pm-1
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Virtual page number (VPN)

Address Translation With a Page Table

!34

Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address

Physical address

Valid Physical page number (PPN)
Page table 

Page table  
base register 

(PTBR)

Physical page table 
address for the current 
process

0p-1pn-1

0p-1pm-1
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Virtual page number (VPN)

Address Translation With a Page Table

!34

Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address

Physical address

Valid Physical page number (PPN)
Page table 

Page table  
base register 

(PTBR)

Physical page table 
address for the current 
process

0p-1pn-1

0p-1pm-1



Carnegie Mellon

Virtual page number (VPN)

Address Translation With a Page Table
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Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address

Physical address

Valid Physical page number (PPN)
Page table 

Page table  
base register 

(PTBR)

Physical page table 
address for the current 
process

Valid bit = 0: 
Page not in memory 

(page fault)

0p-1pn-1

0p-1pm-1
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Virtual page number (VPN)

Address Translation With a Page Table

!34

Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address

Physical address

Valid Physical page number (PPN)
Page table 

Page table  
base register 

(PTBR)

Physical page table 
address for the current 
process

Valid bit = 0: 
Page not in memory 

(page fault)

0p-1pn-1

0p-1pm-1

Valid bit = 1
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Address Translation: Page Hit
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MMU
Memory

CPU

CPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address



Carnegie Mellon

Address Translation: Page Hit

1) Processor sends virtual address to MMU 

!35

MMU
Memory

CPU

CPU Chip

VA
1

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address
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Address Translation: Page Hit

1) Processor sends virtual address to MMU 
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MMU
Memory

CPU

CPU Chip

VA
1

PTEA
2

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address
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Address Translation: Page Hit

1) Processor sends virtual address to MMU 

2-3) MMU fetches PTE from page table in memory

!35

MMU
Memory

CPU

CPU Chip

VA
1

PTEA
2

PTE
3

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address
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Address Translation: Page Hit

1) Processor sends virtual address to MMU 

2-3) MMU fetches PTE from page table in memory

4) MMU sends physical address to cache/memory

!35

MMU
Memory

CPU

CPU Chip

VA
1

PTEA
2

PTE
3

PA
4

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address
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Address Translation: Page Hit

1) Processor sends virtual address to MMU 

2-3) MMU fetches PTE from page table in memory

4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

!35

MMU
Memory

CPU

CPU Chip

VA
1

PTEA
2

PTE
3

PA
4

Data
5

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address
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Address Translation: Page Fault

!36

MemoryCPU

CPU Chip

DiskMMU
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Address Translation: Page Fault

1) Processor sends virtual address to MMU 

!36

MemoryCPU

CPU Chip

VA
1

DiskMMU
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Address Translation: Page Fault

1) Processor sends virtual address to MMU 
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MemoryCPU

CPU Chip

VA
1

PTEA
2

DiskMMU
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Address Translation: Page Fault

1) Processor sends virtual address to MMU 
2-3) MMU fetches PTE from page table in memory

!36

MemoryCPU

CPU Chip

VA
1

PTEA
2

PTE
3 DiskMMU
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Address Translation: Page Fault

1) Processor sends virtual address to MMU 
2-3) MMU fetches PTE from page table in memory
4) Valid bit is zero, so MMU triggers page fault exception

!36

MemoryCPU

CPU Chip

VA
1

PTEA
2

PTE
3 Disk

4

Exception

MMU

Page fault handler
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Address Translation: Page Fault

1) Processor sends virtual address to MMU 
2-3) MMU fetches PTE from page table in memory
4) Valid bit is zero, so MMU triggers page fault exception

!36

MemoryCPU

CPU Chip

VA
1

PTEA
2

PTE
3 Disk

4

Exception

MMU

Page fault handler
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Address Translation: Page Fault

1) Processor sends virtual address to MMU 
2-3) MMU fetches PTE from page table in memory
4) Valid bit is zero, so MMU triggers page fault exception
5) Handler identifies victim (and, if dirty, pages it out to disk)

!36

MemoryCPU

CPU Chip

VA
1

PTEA
2

PTE
3 Disk

5

Victim page

4

Exception

MMU

Page fault handler
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Address Translation: Page Fault

1) Processor sends virtual address to MMU 
2-3) MMU fetches PTE from page table in memory
4) Valid bit is zero, so MMU triggers page fault exception
5) Handler identifies victim (and, if dirty, pages it out to disk)
6) Handler pages in new page and updates PTE in memory

!36

MemoryCPU

CPU Chip

VA
1

PTEA
2

PTE
3 Disk

5

Victim page

4

Exception

New page

6

MMU

Page fault handler
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Address Translation: Page Fault

1) Processor sends virtual address to MMU 
2-3) MMU fetches PTE from page table in memory
4) Valid bit is zero, so MMU triggers page fault exception
5) Handler identifies victim (and, if dirty, pages it out to disk)
6) Handler pages in new page and updates PTE in memory
7) Handler returns to original process, restarting faulting instruction
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MemoryCPU

CPU Chip

VA
1

PTEA
2

PTE
3 Disk

5

Victim page

4

Exception

New page

6

7
MMU

Page fault handler



Carnegie Mellon

Integrating VM and Cache
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CPU MMU Memory

CPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address
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Integrating VM and Cache
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CPU MMU Memory

CPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address



Carnegie Mellon

L1 
cache

Integrating VM and Cache
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CPU MMUVA Memory

CPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address
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Integrating VM and Cache
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CPU MMUVA

PTEA

Memory

CPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address
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L1 
cache

Integrating VM and Cache

!37

CPU MMUVA

PTEA

Memory

PTEA

miss

PTEA

CPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address
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L1 
cache

Integrating VM and Cache
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CPU MMUVA

PTEA

Memory

PTEA

miss

PTEA

PTECPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address
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L1 
cache

Integrating VM and Cache

!37

CPU MMUVA

PTEA

Memory

PTEA

miss

PTE

PTEA 

hit

PTEA

PTECPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address
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Integrating VM and Cache

!37

CPU MMUVA

PTEA

PA
Memory

PTEA

miss

PTE

PTEA 

hit

PTEA

PTECPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address
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L1 
cache

Integrating VM and Cache
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CPU MMUVA

PTEA

PA
Memory

PAPA

miss

PTEA

miss

PTE

PTEA 

hit

PTEA

PTECPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address
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Integrating VM and Cache
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CPU MMUVA

PTEA

PA
Memory

PAPA

miss

PTEA

miss

PTE

PTEA 

hit

PTEA

Data

PTECPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address
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Integrating VM and Cache
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CPU MMUVA

PTEA

PA
Memory

PAPA

miss

PTEA

miss

PTE

PTEA 

hit

Data

PA 

hit

PTEA

Data

PTECPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address


