
CSC 252: Computer Organization 
 Spring 2019: Lecture 24 

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Action Items:
• Programming Assignment 6 is out

Carnegie Mellon

Announcement
• Programming Assignment 6 is out

• Main assignment: 11:59pm, Thursday, May 2.

!2

Due

Today

Carnegie Mellon

Today
• Case study: Core i7/Linux memory system

•Memory mapping

• Dynamic memory allocation

!3

Carnegie Mellon

Intel Core i7 Memory System

!4

L1 d-cache
32 KB, 8-way

L2 unified cache
256 KB, 8-way

L3 unified cache
8 MB, 16-way

(shared by all cores)

Main memory

Registers

L1 d-TLB
64 entries, 4-way

L1 i-TLB
128 entries, 4-way

L2 unified TLB
512 entries, 4-way

L1 i-cache
32 KB, 8-way

MMU
(addr translation)

Instruction
fetch

Core x4

DDR3 Memory controller
3 x 64 bit @ 10.66 GB/s

32 GB/s total (shared by all cores)

Processor package

QuickPath
interconnect

4 links @ 25.6 GB/s
each

To other
cores
To I/O
bridge

Carnegie Mellon

End-to-End Core i7 Address Translation

!5

CPU

VPN VPO
36 12

Virtual address (VA)

Carnegie Mellon

End-to-End Core i7 Address Translation

!5

CPU

VPN VPO
36 12

TLBT TLBI
432

Virtual address (VA)

Carnegie Mellon

...

L1 TLB (16 sets, 4 entries/set)

End-to-End Core i7 Address Translation

!5

CPU

VPN VPO
36 12

TLBT TLBI
432

Virtual address (VA)

Carnegie Mellon

...

L1 TLB (16 sets, 4 entries/set)

End-to-End Core i7 Address Translation

!5

CPU

VPN VPO
36 12

PPN
40

TLB
hit

TLBT TLBI
432

Virtual address (VA)

Carnegie Mellon

...

L1 TLB (16 sets, 4 entries/set)

End-to-End Core i7 Address Translation

!5

CPU

VPN VPO
36 12

PPN
40

TLB
hit

TLBT TLBI
432

Virtual address (VA)

VPN1 VPN2
99

PTE

CR3

Page tables

TLB
miss

VPN3 VPN4
99

PTE PTE PTE

Carnegie Mellon

...

L1 TLB (16 sets, 4 entries/set)

End-to-End Core i7 Address Translation

!5

CPU

VPN VPO
36 12

PPN
40

TLB
hit

PPO
12

TLBT TLBI
432

Virtual address (VA)

VPN1 VPN2
99

PTE

CR3

Page tables

TLB
miss

VPN3 VPN4
99

PTE PTE PTE

Carnegie Mellon

...

L1 TLB (16 sets, 4 entries/set)

End-to-End Core i7 Address Translation

!5

CPU

VPN VPO
36 12

PPN
40

TLB
hit

Physical
address

(PA)

PPO
12

TLBT TLBI
432

Virtual address (VA)

VPN1 VPN2
99

PTE

CR3

Page tables

TLB
miss

VPN3 VPN4
99

PTE PTE PTE

Carnegie Mellon

...

L1 TLB (16 sets, 4 entries/set)

End-to-End Core i7 Address Translation

!5

CPU

VPN VPO
36 12

PPN
40

TLB
hit

Physical
address

(PA)

PPO
12

TLBT TLBI
432

CT CO
40 6

CI
6

Virtual address (VA)

VPN1 VPN2
99

PTE

CR3

Page tables

TLB
miss

VPN3 VPN4
99

PTE PTE PTE

Carnegie Mellon

...

L1 TLB (16 sets, 4 entries/set)

End-to-End Core i7 Address Translation

!5

CPU

VPN VPO
36 12

PPN
40

TLB
hit

Physical
address

(PA)

PPO
12

TLBT TLBI
432

CT CO
40 6

CI
6

Virtual address (VA)

...

L1 d-cache
(64 sets, 8 lines/set)

VPN1 VPN2
99

PTE

CR3

Page tables

TLB
miss

VPN3 VPN4
99

PTE PTE PTE

Carnegie Mellon

...

L1 TLB (16 sets, 4 entries/set)

End-to-End Core i7 Address Translation

!5

CPU

VPN VPO
36 12

PPN
40

TLB
hit

Physical
address

(PA)

PPO
12

TLBT TLBI
432

CT CO
40 6

CI
6

Virtual address (VA)
Result

32/64

L1
hit

...

L1 d-cache
(64 sets, 8 lines/set)

VPN1 VPN2
99

PTE

CR3

Page tables

TLB
miss

VPN3 VPN4
99

PTE PTE PTE

Carnegie Mellon

...

L1 TLB (16 sets, 4 entries/set)

End-to-End Core i7 Address Translation

!5

CPU

VPN VPO
36 12

PPN
40

TLB
hit

Physical
address

(PA)

PPO
12

TLBT TLBI
432

CT CO
40 6

CI
6

L2, L3, and
main memory

L1
miss

Virtual address (VA)
Result

32/64

L1
hit

...

L1 d-cache
(64 sets, 8 lines/set)

VPN1 VPN2
99

PTE

CR3

Page tables

TLB
miss

VPN3 VPN4
99

PTE PTE PTE

Carnegie Mellon

Core i7 Level 4 Page Table Entries

!6

Page physical base address Unused G D A CD WT U/S R/W P=1

Each entry references a 4K child page. Significant
fields:

P: Child page is present in memory (1) or not (0)
R/W: Read-only or read-write access permission for child page

U/S: User or supervisor mode access

WT: Write-through or write-back cache policy for this page

A: Reference bit (set by MMU on reads and writes, cleared by software)
D: Dirty bit (set by MMU on writes, cleared by software)

Page physical base address: 40 most significant bits of physical page
address (forces pages to be 4KB aligned)

XD: Disable or enable instruction fetches from this page.

51 12 11 9 8 7 6 5 4 3 2 1 0
UnusedXD

Available for OS (page location on disk) P=0

526263

Carnegie Mellon

Virtual Address Space of a Linux Process

!7

Kernel code and data

Memory mapped region
for shared libraries

Runtime heap (malloc)

Program text (.text)
Initialized data (.data)

Uninitialized data (.bss)

User stack

0

%rsp

Process
virtual
memory

brk

Physical memoryIdentical for
each process

Process-specific
data

 structs (ptables,
task and mm structs,

kernel stack)
Kernel
virtual
memory

0x00400000

Different for
each process

Carnegie Mellon

Linux Organizes VM as Collection of “Areas”
task_struct

mm_struct

pgdmm

mmap

vm_area_struct

vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

Text

Data

Shared libraries

0

• Areas are also known as
“segments”

• pgd:

• Page global directory address (L1

PT)

• vm_prot:

• Read/write permissions for this area

• vm_flags

• Pages shared with other processes

or private to this process

!8

vm_next

vm_next

vm_flags

vm_flags

vm_flags

Carnegie Mellon

Linux Page Fault Handling

!9

vm_next

vm_next

vm_area_struct
vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

text

data

shared libraries
vm_flags

vm_flags

vm_flags

Carnegie Mellon

Linux Page Fault Handling

!9

1

vm_next

vm_next

vm_area_struct
vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

text

data

shared libraries
vm_flags

vm_flags

vm_flags

Carnegie Mellon

Linux Page Fault Handling

!9

1

vm_next

vm_next

vm_area_struct
vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

text

data

shared libraries
vm_flags

vm_flags

vm_flags

Segmentation fault:

accessing a non-existing page

Carnegie Mellon

Linux Page Fault Handling

!9

1

2

vm_next

vm_next

vm_area_struct
vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

text

data

shared libraries
vm_flags

vm_flags

vm_flags

Segmentation fault:

accessing a non-existing page

Carnegie Mellon

Linux Page Fault Handling

!9

1

2

vm_next

vm_next

vm_area_struct
vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

text

data

shared libraries
vm_flags

vm_flags

vm_flags

Segmentation fault:

accessing a non-existing page

Protection exception:

e.g., violating permission by
writing to a read-only page (Linux
reports as Segmentation fault)

Carnegie Mellon

Linux Page Fault Handling

!9

1

2

3

vm_next

vm_next

vm_area_struct
vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

text

data

shared libraries
vm_flags

vm_flags

vm_flags

Segmentation fault:

accessing a non-existing page

Protection exception:

e.g., violating permission by
writing to a read-only page (Linux
reports as Segmentation fault)

Carnegie Mellon

Linux Page Fault Handling

!9

1

2

3

vm_next

vm_next

vm_area_struct
vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

text

data

shared libraries
vm_flags

vm_flags

vm_flags

Segmentation fault:

accessing a non-existing page

Normal page fault

Protection exception:

e.g., violating permission by
writing to a read-only page (Linux
reports as Segmentation fault)

Carnegie Mellon

Today
• Case study: Core i7/Linux memory system

•Memory mapping

• Dynamic memory allocation

!10

Carnegie Mellon

Memory Mapping For Sharing
•Multiple processes often share data

• Different processes that run the same code (e.g., shell)
• Different processes linked to the same standard libraries
• Different processes share the same file

• It is wasteful to create exact copies of the share object

•Memory mapping allow us to easily share objects

• Different VM pages point to the same physical page/object

!11

Carnegie Mellon

Sharing Revisited: Shared Objects
• Process 1 maps the shared object.

!12

Shared
object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

• The kernel remembers
that the object (backed
by a unique file) is
mapped by Proc. 1 to
some physical pages.

Carnegie Mellon

Sharing Revisited: Shared Objects

!13

Shared
object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

• Process 2 maps the shared object. • The kernel remembers
that the object (backed
by a unique file) is
mapped by Proc. 1 to
some physical pages.

• Now when Proc. 2
wants to access the
same object, the kernel
can simply point the
PTEs of Proc. 2 to the
already-mapped
physical pages.

Carnegie Mellon

The Problem…
•What if Proc. 1 now wants to modify the shared object, but

doesn’t want the modification to be visible to Proc. 2

!14

Carnegie Mellon

The Problem…
•What if Proc. 1 now wants to modify the shared object, but

doesn’t want the modification to be visible to Proc. 2
• Simplest solution: always create duplicate copies of shared

objects at the cost of wasting space. Not ideal.

!14

Carnegie Mellon

The Problem…
•What if Proc. 1 now wants to modify the shared object, but

doesn’t want the modification to be visible to Proc. 2
• Simplest solution: always create duplicate copies of shared

objects at the cost of wasting space. Not ideal.
• Idea: Copy-on-write (COW)

• First pretend that both processes will share the objects without
modifying them. If modification happens, create separate copies.

!14

Carnegie Mellon

Private Copy-on-write (COW) Objects
• Two processes

mapping a private
copy-on-write
(COW) object.

• Area flagged as
private copy-on-
write (COW)

• PTEs in private
areas are flagged
as read-only

!15

Private
copy-on-write object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

 Private
copy-on-write
area

Carnegie Mellon

Private Copy-on-write (COW) Objects
• Two processes

mapping a private
copy-on-write
(COW) object.

• Area flagged as
private copy-on-
write (COW)

• PTEs in private
areas are flagged
as read-only

!15

Private
copy-on-write object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

 Private
copy-on-write
area

task_struct
mm_struct

pgdmm

mmap

vm_area_struct

vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

Text

Data

Shared libraries

0

vm_next

vm_next

vm_flags

vm_flags

vm_flags

Carnegie Mellon

Private Copy-on-write (COW) Objects
• Two processes

mapping a private
copy-on-write
(COW) object.

• Area flagged as
private copy-on-
write (COW)

• PTEs in private
areas are flagged
as read-only

!15

Private
copy-on-write object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

 Private
copy-on-write
area

task_struct
mm_struct

pgdmm

mmap

vm_area_struct

vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

Text

Data

Shared libraries

0

vm_next

vm_next

vm_flags

vm_flags

vm_flags

Carnegie Mellon

Private Copy-on-write (COW) Objects
• Two processes

mapping a private
copy-on-write
(COW) object.

• Area flagged as
private copy-on-
write (COW)

• PTEs in private
areas are flagged
as read-only

!15

Private
copy-on-write object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

 Private
copy-on-write
area

Carnegie Mellon

Private Copy-on-write (COW) Objects
• Instruction writing to

private page triggers
page (protection) fault.

!16

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

Copy-on-write

Write to
private

COW page

Private
copy-on-write object

Carnegie Mellon

Private Copy-on-write (COW) Objects
• Instruction writing to

private page triggers
page (protection) fault.

• Handler checks the area
protection, and sees
that it’s a COW object

!16

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

Copy-on-write

Write to
private

COW page

Private
copy-on-write object

Carnegie Mellon

Private Copy-on-write (COW) Objects
• Instruction writing to

private page triggers
page (protection) fault.

• Handler checks the area
protection, and sees
that it’s a COW object

• Handler then creates
new R/W page.

!16

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

Copy-on-write

Write to
private

COW page

Private
copy-on-write object

Carnegie Mellon

Private Copy-on-write (COW) Objects
• Instruction writing to

private page triggers
page (protection) fault.

• Handler checks the area
protection, and sees
that it’s a COW object

• Handler then creates
new R/W page.

!16

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

Copy-on-write

Write to
private

COW page

Private
copy-on-write object

Carnegie Mellon

Private Copy-on-write (COW) Objects
• Instruction writing to

private page triggers
page (protection) fault.

• Handler checks the area
protection, and sees
that it’s a COW object

• Handler then creates
new R/W page.

• Instruction restarts upon
handler return.

!16

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

Copy-on-write

Write to
private

COW page

Private
copy-on-write object

Carnegie Mellon

Private Copy-on-write (COW) Objects
• Instruction writing to

private page triggers
page (protection) fault.

• Handler checks the area
protection, and sees
that it’s a COW object

• Handler then creates
new R/W page.

• Instruction restarts upon
handler return.

• Copying deferred as
long as possible!

!16

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

Copy-on-write

Write to
private

COW page

Private
copy-on-write object

Carnegie Mellon

The fork Function Revisited

• VM and memory mapping explain how fork provides private
address space for each process.

• To create virtual address for new new process

• Create exact copies of current mm_struct, vm_area_struct, and

page tables.
• Flag (in the PTE) of each page in both processes as read-only
• Flag each area in both processes as private COW (in
vm_area_struct)

• On return, each process has exact copy of virtual memory

• Subsequent writes create new pages using COW mechanism.

!17

Carnegie Mellon

The execve Function Revisited
• To load and run a new

program a.out in the current
process using:
execve(“a.out”, NULL,
NULL)

• Free vm_area_struct and
page tables for old process

• Create vm_area_struct
and page tables for new areas

• Programs and initialized

data backed by object files.
• .bss and stack backed

by anonymous files.
• Set PC to entry point

in .text

• Linux will fault in code and

data pages as needed.

!18

Memory mapped region
for shared libraries

Runtime heap (via malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

Private, demand-zero

libc.so
.data
.text Shared, file-backed

Private, demand-zero

Private, demand-zero

Private, file-backed

a.out
.data
.text

Carnegie Mellon

User-Level Memory Mapping
void *mmap(void *start, int len,
 int prot, int flags, int fd, int offset)

•Map len bytes starting at offset offset of the file specified by
file description fd, preferably at address start

• start: may be NULL for “pick an address”
• prot: PROT_READ, PROT_WRITE, ...
• flags: MAP_ANON, MAP_PRIVATE, MAP_SHARED, ...

• Return a pointer to start of mapped area (may not be start)

!19

Carnegie Mellon

User-Level Memory Mapping
void *mmap(void *start, int len,
 int prot, int flags, int fd, int offset)

!20

len bytes

start
(or address

chosen by kernel)

Process virtual memoryDisk file specified by
file descriptor fd

len bytes

offset
(bytes)

0 0

Carnegie Mellon

Example: Using mmap to Copy Files

!21

/* mmapcopy driver */
int main(int argc, char **argv)
{
 struct stat stat;
 int fd;

 /* Check for required cmd line arg */
 if (argc != 2) {
 printf("usage: %s <filename>\n",
 argv[0]);
 exit(0);
 }

 /* Copy input file to stdout */
 fd = Open(argv[1], O_RDONLY, 0);
 Fstat(fd, &stat);
 mmapcopy(fd, stat.st_size);
 exit(0);
}

• Copying a file to stdout without transferring data to user space

• i.e., no file data is copied to user stack

#include "csapp.h"

void mmapcopy(int fd, int size)
{

 /* Ptr to memory mapped area */
 char *bufp;

 bufp = mmap(NULL, size,
 PROT_READ,
 MAP_PRIVATE,
 fd, 0);
 Write(1, bufp, size);
 return;
}

mmapcopy.c mmapcopy.c

Carnegie Mellon

Today
• Case study: Core i7/Linux memory system

•Memory mapping

• Dynamic memory allocation

• Basic concepts
• Implicit free lists

!22

Carnegie Mellon

Dynamic Memory Allocation
• Programmers use dynamic

memory allocators (such
as malloc) to acquire VM
at run time.

• Dynamic memory
allocators manage an area
of process virtual memory
known as the heap.

!23

Heap (via malloc)

Program text (.text)
Initialized data (.data)
Uninitialized data (.bss)

User stack

Top of heap
 (brk ptr)

Carnegie Mellon

The malloc/free Functions
#include <stdlib.h>

void *malloc(size_t size)
• Successful:

• Returns a pointer to a memory block of at least size bytes 
aligned to an 8-byte (x86) or 16-byte (x86-64) boundary

• If size == 0, returns NULL
• Unsuccessful: returns NULL (0) and sets errno

!24

Carnegie Mellon

The malloc/free Functions
#include <stdlib.h>

void *malloc(size_t size)
• Successful:

• Returns a pointer to a memory block of at least size bytes 
aligned to an 8-byte (x86) or 16-byte (x86-64) boundary

• If size == 0, returns NULL
• Unsuccessful: returns NULL (0) and sets errno

void free(void *p)
• Returns the block pointed at by p to pool of available memory
• p must come from a previous call to malloc or realloc

!24

Carnegie Mellon

The malloc/free Functions
#include <stdlib.h>

void *malloc(size_t size)
• Successful:

• Returns a pointer to a memory block of at least size bytes 
aligned to an 8-byte (x86) or 16-byte (x86-64) boundary

• If size == 0, returns NULL
• Unsuccessful: returns NULL (0) and sets errno

void free(void *p)
• Returns the block pointed at by p to pool of available memory
• p must come from a previous call to malloc or realloc

Other functions

• calloc: Version of malloc that initializes allocated block to zero.
• realloc: Changes the size of a previously allocated block.
• sbrk: Used internally by allocators to grow or shrink the heap

!24

Carnegie Mellon

malloc Example

!25

#include <stdio.h>
#include <stdlib.h>

void foo(int n) {
 int i, *p;

 /* Allocate a block of n ints */
 p = (int *) malloc(n * sizeof(int));
 if (p == NULL) {
 perror("malloc");
 exit(0);
 }

 /* Initialize allocated block */
 for (i=0; i<n; i++)
 p[i] = i;

 /* Return allocated block to the heap */
 free(p);
}

Heap (via malloc)

Program text (.text)
Initialized data (.data)
Uninitialized data (.bss)

Stack
ip n

N * 4 bytes

Carnegie Mellon

Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically

allocating the space would be a waste.

•More importantly: access data across function calls. Variables

on stack are destroyed when the function returns!!!

!26

Carnegie Mellon

Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically

allocating the space would be a waste.

•More importantly: access data across function calls. Variables

on stack are destroyed when the function returns!!!

!26

int* foo(int n) {
 int i, *p;

 p = (int *) malloc(n * sizeof(int));
 if (p == NULL) exit(0);

 for (i=0; i<n; i++)
 p[i] = i;

 return p;
}

void bar() {
 int *p = foo(5);

 printf(“%d\n”, p[0]);
}

Carnegie Mellon

Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically

allocating the space would be a waste.

•More importantly: access data across function calls. Variables

on stack are destroyed when the function returns!!!

!26

int* foo(int n) {
 int i, *p;

 p = (int *) malloc(n * sizeof(int));
 if (p == NULL) exit(0);

 for (i=0; i<n; i++)
 p[i] = i;

 return p;
}

void bar() {
 int *p = foo(5);

 printf(“%d\n”, p[0]);
}

Heap (via malloc)

bar Stack
p

Carnegie Mellon

Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically

allocating the space would be a waste.

•More importantly: access data across function calls. Variables

on stack are destroyed when the function returns!!!

!26

int* foo(int n) {
 int i, *p;

 p = (int *) malloc(n * sizeof(int));
 if (p == NULL) exit(0);

 for (i=0; i<n; i++)
 p[i] = i;

 return p;
}

void bar() {
 int *p = foo(5);

 printf(“%d\n”, p[0]);
}

Heap (via malloc)

foo Stack
ip n

bar Stack
p

Carnegie Mellon

Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically

allocating the space would be a waste.

•More importantly: access data across function calls. Variables

on stack are destroyed when the function returns!!!

!26

int* foo(int n) {
 int i, *p;

 p = (int *) malloc(n * sizeof(int));
 if (p == NULL) exit(0);

 for (i=0; i<n; i++)
 p[i] = i;

 return p;
}

void bar() {
 int *p = foo(5);

 printf(“%d\n”, p[0]);
}

Heap (via malloc)

foo Stack
ip

N * 4 bytes

n

bar Stack
p

Carnegie Mellon

Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically

allocating the space would be a waste.

•More importantly: access data across function calls. Variables

on stack are destroyed when the function returns!!!

!26

int* foo(int n) {
 int i, *p;

 p = (int *) malloc(n * sizeof(int));
 if (p == NULL) exit(0);

 for (i=0; i<n; i++)
 p[i] = i;

 return p;
}

void bar() {
 int *p = foo(5);

 printf(“%d\n”, p[0]);
}

Heap (via malloc)

foo Stack
ip

N * 4 bytes

n

bar Stack
p

Carnegie Mellon

Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically

allocating the space would be a waste.

•More importantly: access data across function calls. Variables

on stack are destroyed when the function returns!!!

!27

int* foo() {
 int i;
 int p[5];

 for (i=0; i<5; i++)
 p[i] = i;

 return p;
}

void bar() {
 int *p = foo();

 printf(“%d\n”, p[0]);
}

Heap (via malloc)

bar Stack
p

Carnegie Mellon

Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically

allocating the space would be a waste.

•More importantly: access data across function calls. Variables

on stack are destroyed when the function returns!!!

!27

int* foo() {
 int i;
 int p[5];

 for (i=0; i<5; i++)
 p[i] = i;

 return p;
}

void bar() {
 int *p = foo();

 printf(“%d\n”, p[0]);
}

Heap (via malloc)

foo Stack
ip

bar Stack
p

Carnegie Mellon

Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically

allocating the space would be a waste.

•More importantly: access data across function calls. Variables

on stack are destroyed when the function returns!!!

!27

int* foo() {
 int i;
 int p[5];

 for (i=0; i<5; i++)
 p[i] = i;

 return p;
}

void bar() {
 int *p = foo();

 printf(“%d\n”, p[0]);
}

Heap (via malloc)

foo Stack
ip

N * 4 bytes

bar Stack
p

Carnegie Mellon

Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically

allocating the space would be a waste.

•More importantly: access data across function calls. Variables

on stack are destroyed when the function returns!!!

!27

int* foo() {
 int i;
 int p[5];

 for (i=0; i<5; i++)
 p[i] = i;

 return p;
}

void bar() {
 int *p = foo();

 printf(“%d\n”, p[0]);
}

Heap (via malloc)

foo Stack
ip

N * 4 bytes

bar Stack
p

Carnegie Mellon

Dynamic Memory Allocation
• Allocator maintains heap as collection of variable sized blocks,

which are either allocated or free
• Blocks that are no longer used should be free-ed to save space

!28

Allocated block
(4 words)

Free block
(3 words) Free word

Allocated word

• Assumptions Made in This Lecture

• Memory is word addressed
• Words are int-sized

Carnegie Mellon

Dynamic Memory Allocation
• Types of allocators

• Explicit allocator: application (i.e., programmer) allocates and frees
space

• E.g., malloc and free in C
• Implicit allocator: application allocates, but does not free space

• E.g. garbage collection in Java, JavaScript, Python, etc…

•Will discuss simple explicit memory allocation today

!29

Carnegie Mellon

Allocation Example

!30

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

Carnegie Mellon

Allocation Example

!30

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

Carnegie Mellon

Allocation Example

!30

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

Carnegie Mellon

Allocation Example

!30

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

Carnegie Mellon

Allocation Example

!30

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

Carnegie Mellon

Constraints
• Applications

• Can issue arbitrary sequence of malloc and free requests
• free request must be to a malloc’d block

• Allocators

• Can’t control number or size of allocated blocks
• Must respond immediately to malloc requests

• i.e., can’t reorder or buffer requests
• Must allocate blocks from free memory

• i.e., can place allocated blocks only in free memory
• Must align blocks so they satisfy all alignment requirements

• 8-byte (x86) or 16-byte (x86-64) alignment on Linux boxes
• Can manipulate and modify only free memory
• Can’t move the allocated blocks once they are malloc’d

• i.e., compaction is not allowed

!31

Carnegie Mellon

External Fragmentation
• Occurs when there is enough aggregate heap memory, but no

single free block is large enough

!32

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

Carnegie Mellon

External Fragmentation
• Occurs when there is enough aggregate heap memory, but no

single free block is large enough

!32

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6) Oops! (what would happen now?)

Carnegie Mellon

External Fragmentation
• Occurs when there is enough aggregate heap memory, but no

single free block is large enough

• Depends on the pattern of future requests

!32

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6) Oops! (what would happen now?)

Carnegie Mellon

Key Issues in Dynamic Memory Allocation
• Free:

• How do we know how much memory to free given just a pointer?
• How do we keep track of the free blocks?
• How do we reinsert freed block?

• Allocation:

• What do we do with the extra space when allocating a structure

that is smaller than the free block it is placed in?
• How do we pick a block to use for allocation -- many might fit?

!33

Carnegie Mellon

Knowing How Much to Free
• Standard method

• Keep the length of a block in the word preceding the block.
• This word is often called the header field or header

• Requires an extra word for every allocated block

!34

p0 = malloc(4)

p0

free(p0)

block size payload

5

Carnegie Mellon

Internal Fragmentation
• For a given block, internal fragmentation occurs if payload is

smaller than block size

!35

Payload Internal
fragmentation

Block

Internal
fragmentation

Carnegie Mellon

Internal Fragmentation
• For a given block, internal fragmentation occurs if payload is

smaller than block size

• Caused by
• Overhead of maintaining heap data structures
• Padding for alignment purposes
• Explicit policy decisions (e.g., to return a big block to satisfy a small

request)

!35

Payload Internal
fragmentation

Block

Internal
fragmentation

Carnegie Mellon

Keeping Track of Free Blocks

!36

5 4 26

•Method 1: Implicit list using length—links all blocks

Carnegie Mellon

Keeping Track of Free Blocks

!36

5 4 26

5 4 26

•Method 1: Implicit list using length—links all blocks

•Method 2: Explicit list among the free blocks using pointers

Carnegie Mellon

Keeping Track of Free Blocks

!36

5 4 26

5 4 26

•Method 1: Implicit list using length—links all blocks

•Method 2: Explicit list among the free blocks using pointers

•Method 3: Segregated free list
• Different free lists for different size classes

Carnegie Mellon

Keeping Track of Free Blocks

!36

5 4 26

5 4 26

•Method 1: Implicit list using length—links all blocks

•Method 2: Explicit list among the free blocks using pointers

•Method 3: Segregated free list
• Different free lists for different size classes

•Method 4: Blocks sorted by size
• Can use a balanced tree (e.g. Red-Black tree) with pointers within each

free block, and the length used as a key

Carnegie Mellon

Today
• Case study: Core i7/Linux memory system

•Memory mapping

• Dynamic memory allocation

• Basic concepts
• Implicit free lists

!37

Carnegie Mellon

Implicit List
• For each block we need both size and allocation status

• Could store this information in two words: wasteful!

!38

5 4 26

Carnegie Mellon

Implicit List
• For each block we need both size and allocation status

• Could store this information in two words: wasteful!

!38

Size

1 word

Payload

a = 1: Allocated block
a = 0: Free block

Size: block size

Payload: application data
(allocated blocks only)

a

Optional
padding

5 4 26

Carnegie Mellon

Implicit List
• For each block we need both size and allocation status

• Could store this information in two words: wasteful!

• Standard trick

• If blocks are aligned, some low-order address bits are always 0
• Instead of storing an always-0 bit, use it as a allocated/free flag
• When reading size word, must mask out this bit

!39

Carnegie Mellon

Implicit List
• For each block we need both size and allocation status

• Could store this information in two words: wasteful!

• Standard trick

• If blocks are aligned, some low-order address bits are always 0
• Instead of storing an always-0 bit, use it as a allocated/free flag
• When reading size word, must mask out this bit

!39

Size

1 word

Format of
allocated and
free blocks

Payload

a = 1: Allocated block
a = 0: Free block

Size: block size

Payload: application data
(allocated blocks only)

a

Optional
padding

