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Announcement
• Programming Assignment 6 is out


• Main assignment: 11:59pm, Thursday, May 2.
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Due

Today
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Today  
• Case study: Core i7/Linux memory system

•Memory mapping

• Dynamic memory allocation
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Intel Core i7 Memory System
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L1 d-cache 
32 KB, 8-way

L2 unified cache 
256 KB, 8-way

L3 unified cache 
8 MB, 16-way  

(shared by all cores)

Main memory

Registers

L1 d-TLB 
64 entries, 4-way

L1 i-TLB 
128 entries, 4-way

L2  unified TLB 
512 entries, 4-way

L1 i-cache 
32 KB, 8-way

MMU  
(addr translation)

Instruction 
fetch

Core x4

DDR3 Memory controller 
3 x 64 bit @ 10.66 GB/s

32 GB/s total (shared by all cores)

Processor package

QuickPath 
interconnect 

4 links @ 25.6 GB/s 
each

To other  
cores
To I/O 
bridge
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End-to-End Core i7 Address Translation
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CPU

VPN VPO
36 12

Virtual address (VA)



Carnegie Mellon

End-to-End Core i7 Address Translation
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...

L1 TLB (16 sets, 4 entries/set)

End-to-End Core i7 Address Translation
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CPU

VPN VPO
36 12

TLBT TLBI
432

Virtual address (VA)
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...

L1 TLB (16 sets, 4 entries/set)

End-to-End Core i7 Address Translation
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CPU

VPN VPO
36 12

PPN
40

TLB 
hit

TLBT TLBI
432

Virtual address (VA)
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...

L1 TLB (16 sets, 4 entries/set)

End-to-End Core i7 Address Translation
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...

L1 TLB (16 sets, 4 entries/set)
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...

L1 TLB (16 sets, 4 entries/set)

End-to-End Core i7 Address Translation
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...

L1 TLB (16 sets, 4 entries/set)

End-to-End Core i7 Address Translation
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...

L1 TLB (16 sets, 4 entries/set)

End-to-End Core i7 Address Translation
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...

L1 TLB (16 sets, 4 entries/set)

End-to-End Core i7 Address Translation

!5

CPU

VPN VPO
36 12

PPN
40

TLB 
hit

Physical 
address  

(PA)

PPO
12

TLBT TLBI
432

CT CO
40 6

CI
6

Virtual address (VA)
Result

32/64

L1 
hit

...

L1 d-cache  
(64 sets, 8 lines/set)

VPN1 VPN2
99

PTE

CR3

Page tables

TLB 
miss

VPN3 VPN4
99

PTE PTE PTE



Carnegie Mellon

...

L1 TLB (16 sets, 4 entries/set)

End-to-End Core i7 Address Translation
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CPU

VPN VPO
36 12

PPN
40

TLB 
hit

Physical 
address  

(PA)

PPO
12

TLBT TLBI
432

CT CO
40 6

CI
6

L2, L3, and  
main memory

L1 
miss

Virtual address (VA)
Result

32/64

L1 
hit

...

L1 d-cache  
(64 sets, 8 lines/set)

VPN1 VPN2
99

PTE

CR3

Page tables

TLB 
miss

VPN3 VPN4
99

PTE PTE PTE
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Core i7 Level 4 Page Table Entries
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Page physical base address Unused G D A CD WT U/S R/W P=1

Each entry references a 4K child page. Significant 
fields: 

P: Child page is present in memory (1) or not (0) 
R/W: Read-only or read-write access permission for child page 

U/S: User or supervisor mode access 

WT: Write-through or write-back cache policy for this page 

A: Reference bit (set by MMU on reads and writes, cleared by software)  
D: Dirty bit (set by MMU on writes, cleared by software) 

Page physical base address: 40 most significant bits of physical page 
address (forces pages to be 4KB aligned) 

XD: Disable or enable instruction fetches from this page.

51 12 11 9 8 7 6 5 4 3 2 1 0
UnusedXD

Available for OS (page location on disk) P=0

526263
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Virtual Address Space of a Linux Process
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Kernel code and data

Memory mapped region  
for shared libraries

Runtime heap (malloc)

Program text (.text)
Initialized data (.data)

Uninitialized data (.bss)

User stack

0

%rsp

Process 
virtual 
memory

brk

Physical memoryIdentical  for 
each process

Process-specific 
data 

 structs  (ptables,
task and mm structs, 

kernel stack)
Kernel 
virtual  
memory

0x00400000

Different for 
each process
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Linux Organizes VM as Collection of “Areas” 
task_struct

mm_struct

pgdmm

mmap

vm_area_struct

vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

Text

Data

Shared libraries

0

• Areas are also known as 
“segments”


• pgd: 

• Page global directory address (L1 

PT)

• vm_prot:

• Read/write permissions for  this area

• vm_flags

• Pages shared with other processes 

or private to this process

!8

vm_next

vm_next

vm_flags

vm_flags

vm_flags
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Linux Page Fault Handling 
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vm_next

vm_next

vm_area_struct
vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

text

data

shared libraries
vm_flags

vm_flags

vm_flags
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Linux Page Fault Handling 
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1

vm_next

vm_next

vm_area_struct
vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

text

data

shared libraries
vm_flags

vm_flags

vm_flags
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Linux Page Fault Handling 

!9

1

vm_next

vm_next

vm_area_struct
vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

text

data

shared libraries
vm_flags

vm_flags

vm_flags

Segmentation fault:

accessing a non-existing page
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Linux Page Fault Handling 
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1

2

vm_next

vm_next

vm_area_struct
vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

text

data

shared libraries
vm_flags

vm_flags

vm_flags

Segmentation fault:

accessing a non-existing page
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Linux Page Fault Handling 
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1

2

vm_next

vm_next

vm_area_struct
vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

text

data

shared libraries
vm_flags

vm_flags

vm_flags

Segmentation fault:

accessing a non-existing page

Protection exception:

e.g., violating permission by 
writing to a read-only page (Linux 
reports as Segmentation fault)
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Linux Page Fault Handling 
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1

2

3

vm_next

vm_next

vm_area_struct
vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

text

data

shared libraries
vm_flags

vm_flags

vm_flags

Segmentation fault:

accessing a non-existing page

Protection exception:

e.g., violating permission by 
writing to a read-only page (Linux 
reports as Segmentation fault)
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Linux Page Fault Handling 
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1

2

3

vm_next

vm_next

vm_area_struct
vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

text

data

shared libraries
vm_flags

vm_flags

vm_flags

Segmentation fault:

accessing a non-existing page

Normal page fault

Protection exception:

e.g., violating permission by 
writing to a read-only page (Linux 
reports as Segmentation fault)



Carnegie Mellon

Today  
• Case study: Core i7/Linux memory system

•Memory mapping

• Dynamic memory allocation
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Memory Mapping For Sharing
•Multiple processes often share data


• Different processes that run the same code (e.g., shell) 
• Different processes linked to the same standard libraries 
• Different processes share the same file 

• It is wasteful to create exact copies of the share object

•Memory mapping allow us to easily share objects


• Different VM pages point to the same physical page/object

!11
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Sharing Revisited: Shared Objects
• Process 1 maps the shared object. 

!12

Shared 
object

Physical 
memory

Process 1 
virtual memory

Process 2 
virtual memory

• The kernel remembers 
that the object (backed 
by a unique file) is 
mapped by Proc. 1 to 
some physical pages.
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Sharing Revisited: Shared Objects
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Shared 
object

Physical 
memory

Process 1 
virtual memory

Process 2 
virtual memory

• Process 2 maps the shared object. • The kernel remembers 
that the object (backed 
by a unique file) is 
mapped by Proc. 1 to 
some physical pages.


• Now when Proc. 2 
wants to access the 
same object, the kernel 
can simply point the 
PTEs of Proc. 2 to the 
already-mapped 
physical pages.
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The Problem…
•What if Proc. 1 now wants to modify the shared object, but 

doesn’t want the modification to be visible to Proc. 2

!14
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The Problem…
•What if Proc. 1 now wants to modify the shared object, but 

doesn’t want the modification to be visible to Proc. 2
• Simplest solution: always create duplicate copies of shared 

objects at the cost of wasting space. Not ideal.

!14
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The Problem…
•What if Proc. 1 now wants to modify the shared object, but 

doesn’t want the modification to be visible to Proc. 2
• Simplest solution: always create duplicate copies of shared 

objects at the cost of wasting space. Not ideal.
• Idea: Copy-on-write (COW)


• First pretend that both processes will share the objects without 
modifying them. If modification happens, create separate copies.

!14
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Private Copy-on-write (COW) Objects
• Two processes 

mapping a private 
copy-on-write 
(COW)  object. 


• Area flagged as 
private copy-on-
write (COW)


• PTEs in private 
areas are flagged 
as read-only

!15

Private  
copy-on-write object

Physical 
memory

Process 1 
virtual memory

Process 2 
virtual memory

 Private 
copy-on-write 
area
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Private Copy-on-write (COW) Objects
• Two processes 

mapping a private 
copy-on-write 
(COW)  object. 


• Area flagged as 
private copy-on-
write (COW)


• PTEs in private 
areas are flagged 
as read-only
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Private  
copy-on-write object

Physical 
memory

Process 1 
virtual memory

Process 2 
virtual memory

 Private 
copy-on-write 
area

task_struct
mm_struct

pgdmm

mmap

vm_area_struct

vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

Text

Data

Shared libraries

0

vm_next

vm_next

vm_flags

vm_flags

vm_flags
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Private Copy-on-write (COW) Objects
• Two processes 

mapping a private 
copy-on-write 
(COW)  object. 


• Area flagged as 
private copy-on-
write (COW)


• PTEs in private 
areas are flagged 
as read-only
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Private  
copy-on-write object

Physical 
memory

Process 1 
virtual memory

Process 2 
virtual memory

 Private 
copy-on-write 
area

task_struct
mm_struct

pgdmm

mmap

vm_area_struct

vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

Text

Data

Shared libraries

0

vm_next

vm_next

vm_flags

vm_flags

vm_flags
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Private Copy-on-write (COW) Objects
• Two processes 

mapping a private 
copy-on-write 
(COW)  object. 


• Area flagged as 
private copy-on-
write (COW)


• PTEs in private 
areas are flagged 
as read-only
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Private  
copy-on-write object

Physical 
memory

Process 1 
virtual memory

Process 2 
virtual memory

 Private 
copy-on-write 
area
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Private Copy-on-write (COW) Objects
• Instruction writing to 

private page triggers 
page (protection) fault.

!16

Physical 
memory

Process 1 
virtual memory

Process 2 
virtual memory

Copy-on-write

Write to 
private 

COW page

Private  
copy-on-write object
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Private Copy-on-write (COW) Objects
• Instruction writing to 

private page triggers 
page (protection) fault.

• Handler checks the area 
protection, and sees 
that it’s a COW object

!16

Physical 
memory

Process 1 
virtual memory

Process 2 
virtual memory

Copy-on-write

Write to 
private 

COW page

Private  
copy-on-write object
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Private Copy-on-write (COW) Objects
• Instruction writing to 

private page triggers 
page (protection) fault.

• Handler checks the area 
protection, and sees 
that it’s a COW object

• Handler then creates 
new R/W page. 

!16

Physical 
memory

Process 1 
virtual memory

Process 2 
virtual memory

Copy-on-write

Write to 
private 

COW page

Private  
copy-on-write object
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Private Copy-on-write (COW) Objects
• Instruction writing to 

private page triggers 
page (protection) fault.

• Handler checks the area 
protection, and sees 
that it’s a COW object

• Handler then creates 
new R/W page. 

!16

Physical 
memory

Process 1 
virtual memory

Process 2 
virtual memory

Copy-on-write

Write to 
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COW page

Private  
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Private Copy-on-write (COW) Objects
• Instruction writing to 

private page triggers 
page (protection) fault.

• Handler checks the area 
protection, and sees 
that it’s a COW object

• Handler then creates 
new R/W page. 

• Instruction restarts upon 
handler return. 

!16

Physical 
memory

Process 1 
virtual memory

Process 2 
virtual memory

Copy-on-write

Write to 
private 

COW page

Private  
copy-on-write object
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Private Copy-on-write (COW) Objects
• Instruction writing to 

private page triggers 
page (protection) fault.

• Handler checks the area 
protection, and sees 
that it’s a COW object

• Handler then creates 
new R/W page. 

• Instruction restarts upon 
handler return. 

• Copying deferred as 
long as possible!

!16

Physical 
memory

Process 1 
virtual memory

Process 2 
virtual memory

Copy-on-write

Write to 
private 

COW page

Private  
copy-on-write object



Carnegie Mellon

The fork Function Revisited

• VM and memory mapping explain how fork provides private 
address space for each process. 


• To create virtual address for new new process

• Create exact copies of current mm_struct, vm_area_struct, and 

page tables. 
• Flag (in the PTE) of each page in both processes as read-only
• Flag each area in both processes as private COW (in 
vm_area_struct)

• On return, each process has exact copy of virtual memory


• Subsequent writes create new pages using COW mechanism.

!17
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The execve Function Revisited
• To load and run a new 

program a.out in the current 
process using: 
execve(“a.out”, NULL, 
NULL)


• Free vm_area_struct and 
page tables for old process


• Create vm_area_struct 
and page tables for new areas

• Programs and initialized 

data backed by object files.
• .bss and stack backed 

by anonymous files.  
• Set PC to entry point 

in .text

• Linux will fault in code and 

data pages as needed.

!18

Memory mapped region  
for shared libraries

Runtime heap (via malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

Private, demand-zero

libc.so
.data
.text Shared, file-backed

Private, demand-zero

Private, demand-zero

Private, file-backed

a.out
.data
.text
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User-Level Memory Mapping
void *mmap(void *start, int len, 
           int prot, int flags, int fd, int offset)

•Map len bytes starting at offset offset of the file specified by 
file description fd, preferably at address start 

• start: may be NULL for “pick an address”
• prot: PROT_READ, PROT_WRITE, ...
• flags: MAP_ANON, MAP_PRIVATE, MAP_SHARED, ...

• Return a pointer to start of mapped area (may not be start)

!19
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User-Level Memory Mapping
void *mmap(void *start, int len, 
           int prot, int flags, int fd, int offset)

!20

len bytes

start
(or address  

chosen by kernel)

Process virtual memoryDisk file specified by  
file descriptor fd

len bytes

offset
(bytes)

0 0
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Example: Using mmap to Copy Files

!21

/* mmapcopy driver */ 
int main(int argc, char **argv) 
{ 
    struct stat stat; 
    int fd; 

    /* Check for required cmd line arg */ 
    if (argc != 2) { 
        printf("usage: %s <filename>\n", 
               argv[0]); 
        exit(0); 
    } 

    /* Copy input file to stdout */ 
    fd = Open(argv[1], O_RDONLY, 0); 
    Fstat(fd, &stat); 
    mmapcopy(fd, stat.st_size); 
    exit(0); 
}

• Copying a file to stdout without transferring data to user space

• i.e., no file data is copied to user stack

#include "csapp.h" 

void mmapcopy(int fd, int size) 
{ 

    /* Ptr to memory mapped area */ 
    char *bufp; 

    bufp = mmap(NULL, size,  
                PROT_READ, 
                MAP_PRIVATE,  
                fd, 0); 
    Write(1, bufp, size); 
    return; 
}

mmapcopy.c mmapcopy.c
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Today  
• Case study: Core i7/Linux memory system

•Memory mapping

• Dynamic memory allocation


• Basic concepts 
• Implicit free lists

!22
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Dynamic Memory Allocation 
• Programmers use dynamic 

memory allocators (such 
as malloc) to acquire VM 
at run time. 


• Dynamic memory 
allocators manage an area 
of process virtual memory 
known as the heap. 

!23

Heap (via malloc)

Program text (.text)
Initialized data (.data)
Uninitialized data (.bss)

User stack

Top of heap 
 (brk ptr)
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The malloc/free Functions
#include <stdlib.h>

void *malloc(size_t size) 
• Successful:

• Returns a pointer to a memory block of at least size bytes 
aligned to an 8-byte (x86) or  16-byte (x86-64) boundary

• If size == 0, returns NULL
• Unsuccessful: returns NULL (0) and sets errno

!24
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The malloc/free Functions
#include <stdlib.h>

void *malloc(size_t size) 
• Successful:

• Returns a pointer to a memory block of at least size bytes 
aligned to an 8-byte (x86) or  16-byte (x86-64) boundary

• If size == 0, returns NULL
• Unsuccessful: returns NULL (0) and sets errno

void free(void *p) 
• Returns the block pointed at by p to pool of available memory
• p must come from a previous call to malloc or realloc

!24
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The malloc/free Functions
#include <stdlib.h>

void *malloc(size_t size) 
• Successful:

• Returns a pointer to a memory block of at least size bytes 
aligned to an 8-byte (x86) or  16-byte (x86-64) boundary

• If size == 0, returns NULL
• Unsuccessful: returns NULL (0) and sets errno

void free(void *p) 
• Returns the block pointed at by p to pool of available memory
• p must come from a previous call to malloc or realloc

Other functions

• calloc: Version of malloc that initializes allocated block to zero. 
• realloc: Changes the size of a previously allocated block.
• sbrk: Used internally by allocators to grow or shrink the heap

!24
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malloc Example

!25

#include <stdio.h> 
#include <stdlib.h> 

void foo(int n) { 
    int i, *p; 

    /* Allocate a block of n ints */ 
    p = (int *) malloc(n * sizeof(int)); 
    if (p == NULL) { 
        perror("malloc"); 
        exit(0); 
    } 

    /* Initialize allocated block */ 
    for (i=0; i<n; i++) 
 p[i] = i; 

    /* Return allocated block to the heap */ 
    free(p); 
}

Heap (via malloc)

Program text (.text)
Initialized data (.data)
Uninitialized data (.bss)

Stack
ip n

N * 4 bytes



Carnegie Mellon

Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically 

allocating the space would be a waste.

•More importantly: access data across function calls. Variables 

on stack are destroyed when the function returns!!!

!26
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Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically 

allocating the space would be a waste.

•More importantly: access data across function calls. Variables 

on stack are destroyed when the function returns!!!
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int* foo(int n) { 
  int i, *p; 

  p = (int *) malloc(n * sizeof(int)); 
  if (p == NULL) exit(0); 

  for (i=0; i<n; i++) 
    p[i] = i; 

  return p; 
} 

void bar() { 
  int *p = foo(5); 

  printf(“%d\n”, p[0]); 
}
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Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically 

allocating the space would be a waste.

•More importantly: access data across function calls. Variables 

on stack are destroyed when the function returns!!!

!26

int* foo(int n) { 
  int i, *p; 

  p = (int *) malloc(n * sizeof(int)); 
  if (p == NULL) exit(0); 

  for (i=0; i<n; i++) 
    p[i] = i; 

  return p; 
} 

void bar() { 
  int *p = foo(5); 

  printf(“%d\n”, p[0]); 
}

Heap (via malloc)

bar Stack
p
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Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically 

allocating the space would be a waste.

•More importantly: access data across function calls. Variables 

on stack are destroyed when the function returns!!!

!26

int* foo(int n) { 
  int i, *p; 

  p = (int *) malloc(n * sizeof(int)); 
  if (p == NULL) exit(0); 

  for (i=0; i<n; i++) 
    p[i] = i; 

  return p; 
} 

void bar() { 
  int *p = foo(5); 

  printf(“%d\n”, p[0]); 
}

Heap (via malloc)

foo Stack
ip n

bar Stack
p
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Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically 

allocating the space would be a waste.

•More importantly: access data across function calls. Variables 

on stack are destroyed when the function returns!!!

!26

int* foo(int n) { 
  int i, *p; 

  p = (int *) malloc(n * sizeof(int)); 
  if (p == NULL) exit(0); 

  for (i=0; i<n; i++) 
    p[i] = i; 

  return p; 
} 

void bar() { 
  int *p = foo(5); 

  printf(“%d\n”, p[0]); 
}

Heap (via malloc)

foo Stack
ip

N * 4 bytes

n

bar Stack
p
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Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically 

allocating the space would be a waste.

•More importantly: access data across function calls. Variables 

on stack are destroyed when the function returns!!!

!26

int* foo(int n) { 
  int i, *p; 

  p = (int *) malloc(n * sizeof(int)); 
  if (p == NULL) exit(0); 

  for (i=0; i<n; i++) 
    p[i] = i; 

  return p; 
} 

void bar() { 
  int *p = foo(5); 

  printf(“%d\n”, p[0]); 
}

Heap (via malloc)

foo Stack
ip

N * 4 bytes

n

bar Stack
p



Carnegie Mellon

Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically 

allocating the space would be a waste.

•More importantly: access data across function calls. Variables 

on stack are destroyed when the function returns!!!

!27

int* foo() { 
  int i; 
  int p[5]; 

  for (i=0; i<5; i++) 
    p[i] = i; 

  return p; 
} 

void bar() { 
  int *p = foo(); 

  printf(“%d\n”, p[0]); 
}

Heap (via malloc)

bar Stack
p



Carnegie Mellon

Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically 

allocating the space would be a waste.

•More importantly: access data across function calls. Variables 

on stack are destroyed when the function returns!!!

!27

int* foo() { 
  int i; 
  int p[5]; 

  for (i=0; i<5; i++) 
    p[i] = i; 

  return p; 
} 

void bar() { 
  int *p = foo(); 

  printf(“%d\n”, p[0]); 
}

Heap (via malloc)

foo Stack
ip

bar Stack
p



Carnegie Mellon

Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically 

allocating the space would be a waste.

•More importantly: access data across function calls. Variables 

on stack are destroyed when the function returns!!!

!27

int* foo() { 
  int i; 
  int p[5]; 

  for (i=0; i<5; i++) 
    p[i] = i; 

  return p; 
} 

void bar() { 
  int *p = foo(); 

  printf(“%d\n”, p[0]); 
}

Heap (via malloc)

foo Stack
ip

N * 4 bytes

bar Stack
p



Carnegie Mellon

Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically 

allocating the space would be a waste.

•More importantly: access data across function calls. Variables 

on stack are destroyed when the function returns!!!

!27

int* foo() { 
  int i; 
  int p[5]; 

  for (i=0; i<5; i++) 
    p[i] = i; 

  return p; 
} 

void bar() { 
  int *p = foo(); 

  printf(“%d\n”, p[0]); 
}

Heap (via malloc)

foo Stack
ip

N * 4 bytes

bar Stack
p



Carnegie Mellon

Dynamic Memory Allocation
• Allocator maintains heap as collection of variable sized blocks, 

which are either allocated or free
• Blocks that are no longer used should be free-ed to save space

!28

Allocated block 
(4 words)

Free block 
(3 words) Free word

Allocated word

• Assumptions Made in This Lecture

• Memory is word addressed 
• Words are int-sized
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Dynamic Memory Allocation
• Types of allocators


• Explicit allocator:  application (i.e., programmer) allocates and frees 
space 

• E.g.,  malloc and free in C
• Implicit allocator: application allocates, but does not free space

• E.g. garbage collection in Java, JavaScript, Python, etc…

•Will discuss simple explicit memory allocation today

!29
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Allocation Example

!30

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)
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Constraints
• Applications


• Can issue arbitrary sequence of malloc and free requests
• free request must be to a malloc’d  block 

• Allocators

• Can’t control number or size of allocated blocks
• Must respond immediately to malloc requests

• i.e., can’t reorder or buffer requests
• Must allocate blocks from free memory

• i.e., can place allocated blocks only in free memory
• Must align blocks so they satisfy all alignment requirements

• 8-byte (x86) or 16-byte (x86-64) alignment on Linux boxes
• Can manipulate and modify only free memory
• Can’t move the allocated blocks once they are malloc’d

• i.e., compaction is not allowed

!31
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External Fragmentation
• Occurs when there is enough aggregate heap memory, but no 

single free block is large enough

!32

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)
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External Fragmentation
• Occurs when there is enough aggregate heap memory, but no 

single free block is large enough

• Depends on the pattern of future requests

!32

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6) Oops! (what would happen now?)
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Key Issues in Dynamic Memory Allocation
• Free:


• How do we know how much memory to free given just a pointer? 
• How do we keep track of the free blocks? 
• How do we reinsert freed block? 

• Allocation:

• What do we do with the extra space when allocating a structure 

that is smaller than the free block it is placed in? 
• How do we pick a block to use for allocation -- many might fit?

!33
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Knowing How Much to Free
• Standard method


• Keep the length of a block in the word preceding the block.
• This word is often called the header field or header

• Requires an extra word for every allocated block

!34

p0 = malloc(4)

p0

free(p0)

block size payload

5



Carnegie Mellon

Internal Fragmentation
• For a given block, internal fragmentation occurs if payload is 

smaller than block size

!35

Payload Internal  
fragmentation

Block

Internal  
fragmentation
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Internal Fragmentation
• For a given block, internal fragmentation occurs if payload is 

smaller than block size

• Caused by 
• Overhead of maintaining heap data structures
• Padding for alignment purposes
• Explicit policy decisions (e.g., to return a big block to satisfy a small 

request)

!35

Payload Internal  
fragmentation

Block

Internal  
fragmentation
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Keeping Track of Free Blocks

!36
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•Method 1: Implicit list using length—links all blocks
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Keeping Track of Free Blocks
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5 4 26

•Method 1: Implicit list using length—links all blocks

•Method 2: Explicit list among the free blocks using pointers

•Method 3: Segregated free list
• Different free lists for different size classes

•Method 4: Blocks sorted by size
• Can use a balanced tree (e.g. Red-Black tree) with pointers within each 

free block, and the length used as a key
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Today  
• Case study: Core i7/Linux memory system

•Memory mapping

• Dynamic memory allocation


• Basic concepts 
• Implicit free lists

!37
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Implicit List
• For each block we need both size and allocation status


• Could store this information in two words: wasteful!

!38
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Size

1 word

Payload

a = 1: Allocated block   
a = 0: Free block 

Size: block size 

Payload: application data 
(allocated blocks only) 

a

Optional
padding

5 4 26
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• For each block we need both size and allocation status


• Could store this information in two words: wasteful!

• Standard trick

• If blocks are aligned, some low-order address bits are always 0
• Instead of storing an always-0 bit, use it as a allocated/free flag
• When reading size word, must mask out this bit
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Size

1 word

Format of 
allocated and 
free blocks

Payload

a = 1: Allocated block   
a = 0: Free block 

Size: block size 

Payload: application data 
(allocated blocks only) 

a

Optional
padding


