CSC 252: Computer Organization
Spring 2020: Lecture 10

Instructor: Yuhao Zhu

Department of Computer Science
University of Rochester



Announcement

* Programming assignment 3 is out

 Details: https://www.cs.rochester.edu/courses/252/
spring2020/labs/assignment3.html

* Due on Feb. 28, 11:59 PM
* You (may still) have 3 slip days
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https://www.cs.rochester.edu/courses/252/spring2020/labs/assignment3.html
https://www.cs.rochester.edu/courses/252/spring2020/labs/assignment3.html
https://www.cs.rochester.edu/courses/252/spring2020/labs/assignment3.html

Announcement

* Programming assignment 3 is in x86 assembly language. Seek
help from TAs.

* TAs are best positioned to answer your questions about
programming assignments!!!

* Programming assignments do NOT repeat the lecture materials.
They ask you to synthesize what you have learned from the
lectures and work out something new.
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* |SA is the interface between
assembly programs and
microarchitecture

* Assembly view:

* How to program the machine,
based on instructions and
processor states (registers,
memory, condition codes, etc.)?

e |nstructions are executed
sequentially.

* Microarchitecture view:

* \WWhat hardware needs to be built to
run assembly programs*?

e How to run programs as fast
(energy-efficient) as possible?
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(Simplified) x86 Processor State

RF: Program CC:
registers Condition
$rax %rsp %r8 %rl2 codes
$rcx $rbp $r9 $rl3 ZF|SF|OF
$rdx grsi %$rl0 $rl4 PC

Stat: Program status

DMEM: Memory

$rbx

Frdi

$rll

e Processor state is what’s visible to assembly programs. Also known as

architecture state.

e Program Registers: 15 registers (omit %r15). Each 64 bits
e Condition Codes: Single-bit flags set by arithmetic or logical instructions

(ZF, SF, OF)

e Program Counter: Indicates address of next instruction
e Program Status: Indicates either normal operation or error condition

e Memory

* Byte-addressable storage array
* \WWords stored in little-endian byte order
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Why Have Instructions?

e Why do we need an ISA? Can we directly program the hardware?

e Simplifies interface
e Software knows what is available
* Hardware knows what needs to be implemented
e Abstraction protects software and hardware
e Software can run on new machines
* Hardware can run old software
* Alternatives: Application-Specific Integrated Circuits (ASIC)

* No instructions, (largely) not programmable, fixed-functioned, so
no instruction fetch, decoding, etc.

* So could be implemented extremely efficiently.

* Examples: video/audio codec, (conventional) image signal
processors, (conventional) IP packet router



Characteristics of a Good ISA

e x86 is just one kind of ISA; there are many (ARM, MIPS, etc.)

* Must be unambiguous
e Must be expressive
* Easily describes all the algorithms that will run on this platform

e |nstructions are used
* \ery complex instructions might not be used often

(Relatively) easy to compile

(Relatively) easy to implement well

* Has to be implementable

* And, implementation provides good performance, cost, etc.

ISAs often highly reliant on microarchitecture and vice-versa

* Some ISAs easy to implement on some microarchitectures
e Some microarchitectures make some instructions easy to implement
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Some ISA Design Tradeoffs

e Fewer instructions
e Pros?
» Cons?
* There are 1 instruction ISAs

* subjle a, b, ¢;
Meml[b] = Mem|b] - Mem|a]; if (Mem([b] < 0) goto ¢
 Number of registers per instruction
 Affect number of bits per instruction
 Affect number of registers the microarchitecture has to implement
 How many?? Zero, One, Two, Three, Four, ...
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Number of Registers Per Instruction

* To implement C = A + B, how many registers should an ISA provide?
e Zero
e Stack machine (HP calculators): implied addresses
 PUSH AddrA; PUSH AddrB; ADD; POP AddrC
* One (implied)
* Accumulator-based machine
 LOAD AddrA; ADD AddrB; STORE AddrC
* Two (same register, src and dest), e.g., x86
* One source is destination
« LOAD R1, AddrA; LOAD R2, AddrB;
« ADD R1, R2; STORE R1, AddrC
* Three
* Current (D =S1 OP S2)
« LOAD R1, AddrA; LOAD R2, AddrB;
« ADD R3, R1, R2; STORE R3, AddrC
e Four and above

10



Today: Instruction Encoding

* How to translate assembly instructions to binary
 Essentially how an assembler works
* Using the Y86-64 ISA: Simplified version of x86-64

11



How are Instructions Encoded in Binary?

e Remember that instructions are stored in memory as bits (just
like data)

e Each instruction is fetched (according to the address specified
in the PC), decoded, and executed by the CPU

e The ISA defines the format of an instruction (syntax) and its
meaning (semantics)

* |dea: encode the two major fields, opcode and operand,
separately in bits.

* The OPCODE field says what the instruction does (e.g. ADD)
* The OPERAND field(s) say where to find inputs and outputs

12



Y86-64 Instructions
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pushg rA

popg rA
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Y86-64 Instructions

halt
nop
cmovXX rA, rB

irmovg V, rB

rmmovqg rA, D (rB)

mrmovg D (rB),
Opg rA, B

jXX Dest

rA

How to encode them in bits?

addg

subg

andg

xXorq

call Dest

ret
pushqg rA

popg rA
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[ Jmp
Jjle
71
Jje
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Encoding Operands

oy

halt

nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovg D (rB), rA
Opg rA, B

jXX Dest

call Dest

ret

pushg rA

popg rA

[ Jmp

Jle
jl

$
Jne
Jge

&jg

[ rrmovq
cmovle
cmovl
cmove
cmovne

cmovge

&cmovg

e 27 Instructions, so need 5 bits
for encoding the operand

e Or: group similar instructions,
use one opcode for them, and
then use one more bit to
indicate specific instructions
within a group.

* E£.9., 12 categories, so 4 bits

e There are four instructions within
the OPg category, so additional
2 bits. Similarly, 3 more bits for
JXX and cmovXX, respectively.

e Which one is better???
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Encoding

Byte

halt

nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovg D (rB), rA
Opg rA, B

jXX Dest

call Dest

ret

pushg rA

popg rA

0

Operands

0

0

1

0

fn

0

0

0

fn

fn

- 5 6 7 8 9

* Design decision chosen by the textbook
authors (don’t have to be this way!)

* Use 4 bits to encode the instruction
category

* Another 4 bits to encode the specific
instructions within a category

e SO 1 bytes for encoding operand

* |s this better than the alternative of using
5 bits without classifying instructions?

* Trade-offs.

15



Encoding Registers

Each register has 4-bit ID
« Same encoding as in x86-64
« Register ID 15 (0xF) indicates “no register”

Srax 0 %r8 8
srex 1 %r9 9
Srdx 2 %$rl0 A
$rbx 3 $rll B
3rsp 4 %rl2 Cc
%rbp 5 %$rl3 D
grsi 6 %rl4 E
$rdi 7 No Register| F




Encoding

Byte

halt

nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovg D (rB), rA
Opg rA, B

jXX Dest

call Dest

ret

pushg rA

popg rA

egisters

0 1 2 3
00

110

2 | fnjrA | rB
310]F |(rB
410 |rA|rB
510|rA|rB
6 [ fn|rA |rB
7 | fn

810

910
A|O|rA| F
B|OJrA|F

17



Instruction Example

Addition Instruction

addg rA, rB 6

rA

rB

« Add value in register rA to that in register rB

 Store result in register rB

e Set condition codes based on result

e €.0.,, addg Srax, srsi

« Two-byte encoding

Encoding: 60 06

» First indicates instruction type
« Second gives source and destination registers

18



Instruction Example

Addition Instruction

/ Assembly Form

7
addg rA, rB 6| 0|rA|rB

« Add value in register rA to that in register rB
 Store result in register rB

e Set condition codes based on result
e 6.0.,, addg %rax,%rsi Encoding: 60 06

« Two-byte encoding
» First indicates instruction type
« Second gives source and destination registers

18



Instruction Example

Addition Instruction

/

addg rA, rB 6|0]|rA

rB

Assembly Form
/ / Encoded Representation

« Add value in register rA to that in register rB

 Store result in register rB

e Set condition codes based on result

e €.0.,, addg Srax, srsi

« Two-byte encoding

Encoding: 60 06

» First indicates instruction type
« Second gives source and destination registers

18



Arithmetic and Logical Operations

Add

addqg rA, rB 6 rA\rB
Subtract (rA from rB)

subg rA, rB 6 rA\rB
And

andq rA, rB 6 rA(rB
Exclusive-Or

xorq rA, rB 6 rA(rB

« Refer to generically as “opg”

* Encodings differ only by “function
code”
» Low-order 4 bytes in first instruction
word

» Set condition codes as side effect

19



Arithmetic and Logical Operations

Function Code

Add /

addg rA, rB 6| 0|rA|rB
Subtract (rA from rB)

subg rA, rB 6| 1|rA|rB
And

andg rA, rB 6| 2|rA|rB
Exclusive-Or

xorq rA, rB 6| 3|rA|rB

« Refer to generically as “opg”

* Encodings differ only by “function
code”
» Low-order 4 bytes in first instruction
word

» Set condition codes as side effect
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Arithmetic and Logical Operations

Instruction Code

Function Code

Add \ /

addg rA, rB 6| 0|rA|rB
Subtract (rA from rB)

subg rA, rB 6| 1|rA|rB
And

andg rA, rB 6| 2|rA|rB
Exclusive-Or

xorq rA, rB 6| 3|rA|rB

« Refer to generically as “opg”

* Encodings differ only by “function
code”
» Low-order 4 bytes in first instruction
word

» Set condition codes as side effect
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Move Instructions

Byte 0 1
halt 010

nop 110
cmovXX rA, rB 2 | fn|rA | rB
irmovg V, rB 310]F |(rB
rmmovqg rA, D (rB) 4 |10 |rA|rB
mrmovg D((rB), rA {5 | 0 |rA|rB
Opg rA, B 6 [fn|rA|rB
jXX Dest 7 | fn

call Dest 810

ret 910
pushg rA A|lOJrA|F
popqg rA B|OJ|rA|F

2

3
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Move Instructions

Byte 0 1
halt 010

nop 110
cmovXX rA, rB 2 | fn|rA | rB
irmovg V, rB 310]F |(rB
rmmovqg rA, D (rB) 4 |10 |rA|rB
mrmovg D((rB), rA {5 | 0 |rA|rB
Opg rA, B 6 [fn|rA|rB
jXX Dest 7 | fn

call Dest 810

ret 910
pushg rA A|lOJrA|F
popqg rA B|OJ|rA|F

2

3

irmovg $0xabcd, %$rdx

20



Move Instructions

Byte 0 1 2 3
halt 010

nop 110
cmovXX rA, rB 2 | fn|rA | rB
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Move Instructions

Byte 0 1 2 3 4 5 6 7 8 9

halt 0] 0

hop 5 The instruction length limits the
Immediate value and displacement.

cmovXX rA, rB 2 | fn|rA | rB

irmovg V, rB 310|F |rB Y%

rmmovqg rA, D (rB) 410 |rA|rB D

mrmovg D (rB), rA 510 |rA|rB D

Opg rA, B 6 [fn|rA|rB

jXX Dest 7 | fn

call Dest 8 |0

ret 910

pushg rA A|lOJrA|F

popqg rA B|OJ|rA|F
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Move Instruction Examples

Encoding:

Encoding:

Encoding:

Encoding:

Y86-64

irmovqg $0xabcd, $%$rdx

30 82 cd ab 00 00 00 00 00 0O

rrmovq 3%rsp, 5%rbx

20 43

mrmovqg -12 (%rbp) ,%$rcx

50 15 f4 ff ff f£f ff f£f ff ff

rmmovqg %rsi,Ox4lc(%rsp)

40 64 1c 04 00 00 00 0O 00 0O
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Jump/Call Instructions

Byte

halt

nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovg D (rB), rA

Opg rA, B

jXX Dest

call Dest

ret
pushqg rA

popg rA

0 1 2 3 4
00

110

2 | fnjrA | rB
310]F |(rB
410 |rA|rB
510|rA|rB
6 [ fn|rA |rB
7 | fn

810

910
A|O|rA| F
B|OJrA|F
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310]F|rB \Y
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810 call foo

910

A|O|rA|F

B|O|rA|F

22



Jump/Call Instructions

Byte

halt

nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovg D (rB), rA

Opg rA, B

jXX Dest

call Dest

ret
pushqg rA

popg rA

0

0

1

1

2 3 4 5 o 7 8 9

The assembly would assume a start
address of the program, and then calculates
the address of each instruction.

2 | In|rA|rB

310]F|rB \Y

410 |rA|rB D

510 |rA|rB D

6 |fn]rA B

7 | fn Dest (essentially the target address)

810 Dest (essentially the start address of the callee)
910

A|O|rA|F

B|O|rA|F
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Jump Instructions

Jump Unconditionally

jmp Dest |7 |0 Dest
Jump When Less or Equal

jleDest |7 |1 Dest
Jump When Less

j1 Dest 7|2 Dest
Jump When Equal

je Dest 7|3 Dest
Jump When Not Equal

jne Dest |7 | 4 Dest
Jump When Greater or Equal

jgeDest |7 |5 Dest
Jump When Greater

jg Dest 7|6 Dest
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Subroutine Call and Return

call Dest

Dest

e Push address of next instruction onto stack

 Start executing instructions at Dest
 Like x86-64

ret

e Pop value from stack
» Use as address for next instruction
e | ike x86-64

24



One More Complication...

Byte
jXX Dest

call Dest

jle .L4

0 1 2 3 4 5 6 7
7 | fn Dest (essentially the target address)
810 Dest (essentially the start address of the callee)

call foo
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One More Complication...

2 3 = 5 6 7

fn

Dest (essentially the target address)

jle .L4

Byte 0
jXX Dest 7
call Dest 8

Dest (essentially the start address of the callee)

call foo

e The instruction length limits how far you can jump/call functions. What if the jump
target has a very long address that can’t fit in 8 bytes?
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Byte 0 1 2 3 4 5 6 7 8 9
jxX Dest 7 | fn Dest (essentially the target address) jle .14
call Dest 8|0 Dest (essentially the start address of the callee) call foo

e The instruction length limits how far you can jump/call functions. What if the jump
target has a very long address that can’t fit in 8 bytes?

e One alternative: use a super long instruction encoding format.
* Simple to encode, but space inefficient (waste bits for jumps to short addr.)

e Another alternative: have different encodings for jump/call, one with a short Dest
field for short jumps and the other for long jumps.

e Or: encode the relative address, not the absolute address
* E.g., encode (.L4 - current address) in Dest

» Better yet, combines the above two ideas: short relative jump and long relative
jump. This is what x86 and many other ISAs do. Elegant design.

e What if you want to jump really far away from the current instruction?

e Alternatives: indirect jump, use a combination of absolute + relative addresses
(“Far jumps” in x86).
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Miscellaneous Instructions

nop 10

« Don’t do anything

halt 0|0

e Stop executing instructions
« Usually can’t be executed in the user mode, only by the OS
« Encoding ensures that program hitting memory initialized to zero will halt

26



How Does An Assemble Work?

* Translates assembly code to binary-encode

e Reads assembly program line by line, and translates according
to the instruction format defined by an ISA

Add

addqg rA, rB 6| 0|rA|rB

* |t sometimes needs to make two passes on the assembly
program to resolve forward references

e E.g., forward branch target address

Jump Unconditionally

jmp Dest |7 | 0 Dest




Variable Length Instructions

28



Variable Length Instructions

e X86 (and Y86) is a variable length ISA (1 to 15 bytes), where
different instructions have different lengths.
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e X86 (and Y86) is a variable length ISA (1 to 15 bytes), where
different instructions have different lengths.
* There are fixed length ISAs: all instructions have the same length

* ARM'’s ISA for micro-controllers have a 4-bit ISA. Very Long Instruction Word
(VLIW) ISAs have instructions that are hundreds of bytes long.

* Or you can have a combination of both: e.g., 16-bit ISA with 32-bit extensions
(e..g, ARM Thumb-extension).

e Advantages of variable length ISAs

* More compact. Some instructions do not need that many bits. (Actually what'’s
the optimal way of encoding instructions in a variable length ISA?)

* Can have arbitrary number of instructions: easy to add new inst.

* What is the down side?
* Fetch and decode are harder to implement. More on this later.

e A good writeup showing some of the complexity involved:
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Program

l

Instruction Set Architecture
|

int, float
1f, else
+, -, >>

movqg $rsi, %Srax
imulg %rdx, S%Srax
Jmp .done

ret, call
movq, addqg
jmp, jne

i
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/
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Instruction Set Architecture

int, float
1f, else
+, -, >>

movqg $rsi, %Srax
imulg %rdx, S%Srax
Jmp .done

ret, call

Processor
Microarchitecture

K\ Circuits

and their bit
movq, addqg .
. . encodings.
jmp, jne
Logic gates

Transistors
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Today: Circuits Basics

e Transistors

30



Overview of Circuit-Level Design

 Fundamental Hardware Requirements

« Communication: How to get values from one place to another. Mainly
three electrical wires.

* Computation: transistors. Combinational logic.
* Storage: transistors. Sequential logic.
e Circuit design is often abstracted as logic design
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Digital Signals

— 0 — I 1 1 f— 0 —

Voltage

Time
e Extract discrete values from continuous voltage signal
e Simplest version: 1-bit signal
¢ Either high range (1) or low range (0)
¢ \With guard range between them

e Not strongly affected by noise or low quality circuit elements
e Can make circuits simple, small, and fast
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Basic Building Block: Transistors
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* two types: n-type and p-type
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Basic Building Block: Transistors

MQOS = Metal Oxide Semiconductor
* two types: n-type and p-type

n-type (NMOS)

* when Gate has positive voltage,
short circuit between #1 and #2
(switch closed)

* when Gate has zero voltage,

open circuit between #1 and #2
(switch open)

Gate = 1

Terminal #2 must be
connected to GND (0V).

Gate =0

#1

#2

21



Basic Building Block: Transistors

p-type is complementary to n-type (PMOS)
* when Gate has positive voltage,

open circuit between #1 and #2 #1

(switch open) l
* when Gate has zero voltage,

short circuit between #1 and #2

(switch closed)

#2

Gate = 1

Gate =0

Terminal #1 must be
connected to +1.2V
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CMOS Circuit

e Complementary MOS
e Uses both n-type and p-type MOS transistors
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Inverter (NOT Gate)

— .2V
—d

In &  t+— Out
-

 +0.0V



Inverter (NOT Gate)

d

-

— H2V
| PMOS

In —

_I

— Out

Y +0.0V
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Inverter (NOT Gate)

=

| .

— H2V
| PMOS

In —

— Out

L,

\

| NMOS
N 0.0V
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Inverter (NOT Gate)

d

In —

_I

- +1.2V
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T— +1.2V

—(: I P-type

+— Out=1

N-type
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Inverter (NOT Gate) — +1.2V

T "2V —|:P-type
—Ci INn=0— ¢+— Out=1
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In — t— Out vpe
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l + ] V
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Inverter (NOT Gate)

d

In

- +1.2V

T— +1.2V

—(: I P-type

INn=0—4 ¢+— Out=1
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NOR Gate (NOT + OR)

v A4

Note: Serial structure on top, parallel on bottom.

A=0 e
B=1-1+——_:P
€=0
— v — N
R

A B C

0 0f 1

0o 1| o

1 0| 0

1 1] 0
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Basic Logic Gates

A——{:>xb——ﬂ
A) >—ais j ~(A|B)

OR NOR

g:}A& B g:}~(A& B)

AND NAND
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