CSC 252: Computer Organization
Spring 2020: Lecture 10

Instructor: Yuhao Zhu

Department of Computer Science
University of Rochester

Announcement

* Programming assignment 3 is out

 Details: https://www.cs.rochester.edu/courses/252/
spring2020/labs/assignment3.html

* Due on Feb. 28, 11:59 PM
* You (may still) have 3 slip days

17 @ 19 20 21

Today

Due

22

29

https://www.cs.rochester.edu/courses/252/spring2020/labs/assignment3.html
https://www.cs.rochester.edu/courses/252/spring2020/labs/assignment3.html
https://www.cs.rochester.edu/courses/252/spring2020/labs/assignment3.html

Announcement

* Programming assignment 3 is in x86 assembly language. Seek
help from TAs.

* TAs are best positioned to answer your questions about
programming assignments!!!

* Programming assignments do NOT repeat the lecture materials.
They ask you to synthesize what you have learned from the
lectures and work out something new.

So far in 252...

C Program

l

Assembly
Program

i

Instruction Set Architecture

i

Processor
Microarchitecture

l

Circuits

So far in 252...

C Program

l

Assembly
Program

i

Instruction Set Architecture

i

Processor
Microarchitecture

l

Circuits

ret, call
movq, addqg

Jmp, jne

So far in 252...

C Program

l

Assembly
Program

l

Instruction Set Architecture

i

Processor
Microarchitecture

l

Circuits

movqg $rsi,
imulg %rdx,
Jmp .done

ret, call
movq, addqg

Jmp, jne

$rax
$rax

So far in 252...

C Program

l

Assembly
Program

l

Instruction Set Architecture

i

Processor
Microarchitecture

l

Circuits

int, float
1f, else
+, -, >>

movqg $rsi,
imulg %rdx,
Jmp .done

ret, call
movq, addqg

Jmp, jne

$rax
$rax

So far in 252...

C Program

l

Assembly
Program

l

Instruction Set Architecture

i

Processor
Microarchitecture

l

Circuits

int, float
1f, else
+, -, >>

movqg $rsi,
imulg %rdx,
Jmp .done

ret, call
movq, addqg

Jmp, jne

Logic gates

$rax
$rax

So far in 252...

C Program

l

Assembly
Program

l

Instruction Set Architecture

i

Processor
Microarchitecture

l

Circuits

int, float
1f, else
+, -, >>

movqg $rsi,
imulg %rdx,
Jmp .done

ret, call
movq, addqg

Jmp, jne

Logic gates

Transistors

$rax
$rax

So far in 252...

C Program

l

Assembly
Program

i

Instruction Set Architecture

i

Processor
Microarchitecture

l

Circuits

* |SA is the interface between
assembly programs and
microarchitecture

So far in 252...

C Program

l

Assembly
Program

i

Instruction Set Architecture

i

Processor
Microarchitecture

l

Circuits

* |SA is the interface between
assembly programs and
microarchitecture

* Assembly view:

So far in 252...

¢ |[SA is the interface between

C Program
assembly programs and

l microarchitecture

Assembly * Assembly view:
Program * How to program the machine,
l based on instructions and
processor states (registers,
Instruction Set Architecture memory, condition codes, etc.)?

Processor

Microarchitecture

l

Circuits

So far in 252...

C Program

l

Assembly
Program

i

Instruction Set Architecture

i

Processor
Microarchitecture

l

Circuits

* |SA is the interface between
assembly programs and
microarchitecture

* Assembly view:

* How to program the machine,
based on instructions and
processor states (registers,
memory, condition codes, etc.)?

e |nstructions are executed
sequentially.

So far in 252...

C Program

l

Assembly
Program

i

Instruction Set Architecture

i

Processor
Microarchitecture

l

Circuits

* |SA is the interface between
assembly programs and
microarchitecture

* Assembly view:

* How to program the machine,
based on instructions and

processor states (registers,
memory, condition codes, etc.)?

e |nstructions are executed
sequentially.

* Microarchitecture view:

So far in 252...

C Program

l

Assembly
Program

i

Instruction Set Architecture

i

Processor
Microarchitecture

l

Circuits

* |SA is the interface between
assembly programs and
microarchitecture

* Assembly view:

* How to program the machine,
based on instructions and

processor states (registers,
memory, condition codes, etc.)?

e |nstructions are executed
sequentially.

* Microarchitecture view:

* \WWhat hardware needs to be built to
run assembly programs*?

So far in 252...

C Program

l

Assembly
Program

i

Instruction Set Architecture

i

Processor
Microarchitecture

l

Circuits

* |SA is the interface between
assembly programs and
microarchitecture

* Assembly view:

* How to program the machine,
based on instructions and
processor states (registers,
memory, condition codes, etc.)?

e |nstructions are executed
sequentially.

* Microarchitecture view:

* \WWhat hardware needs to be built to
run assembly programs*?

e How to run programs as fast
(energy-efficient) as possible?

(Simplified) x86 Processor State

Stat: Program status

DMEM: Memory

RF: Program CC:
registers Condition
$rax %rsp %r8 %rl2 codes
$rcx $rbp $r9 $rl3 ZF|SF|OF
$rdx grsi %$rl0 $rl4 PC
$rbx $rdi %rll

e Processor state is what’s visible to assembly programs. Also known as

architecture state.

(Simplified) x86 Processor State

RF: Program

CC:

Stat: Program status

DMEM: Memory

registers Condition
$rax %rsp %r8 %rl2 codes
$rcx $rbp $r9 $rl3 ZF|SF|OF
$rdx grsi %$rl0 $rl4 PC
$rbx $rdi %rll

e Processor state is what’s visible to assembly programs. Also known as

architecture state.

e Program Registers: 15 registers (omit %r15). Each 64 bits

(Simplified) x86 Processor State

RF: Program CC: Stat: Program status

registers Condition
$rax %rsp %r8 %rl2 codes
$rcx $rbp $r9 $rl3 ZF|SF|OF DMEM: Memory
$rdx grsi %$rl0 $rl4 PC
$rbx $rdi %rll

e Processor state is what’s visible to assembly programs. Also known as
architecture state.

e Program Registers: 15 registers (omit %r15). Each 64 bits

e Condition Codes: Single-bit flags set by arithmetic or logical instructions
(ZF, SF, OF)

(Simplified) x86 Processor State

RF: Program

CC:

registers Condition
$rax %rsp %r8 %rl2 codes
$rcx $rbp $r9 $rl3 ZF|SF|OF
$rdx grsi %$rl0 $rl4 PC

Stat: Program status

DMEM: Memory

$rbx

Frdi

$rll

e Processor state is what’s visible to assembly programs. Also known as

architecture state.

e Program Registers: 15 registers (omit %r15). Each 64 bits
e Condition Codes: Single-bit flags set by arithmetic or logical instructions

(ZF, SF, OF)

e Program Counter: Indicates address of next instruction

(Simplified) x86 Processor State

RF: Program

CC:

registers Condition
$rax %rsp %r8 %rl2 codes
$rcx $rbp $r9 $rl3 ZF|SF|OF
$rdx grsi %$rl0 $rl4 PC

Stat: Program status

DMEM: Memory

$rbx

Frdi

$rll

e Processor state is what’s visible to assembly programs. Also known as

architecture state.

e Program Registers: 15 registers (omit %r15). Each 64 bits
e Condition Codes: Single-bit flags set by arithmetic or logical instructions

(ZF, SF, OF)

e Program Counter: Indicates address of next instruction
e Program Status: Indicates either normal operation or error condition

(Simplified) x86 Processor State

RF: Program CC:
registers Condition
$rax %rsp %r8 %rl2 codes
$rcx $rbp $r9 $rl3 ZF|SF|OF
$rdx grsi %$rl0 $rl4 PC

Stat: Program status

DMEM: Memory

$rbx

Frdi

$rll

e Processor state is what’s visible to assembly programs. Also known as

architecture state.

e Program Registers: 15 registers (omit %r15). Each 64 bits
e Condition Codes: Single-bit flags set by arithmetic or logical instructions

(ZF, SF, OF)

e Program Counter: Indicates address of next instruction
e Program Status: Indicates either normal operation or error condition

e Memory

* Byte-addressable storage array
* \WWords stored in little-endian byte order

Why Have Instructions?

e Why do we need an ISA? Can we directly program the hardware?

Why Have Instructions?

e Why do we need an ISA? Can we directly program the hardware?

e Simplifies interface
» Software knows what is available
* Hardware knows what needs to be implemented

Why Have Instructions?

e Why do we need an ISA? Can we directly program the hardware?
e Simplifies interface

e Software knows what is available

* Hardware knows what needs to be implemented
e Abstraction protects software and hardware

e Software can run on new machines

* Hardware can run old software

Why Have Instructions?

e Why do we need an ISA? Can we directly program the hardware?

e Simplifies interface
e Software knows what is available
* Hardware knows what needs to be implemented
e Abstraction protects software and hardware
e Software can run on new machines
* Hardware can run old software
* Alternatives: Application-Specific Integrated Circuits (ASIC)

* No instructions, (largely) not programmable, fixed-functioned, so
no instruction fetch, decoding, etc.

* So could be implemented extremely efficiently.

* Examples: video/audio codec, (conventional) image signal
processors, (conventional) IP packet router

Characteristics of a Good ISA

e x86 is just one kind of ISA; there are many (ARM, MIPS, etc.)

* Must be unambiguous
e Must be expressive
* Easily describes all the algorithms that will run on this platform

e |nstructions are used
* \ery complex instructions might not be used often

(Relatively) easy to compile

(Relatively) easy to implement well

* Has to be implementable

* And, implementation provides good performance, cost, etc.

ISAs often highly reliant on microarchitecture and vice-versa

* Some ISAs easy to implement on some microarchitectures
e Some microarchitectures make some instructions easy to implement

Some ISA Design Tradeoffs

e Fewer instructions
* Pros?
e Cons?

Some ISA Design Tradeoffs

e Fewer instructions
e Pros?
» Cons?
* There are 1 instruction ISAs

Some ISA Design Tradeoffs

e Fewer instructions
e Pros?
» Cons?
* There are 1 instruction ISAs

e subjle a, b, c;

Some ISA Design Tradeoffs

e Fewer instructions
e Pros?
» Cons?
* There are 1 instruction ISAs

* subjle a, b, ¢;
Meml[b] = Mem|b] - Mem|a]; if (Mem([b] < 0) goto ¢

Some ISA Design Tradeoffs

e Fewer instructions
e Pros?
» Cons?
* There are 1 instruction ISAs
* subjle a, b, ¢;
Meml[b] = Mem|b] - Mem|a]; if (Mem([b] < 0) goto ¢
 Number of registers per instruction

Some ISA Design Tradeoffs

e Fewer instructions
e Pros?
» Cons?
* There are 1 instruction ISAs

* subjle a, b, ¢;
Meml[b] = Mem|b] - Mem|a]; if (Mem([b] < 0) goto ¢
* Number of registers per instruction
 Affect number of bits per instruction

Some ISA Design Tradeoffs

e Fewer instructions
e Pros?
» Cons?
* There are 1 instruction ISAs
* subjle a, b, ¢;
Meml[b] = Mem|b] - Mem|a]; if (Mem([b] < 0) goto ¢
 Number of registers per instruction

 Affect number of bits per instruction
 Affect number of registers the microarchitecture has to implement

Some ISA Design Tradeoffs

e Fewer instructions
e Pros?
» Cons?
* There are 1 instruction ISAs

* subjle a, b, ¢;
Meml[b] = Mem|b] - Mem|a]; if (Mem([b] < 0) goto ¢
 Number of registers per instruction
 Affect number of bits per instruction
 Affect number of registers the microarchitecture has to implement
 How many?? Zero, One, Two, Three, Four, ...

Number of Registers Per Instruction

* To implement C = A + B, how many registers should an ISA provide?

10

Number of Registers Per Instruction

* To implement C = A + B, how many registers should an ISA provide?
e Zero

e Stack machine (HP calculators): implied addresses
 PUSH AddrA; PUSH AddrB; ADD; POP AddrC

10

Number of Registers Per Instruction

* To implement C = A + B, how many registers should an ISA provide?
e Zero

e Stack machine (HP calculators): implied addresses

 PUSH AddrA; PUSH AddrB; ADD; POP AddrC
* One (implied)

* Accumulator-based machine

 LOAD AddrA; ADD AddrB; STORE AddrC

10

Number of Registers Per Instruction

* To implement C = A + B, how many registers should an ISA provide?
e Zero
e Stack machine (HP calculators): implied addresses
 PUSH AddrA; PUSH AddrB; ADD; POP AddrC
One (implied)
* Accumulator-based machine
* LOAD AddrA; ADD AddrB; STORE AddrC
* Two (same register, src and dest), e.g., x86
* One source is destination
 LOAD R1, AddrA; LOAD R2, AddrB;
 ADD R1, R2; STORE R1, AddrC

10

Number of Registers Per Instruction

* To implement C = A + B, how many registers should an ISA provide?
e Zero
e Stack machine (HP calculators): implied addresses
 PUSH AddrA; PUSH AddrB; ADD; POP AddrC
* One (implied)
* Accumulator-based machine
* LOAD AddrA; ADD AddrB; STORE AddrC
* Two (same register, src and dest), e.g., x86
* One source is destination
 LOAD R1, AddrA; LOAD R2, AddrB;
 ADD R1, R2; STORE R1, AddrC
* Three
* Current (D =S1 OP S2)
 LOAD R1, AddrA; LOAD R2, AddrB;
 ADD R3, R1, R2; STORE R3, AddrC

10

Number of Registers Per Instruction

* To implement C = A + B, how many registers should an ISA provide?
e Zero
e Stack machine (HP calculators): implied addresses
 PUSH AddrA; PUSH AddrB; ADD; POP AddrC
* One (implied)
* Accumulator-based machine
 LOAD AddrA; ADD AddrB; STORE AddrC
* Two (same register, src and dest), e.g., x86
* One source is destination
« LOAD R1, AddrA; LOAD R2, AddrB;
« ADD R1, R2; STORE R1, AddrC
* Three
* Current (D =S1 OP S2)
« LOAD R1, AddrA; LOAD R2, AddrB;
« ADD R3, R1, R2; STORE R3, AddrC
e Four and above

10

Today: Instruction Encoding

* How to translate assembly instructions to binary
 Essentially how an assembler works
* Using the Y86-64 ISA: Simplified version of x86-64

11

How are Instructions Encoded in Binary?

e Remember that instructions are stored in memory as bits (just
like data)

e Each instruction is fetched (according to the address specified
in the PC), decoded, and executed by the CPU

e The ISA defines the format of an instruction (syntax) and its
meaning (semantics)

* |dea: encode the two major fields, opcode and operand,
separately in bits.

* The OPCODE field says what the instruction does (e.g. ADD)
* The OPERAND field(s) say where to find inputs and outputs

12

Y86-64 Instructions

halt

nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovg D (rB), rA
Opg rA, B

jXX Dest

call Dest

ret

pushg rA

popg rA

13

Y86-64 Instructions

halt

nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovg D (rB), rA
Opg rA, B

jXX Dest

call Dest

ret
pushqg rA

popg rA

[Jmp
Jjle
71
Jje
Jne

jge

Kjg

13

Y86-64 Instructions

halt

nop

cmovXX rA, rB

| 4
irmovg V, rB addg

rmmovqg A, D (rB) subg

mrmovg D (rB), rA andqg

OPg rA, B X0rqg

jXX Dest

call Dest

ret
pushg rA

popg rA

[Jmp
Jjle
71
Jje
Jne

jge

Kjg

13

Y86-64 Instructions

halt
nop
cmovXX rA, rB

irmovg V, rB

rmmovqg rA, D (rB)

mrmovg D (rB),
Opg rA, B

jXX Dest

rA

addg

subg

andg

xXorqg

call Dest

ret
pushqg rA

popg rA

[rrmovqg
cmovle
cmovl
cmove
cmovne

cmovge

[Jmp
Jjle
71
Jje
Jne

jge

Kjg

Kcmovg

13

Y86-64 Instructions

halt
nop
cmovXX rA, rB

irmovg V, rB

rmmovqg rA, D (rB)

mrmovg D (rB),
Opg rA, B

jXX Dest

rA

How to encode them in bits?

addg

subg

andg

xXorq

call Dest

ret
pushqg rA

popg rA

[rrmovqg
cmovle
cmovl
cmove
cmovne

cmovge

[Jmp
Jjle
71
Jje
Jne

jge

Kjg

Kcmovg

13

Encoding Operands

halt

nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovg D (rB), rA
Opg rA, B

jXX Dest

call Dest

ret

pushg rA

popg rA

(
addqg

subqg

andqg

{ -

xXorq

\.
[Jmp
Jle

J1

Jne
jge

&jg

[rrmovq
cmovle
cmovl
cmove
cmovne

cmovge

&cmovg

e 27 Instructions, so need 5 bits
for encoding the operand

14

Encoding Operands

halt

nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovg D (rB), rA
Opg rA, B

jXX Dest

call Dest

ret

pushg rA

popg rA

(
addqg

subqg

andqg

{ -

xXorq

\.
[Jmp
Jle

J1

Jne
jge

&jg

[rrmovq
cmovle
cmovl
cmove
cmovne

cmovge

Kcmovg

e 27 Instructions, so need 5 bits
for encoding the operand

e Or: group similar instructions,
use one opcode for them, and
then use one more bit to
indicate specific instructions
within a group.

14

Encoding Operands

halt

nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovg D (rB), rA
Opg rA, B

jXX Dest

call Dest

ret

pushg rA

popg rA

(
addqg

subqg

andqg

xXorq

\
[Jmp
Jle
31
=
Jne
Jge

&jg

4

[rrmovq
cmovle
cmovl
cmove
cmovne

cmovge

&cmovg

e 27 Instructions, so need 5 bits
for encoding the operand

e Or: group similar instructions,
use one opcode for them, and
then use one more bit to
indicate specific instructions
within a group.

* E£.9., 12 categories, so 4 bits

14

Encoding Operands

oy

halt

nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovg D (rB), rA
Opg rA, B

jXX Dest

call Dest

ret

pushg rA

popg rA

[Jmp

Jle

J1

Jne
jge

&jg

[rrmovq
cmovle
cmovl
cmove
cmovne

cmovge

&cmovg

e 27 Instructions, so need 5 bits
for encoding the operand

e Or: group similar instructions,
use one opcode for them, and
then use one more bit to
indicate specific instructions
within a group.

* E£.9., 12 categories, so 4 bits

e There are four instructions within
the OPg category, so additional
2 bits. Similarly, 3 more bits for
JXX and cmovXX, respectively.

14

Encoding Operands

oy

halt

nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovg D (rB), rA
Opg rA, B

jXX Dest

call Dest

ret

pushg rA

popg rA

[Jmp

Jle
jl

$
Jne
Jge

&jg

[rrmovq
cmovle
cmovl
cmove
cmovne

cmovge

&cmovg

e 27 Instructions, so need 5 bits
for encoding the operand

e Or: group similar instructions,
use one opcode for them, and
then use one more bit to
indicate specific instructions
within a group.

* E£.9., 12 categories, so 4 bits

e There are four instructions within
the OPg category, so additional
2 bits. Similarly, 3 more bits for
JXX and cmovXX, respectively.

e Which one is better???

14

Encoding

Byte

halt

nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovg D (rB), rA
Opg rA, B

jXX Dest

call Dest

ret

pushg rA

popg rA

0

Operands

0

0

1

0

fn

0

0

0

fn

fn

- 5 6 7 8 9

* Design decision chosen by the textbook
authors (don’t have to be this way!)

* Use 4 bits to encode the instruction
category

* Another 4 bits to encode the specific
instructions within a category

e SO 1 bytes for encoding operand

* |s this better than the alternative of using
5 bits without classifying instructions?

* Trade-offs.

15

Encoding Registers

Each register has 4-bit ID
« Same encoding as in x86-64
« Register ID 15 (0xF) indicates “no register”

Srax 0 %r8 8
srex 1 %r9 9
Srdx 2 %$rl0 A
$rbx 3 $rll B
3rsp 4 %rl2 Cc
%rbp 5 %$rl3 D
grsi 6 %rl4 E
$rdi 7 No Register| F

Encoding

Byte

halt

nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovg D (rB), rA
Opg rA, B

jXX Dest

call Dest

ret

pushg rA

popg rA

egisters

0 1 2 3
00

110

2 | fnjrA | rB
310]F |(rB
410 |rA|rB
510|rA|rB
6 [fn|rA |rB
7 | fn

810

910
A|O|rA| F
B|OJrA|F

17

Instruction Example

Addition Instruction

addg rA, rB 6

rA

rB

« Add value in register rA to that in register rB

 Store result in register rB

e Set condition codes based on result

e €.0.,, addg Srax, srsi

« Two-byte encoding

Encoding: 60 06

» First indicates instruction type
« Second gives source and destination registers

18

Instruction Example

Addition Instruction

/ Assembly Form

7
addg rA, rB 6| 0|rA|rB

« Add value in register rA to that in register rB
 Store result in register rB

e Set condition codes based on result
e 6.0.,, addg %rax,%rsi Encoding: 60 06

« Two-byte encoding
» First indicates instruction type
« Second gives source and destination registers

18

Instruction Example

Addition Instruction

/

addg rA, rB 6|0]|rA

rB

Assembly Form
/ / Encoded Representation

« Add value in register rA to that in register rB

 Store result in register rB

e Set condition codes based on result

e €.0.,, addg Srax, srsi

« Two-byte encoding

Encoding: 60 06

» First indicates instruction type
« Second gives source and destination registers

18

Arithmetic and Logical Operations

Add

addqg rA, rB 6 rA\rB
Subtract (rA from rB)

subg rA, rB 6 rA\rB
And

andq rA, rB 6 rA(rB
Exclusive-Or

xorq rA, rB 6 rA(rB

« Refer to generically as “opg”

* Encodings differ only by “function
code”
» Low-order 4 bytes in first instruction
word

» Set condition codes as side effect

19

Arithmetic and Logical Operations

Function Code

Add /

addg rA, rB 6| 0|rA|rB
Subtract (rA from rB)

subg rA, rB 6| 1|rA|rB
And

andg rA, rB 6| 2|rA|rB
Exclusive-Or

xorq rA, rB 6| 3|rA|rB

« Refer to generically as “opg”

* Encodings differ only by “function
code”
» Low-order 4 bytes in first instruction
word

» Set condition codes as side effect

19

Arithmetic and Logical Operations

Instruction Code

Function Code

Add \ /

addg rA, rB 6| 0|rA|rB
Subtract (rA from rB)

subg rA, rB 6| 1|rA|rB
And

andg rA, rB 6| 2|rA|rB
Exclusive-Or

xorq rA, rB 6| 3|rA|rB

« Refer to generically as “opg”

* Encodings differ only by “function
code”
» Low-order 4 bytes in first instruction
word

» Set condition codes as side effect

19

Move Instructions

Byte 0 1
halt 010

nop 110
cmovXX rA, rB 2 | fn|rA | rB
irmovg V, rB 310]F |(rB
rmmovqg rA, D (rB) 4 |10 |rA|rB
mrmovg D((rB), rA {5 | 0 |rA|rB
Opg rA, B 6 [fn|rA|rB
jXX Dest 7 | fn

call Dest 810

ret 910
pushg rA A|lOJrA|F
popqg rA B|OJ|rA|F

2

3

20

Move Instructions

Byte 0 1
halt 010

nop 110
cmovXX rA, rB 2 | fn|rA | rB
irmovg V, rB 310]F |(rB
rmmovqg rA, D (rB) 4 |10 |rA|rB
mrmovg D((rB), rA {5 | 0 |rA|rB
Opg rA, B 6 [fn|rA|rB
jXX Dest 7 | fn

call Dest 810

ret 910
pushg rA A|lOJrA|F
popqg rA B|OJ|rA|F

2

3

irmovg $0xabcd, %$rdx

20

Move Instructions

Byte 0 1 2 3
halt 010

nop 110
cmovXX rA, rB 2 | fn|rA | rB
irmovg V, rB 310]F |(rB
rmmovqg rA, D (rB) 410 |rA|rB
mrmovg D((rB), rA {5 | 0 |rA|rB
Opg rA, B 6 [fn|rA|rB
jXX Dest 7 | fn

call Dest 810

ret 910

pushg rA A|lOJrA|F
popqg rA B|OJ|rA|F

20

Move Instructions

Byte 0 1 2 3 4 5 6 7
halt 010

nop 110

cmovXX rA, rB 2 | fn|rA | rB

irmovg V, rB 310]F |(rB \Y
rmmovqg rA, D (rB) 410 |rA|rB rmmovqg %rsi,0x4lc(%rsp)
mrmovg D((rB), rA {5 | 0 |rA|rB

Opg rA, B 6 [fn|rA|rB

jXX Dest 7 | fn

call Dest 810

ret 910

pushg rA A|lOJrA|F

popqg rA B|OJ|rA|F

20

Move Instructions

Byte 0 1 2 3
halt 010

nop 110
cmovXX rA, rB 2 | fn|rA | rB
irmovg V, rB 310]F |(rB
rmmovqg rA, D (rB) 410 |rA|rB
mrmovg D((rB), rA {5 | 0 |rA|rB
Opg rA, B 6 [fn|rA|rB
jXX Dest 7 | fn

call Dest 810

ret 910

pushg rA A|lOJrA|F
popqg rA B|OJ|rA|F

20

Move Instructions

Byte 0 1 2 3 4 5 6 7
halt 00

nop 110

cmovXX rA, rB 2 | fn|rA | rB

irmovg V, rB 310|F |rB Vv
rmmovqg rA, D (rB) 410 |rA|rB D
mrmovg D((rB), rA {5 | 0 |rA|rB mrmovq -12 (%$rbp) ,$rcx
Opg rA, B 6 [fn|rA|rB

jXX Dest 7 | fn

call Dest 810

ret 910

pushg rA A|lOJrA|F

popqg rA B|OJ|rA|F

20

Move Instructions

Byte 0 1 2 3
halt 010

nop 110
cmovXX rA, rB 2 | fn|rA | rB
irmovg V, rB 310]F |(rB
rmmovqg rA, D (rB) 410 |rA|rB
mrmovg D((rB), rA {5 | 0 |rA|rB
Opg rA, B 6 [fn|rA|rB
jXX Dest 7 | fn

call Dest 810

ret 910

pushg rA A|lOJrA|F
popqg rA B|OJ|rA|F

20

Move Instructions

Byte 0 1 2 3 4 5 6 7 8 9

halt 0] 0

hop 5 The instruction length limits the
Immediate value and displacement.

cmovXX rA, rB 2 | fn|rA | rB

irmovg V, rB 310|F |rB Y%

rmmovqg rA, D (rB) 410 |rA|rB D

mrmovg D (rB), rA 510 |rA|rB D

Opg rA, B 6 [fn|rA|rB

jXX Dest 7 | fn

call Dest 8 |0

ret 910

pushg rA A|lOJrA|F

popqg rA B|OJ|rA|F

20

Move Instruction Examples

Encoding:

Encoding:

Encoding:

Encoding:

Y86-64

irmovqg $0xabcd, $%$rdx

30 82 cd ab 00 00 00 00 00 0O

rrmovq 3%rsp, 5%rbx

20 43

mrmovqg -12 (%rbp) ,%$rcx

50 15 f4 ff ff f£f ff f£f ff ff

rmmovqg %rsi,Ox4lc(%rsp)

40 64 1c 04 00 00 00 0O 00 0O

21

Jump/Call Instructions

Byte

halt

nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovg D (rB), rA

Opg rA, B

jXX Dest

call Dest

ret
pushqg rA

popg rA

0 1 2 3 4
00

110

2 | fnjrA | rB
310]F |(rB
410 |rA|rB
510|rA|rB
6 [fn|rA |rB
7 | fn

810

910
A|O|rA| F
B|OJrA|F

22

Jump/Call Instructions

Byte

halt

nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovg D (rB), rA

Opg rA, B

jXX Dest

call Dest

ret
pushqg rA

popg rA

0 1 2 3 4
00

110

2 | In|rA|rB

310]F|rB

410 |rA|rB

510 |rA|rB

6 |fn]rA B

7 | fn jle .14
810

910

A|O|JrA|F

B|O|rA|F

22

Jump/Call Instructions

Byte

halt

nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovg D (rB), rA

Opg rA, B

jXX Dest

call Dest

ret
pushqg rA

popg rA

0

0

1

1

2

3 - 5 o L 8 9

The assembly would assume a start
address of the program, and then calculates
the address of each instruction.

2 | In|rA|rB

310]F|rB \Y
410 |rA|rB D
510 |rA|rB D
6 |fn]rA B

7 | fn jle .14

810

910

A|O|JrA|F

B|O|rA|F

22

Jump/Call Instructions

Byte

halt

nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovg D (rB), rA

Opg rA, B

jXX Dest

call Dest

ret
pushqg rA

popg rA

0

0

1

1

2

3 - 5 o 7 8 9

The assembly would assume a start
address of the program, and then calculates
the address of each instruction.

2 | In|rA|rB

310]F|rB \Y

410 |rA|rB D

510 |rA|rB D

6 |fn]rA B

7 | fn Dest (essentially the target address)
810

910

A|O|rA|F

B|O|rA|F

22

Jump/Call Instructions

Byte

halt

nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovg D (rB), rA

Opg rA, B

jXX Dest

call Dest

ret
pushqg rA

popg rA

0

0

1

1

2

3 - 5 o 7 8 9

The assembly would assume a start
address of the program, and then calculates
the address of each instruction.

2 | In|rA|rB

310]F|rB \Y

410 |rA|rB D

510 |rA|rB D

6 |fn]rA B

7 | fn Dest (essentially the target address)
810 call foo

910

A|O|rA|F

B|O|rA|F

22

Jump/Call Instructions

Byte

halt

nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovg D (rB), rA

Opg rA, B

jXX Dest

call Dest

ret
pushqg rA

popg rA

0

0

1

1

2 3 4 5 o 7 8 9

The assembly would assume a start
address of the program, and then calculates
the address of each instruction.

2 | In|rA|rB

310]F|rB \Y

410 |rA|rB D

510 |rA|rB D

6 |fn]rA B

7 | fn Dest (essentially the target address)

810 Dest (essentially the start address of the callee)
910

A|O|rA|F

B|O|rA|F

22

Jump Instructions

Jump Unconditionally

jmp Dest |7 |0 Dest
Jump When Less or Equal

jleDest |7 |1 Dest
Jump When Less

j1 Dest 7|2 Dest
Jump When Equal

je Dest 7|3 Dest
Jump When Not Equal

jne Dest |7 | 4 Dest
Jump When Greater or Equal

jgeDest |7 |5 Dest
Jump When Greater

jg Dest 7|6 Dest

23

Subroutine Call and Return

call Dest

Dest

e Push address of next instruction onto stack

 Start executing instructions at Dest
 Like x86-64

ret

e Pop value from stack
» Use as address for next instruction
e | ike x86-64

24

One More Complication...

Byte
jXX Dest

call Dest

jle .L4

0 1 2 3 4 5 6 7
7 | fn Dest (essentially the target address)
810 Dest (essentially the start address of the callee)

call foo

25

One More Complication...

2 3 = 5 6 7

fn

Dest (essentially the target address)

jle .L4

Byte 0
jXX Dest 7
call Dest 8

Dest (essentially the start address of the callee)

call foo

e The instruction length limits how far you can jump/call functions. What if the jump
target has a very long address that can’t fit in 8 bytes?

25

One More Complication...

Byte 0 1 2 3 4 5 6 7 8 9
jxX Dest 7 | fn Dest (essentially the target address) jle .14
call Dest 810 Dest (essentially the start address of the callee) call foo

e The instruction length limits how far you can jump/call functions. What if the jump
target has a very long address that can’t fit in 8 bytes?

e One alternative: use a super long instruction encoding format.
* Simple to encode, but space inefficient (waste bits for jumps to short addr.)

25

One More Complication...

Byte 0 1 2 3 4 5 6 7 8 9
jxX Dest 7 | fn Dest (essentially the target address) jle .14
call Dest 810 Dest (essentially the start address of the callee) call foo

e The instruction length limits how far you can jump/call functions. What if the jump
target has a very long address that can’t fit in 8 bytes?

e One alternative: use a super long instruction encoding format.
* Simple to encode, but space inefficient (waste bits for jumps to short addr.)

e Another alternative: have different encodings for jump/call, one with a short Dest
field for short jumps and the other for long jumps.

25

One More Complication...

Byte 0 1 2 3 4 5 6 7 8 9
jxX Dest 7 | fn Dest (essentially the target address) jle .14
call Dest 8|0 Dest (essentially the start address of the callee) call foo

e The instruction length limits how far you can jump/call functions. What if the jump
target has a very long address that can’t fit in 8 bytes?

e One alternative: use a super long instruction encoding format.
* Simple to encode, but space inefficient (waste bits for jumps to short addr.)

e Another alternative: have different encodings for jump/call, one with a short Dest
field for short jumps and the other for long jumps.

e Or: encode the relative address, not the absolute address
* E.g., encode (.L4 - current address) in Dest

25

One More Complication...

Byte 0 1 2 3 4 5 6 7 8 9
jxX Dest 7 | fn Dest (essentially the target address) jle .14
call Dest 8|0 Dest (essentially the start address of the callee) call foo

e The instruction length limits how far you can jump/call functions. What if the jump
target has a very long address that can’t fit in 8 bytes?

e One alternative: use a super long instruction encoding format.
* Simple to encode, but space inefficient (waste bits for jumps to short addr.)

e Another alternative: have different encodings for jump/call, one with a short Dest
field for short jumps and the other for long jumps.

e Or: encode the relative address, not the absolute address
* E.g., encode (.L4 - current address) in Dest

» Better yet, combines the above two ideas: short relative jump and long relative
jump. This is what x86 and many other ISAs do. Elegant design.

25

One More Complication...

Byte 0 1 2 3 4 5 6 7 8 9
jxX Dest 7 | fn Dest (essentially the target address) jle .14
call Dest 8|0 Dest (essentially the start address of the callee) call foo

e The instruction length limits how far you can jump/call functions. What if the jump
target has a very long address that can’t fit in 8 bytes?

e One alternative: use a super long instruction encoding format.
* Simple to encode, but space inefficient (waste bits for jumps to short addr.)

e Another alternative: have different encodings for jump/call, one with a short Dest
field for short jumps and the other for long jumps.

e Or: encode the relative address, not the absolute address
* E.g., encode (.L4 - current address) in Dest

» Better yet, combines the above two ideas: short relative jump and long relative
jump. This is what x86 and many other ISAs do. Elegant design.

e What if you want to jump really far away from the current instruction?

e Alternatives: indirect jump, use a combination of absolute + relative addresses
(“Far jumps” in x86).

25

Miscellaneous Instructions

nop 10

« Don’t do anything

halt 0|0

e Stop executing instructions
« Usually can’t be executed in the user mode, only by the OS
« Encoding ensures that program hitting memory initialized to zero will halt

26

How Does An Assemble Work?

* Translates assembly code to binary-encode

e Reads assembly program line by line, and translates according
to the instruction format defined by an ISA

Add

addqg rA, rB 6| 0|rA|rB

* |t sometimes needs to make two passes on the assembly
program to resolve forward references

e E.g., forward branch target address

Jump Unconditionally

jmp Dest |7 | 0 Dest

Variable Length Instructions

28

Variable Length Instructions

e X86 (and Y86) is a variable length ISA (1 to 15 bytes), where
different instructions have different lengths.

28

http://www.c-jump.com/CIS77/CPU/x86/lecture.html

Variable Length Instructions

e X86 (and Y86) is a variable length ISA (1 to 15 bytes), where
different instructions have different lengths.

* There are fixed length ISAs: all instructions have the same length

28

http://www.c-jump.com/CIS77/CPU/x86/lecture.html

Variable Length Instructions

e X86 (and Y86) is a variable length ISA (1 to 15 bytes), where
different instructions have different lengths.

* There are fixed length ISAs: all instructions have the same length

* ARM'’s ISA for micro-controllers have a 4-bit ISA. Very Long Instruction Word
(VLIW) ISAs have instructions that are hundreds of bytes long.

28

http://www.c-jump.com/CIS77/CPU/x86/lecture.html

Variable Length Instructions

e X86 (and Y86) is a variable length ISA (1 to 15 bytes), where
different instructions have different lengths.
* There are fixed length ISAs: all instructions have the same length

* ARM'’s ISA for micro-controllers have a 4-bit ISA. Very Long Instruction Word
(VLIW) ISAs have instructions that are hundreds of bytes long.

* Or you can have a combination of both: e.g., 16-bit ISA with 32-bit extensions
(e..g, ARM Thumb-extension).

28

http://www.c-jump.com/CIS77/CPU/x86/lecture.html

Variable Length Instructions

e X86 (and Y86) is a variable length ISA (1 to 15 bytes), where
different instructions have different lengths.
* There are fixed length ISAs: all instructions have the same length

* ARM'’s ISA for micro-controllers have a 4-bit ISA. Very Long Instruction Word
(VLIW) ISAs have instructions that are hundreds of bytes long.

* Or you can have a combination of both: e.g., 16-bit ISA with 32-bit extensions
(e..g, ARM Thumb-extension).

e Advantages of variable length ISAs

28

http://www.c-jump.com/CIS77/CPU/x86/lecture.html

Variable Length Instructions

e X86 (and Y86) is a variable length ISA (1 to 15 bytes), where
different instructions have different lengths.
* There are fixed length ISAs: all instructions have the same length

* ARM'’s ISA for micro-controllers have a 4-bit ISA. Very Long Instruction Word
(VLIW) ISAs have instructions that are hundreds of bytes long.

* Or you can have a combination of both: e.g., 16-bit ISA with 32-bit extensions
(e..g, ARM Thumb-extension).

e Advantages of variable length ISAs

* More compact. Some instructions do not need that many bits. (Actually what'’s
the optimal way of encoding instructions in a variable length ISA?)

28

http://www.c-jump.com/CIS77/CPU/x86/lecture.html

Variable Length Instructions

e X86 (and Y86) is a variable length ISA (1 to 15 bytes), where
different instructions have different lengths.

* There are fixed length ISAs: all instructions have the same length

* ARM'’s ISA for micro-controllers have a 4-bit ISA. Very Long Instruction Word
(VLIW) ISAs have instructions that are hundreds of bytes long.

* Or you can have a combination of both: e.g., 16-bit ISA with 32-bit extensions
(e..g, ARM Thumb-extension).

e Advantages of variable length ISAs

* More compact. Some instructions do not need that many bits. (Actually what'’s
the optimal way of encoding instructions in a variable length ISA?)

* Can have arbitrary number of instructions: easy to add new inst.

28

http://www.c-jump.com/CIS77/CPU/x86/lecture.html

Variable Length Instructions

e X86 (and Y86) is a variable length ISA (1 to 15 bytes), where
different instructions have different lengths.

* There are fixed length ISAs: all instructions have the same length

* ARM'’s ISA for micro-controllers have a 4-bit ISA. Very Long Instruction Word
(VLIW) ISAs have instructions that are hundreds of bytes long.

* Or you can have a combination of both: e.g., 16-bit ISA with 32-bit extensions
(e..g, ARM Thumb-extension).

e Advantages of variable length ISAs

* More compact. Some instructions do not need that many bits. (Actually what'’s
the optimal way of encoding instructions in a variable length ISA?)

* Can have arbitrary number of instructions: easy to add new inst.
* What is the down side?

28

http://www.c-jump.com/CIS77/CPU/x86/lecture.html

Variable Length Instructions

e X86 (and Y86) is a variable length ISA (1 to 15 bytes), where
different instructions have different lengths.

* There are fixed length ISAs: all instructions have the same length

* ARM'’s ISA for micro-controllers have a 4-bit ISA. Very Long Instruction Word
(VLIW) ISAs have instructions that are hundreds of bytes long.

* Or you can have a combination of both: e.g., 16-bit ISA with 32-bit extensions
(e..g, ARM Thumb-extension).

e Advantages of variable length ISAs

* More compact. Some instructions do not need that many bits. (Actually what'’s
the optimal way of encoding instructions in a variable length ISA?)

* Can have arbitrary number of instructions: easy to add new inst.

* What is the down side?
* Fetch and decode are harder to implement. More on this later.

28

http://www.c-jump.com/CIS77/CPU/x86/lecture.html

Variable Length Instructions

e X86 (and Y86) is a variable length ISA (1 to 15 bytes), where
different instructions have different lengths.
* There are fixed length ISAs: all instructions have the same length

* ARM'’s ISA for micro-controllers have a 4-bit ISA. Very Long Instruction Word
(VLIW) ISAs have instructions that are hundreds of bytes long.

* Or you can have a combination of both: e.g., 16-bit ISA with 32-bit extensions
(e..g, ARM Thumb-extension).

e Advantages of variable length ISAs

* More compact. Some instructions do not need that many bits. (Actually what'’s
the optimal way of encoding instructions in a variable length ISA?)

* Can have arbitrary number of instructions: easy to add new inst.

* What is the down side?
* Fetch and decode are harder to implement. More on this later.

e A good writeup showing some of the complexity involved:

28

http://www.c-jump.com/CIS77/CPU/x86/lecture.html

So far in 252...

C Program

i

Assembly
Program

l

Instruction Set Architecture
|

int, float
1f, else
+, -, >>

movqg $rsi, %Srax
imulg %rdx, S%Srax
Jmp .done

ret, call
movq, addqg
jmp, jne

i

/ _—— — — i_; -
/
[

Processor
Microarchitecture

X\ Circuits

Logic gates

Transistors

29

So far in 252...

C Program

l

Assembly
Program

l

Instruction Set Architecture

int, float
1f, else
+, -, >>

movqg $rsi, %Srax
imulg %rdx, S%Srax
Jmp .done

ret, call

Processor
Microarchitecture

K\ Circuits

and their bit
movq, addqg .
. . encodings.
jmp, jne
Logic gates

Transistors

29

Today: Circuits Basics

e Transistors

30

Overview of Circuit-Level Design

 Fundamental Hardware Requirements

« Communication: How to get values from one place to another. Mainly
three electrical wires.

* Computation: transistors. Combinational logic.
* Storage: transistors. Sequential logic.
e Circuit design is often abstracted as logic design

31

Digital Signals

— 0 — I 1 1 f— 0 —

Voltage

Time
e Extract discrete values from continuous voltage signal
e Simplest version: 1-bit signal
¢ Either high range (1) or low range (0)
¢ \With guard range between them

e Not strongly affected by noise or low quality circuit elements
e Can make circuits simple, small, and fast

32

Basic Building Block: Transistors

21

Basic Building Block: Transistors

MQOS = Metal Oxide Semiconductor
* two types: n-type and p-type

21

Basic Building Block: Transistors

MQOS = Metal Oxide Semiconductor
* two types: n-type and p-type

n-type (NMOS)

Terminal #2 must be
connected to GND (0V).

21

Basic Building Block: Transistors

MQOS = Metal Oxide Semiconductor
* two types: n-type and p-type

n-type (NMOS)
* when Gate has positive voltage,
short circuit between #1 and #2

(switch closed)

Gate = 1

Terminal #2 must be
connected to GND (0V).

21

Basic Building Block: Transistors

MQOS = Metal Oxide Semiconductor
* two types: n-type and p-type

n-type (NMOS)

* when Gate has positive voltage,
short circuit between #1 and #2
(switch closed)

* when Gate has zero voltage,

open circuit between #1 and #2
(switch open)

Gate = 1

Terminal #2 must be
connected to GND (0V).

Gate =0

#1

#2

21

Basic Building Block: Transistors

p-type is complementary to n-type (PMOS)
* when Gate has positive voltage,

open circuit between #1 and #2 #1

(switch open) l
* when Gate has zero voltage,

short circuit between #1 and #2

(switch closed)

#2

Gate = 1

Gate =0

Terminal #1 must be
connected to +1.2V

24

CMOS Circuit

e Complementary MOS
e Uses both n-type and p-type MOS transistors

K

Inverter (NOT Gate)

— .2V
—d

In & t+— Out
-

 +0.0V

Inverter (NOT Gate)

d

-

— H2V
| PMOS

In —

_I

— Out

Y +0.0V

2R

Inverter (NOT Gate)

=

| .

— H2V
| PMOS

In —

— Out

L,

\

| NMOS
N 0.0V

26

Inverter (NOT Gate)

d

In —

_I

- +1.2V

In=0—4

T— +1.2V

—(: I P-type

+— Out=1

N-type

2R

Inverter (NOT Gate) — +1.2V

T "2V —|:P-type
—Ci INn=0— ¢+— Out=1
| e
In — t— Out vpe
| v
l +] V
0.0 —. ! P-type

Inverter (NOT Gate)

d

In

- +1.2V

T— +1.2V

—(: I P-type

INn=0—4 ¢+— Out=1

2R

NOR Gate (NOT + OR)

v A4

Note: Serial structure on top, parallel on bottom.

A=0 e
B=1-1+——_:P
€=0
— v — N
R

A B C

0 0f 1

0o 1| o

1 0| 0

1 1] 0

7

Basic Logic Gates

A——{:>xb——ﬂ
A) >—ais j ~(A|B)

OR NOR

g:}A& B g:}~(A& B)

AND NAND

28

