
CSC 252: Computer Organization 
 Spring 2020: Lecture 15

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Carnegie Mellon

Announcements
• You can choose pass/fail or request a letter grade (there is a

deadline; you should have received an email from the school)

• Mid-term solution will be posted tonight

• Mid-term grades will be posted next week

• Lectures will be recorded and posted online

• Office hours will be held through Zoom; links on the website

!2

Carnegie Mellon

!3

So far in 252…
C Program

Assembly Program

Processor

Microarchitecture

Circuits

Instruction Set Architecture

Compiler

Assembler

(Mostly) Manual Process

Logic Synthesis Tools

Carnegie Mellon

!3

So far in 252…
C Program

Assembly Program

Processor

Microarchitecture

Circuits

Instruction Set Architecture

Compiler

Assembler

(Mostly) Manual Process

Logic Synthesis Tools

Carnegie Mellon

Optimizing Code Transformation

• Hardware/Microarchitecture Independent Optimizations

• Code motion/precomputation

• Strength reduction

• Sharing of common subexpressions

• Optimization Blockers

• Procedure calls

• Exploit Hardware Microarchitecture

!4

Carnegie Mellon

Generally Useful Optimizations

• Optimizations that you or the compiler should do regardless of
processor

• Code Motion

• Reduce frequency with which computation performed

• If it will always produce same result
• Especially moving code out of loop

!5

 long j;
 int ni = n*i;
 for (j = 0; j < n; j++)
 a[ni+j] = b[j];

void set_row(double *a, double *b,
 long i, long n)
{
 long j;
 for (j = 0; j < n; j++)
 a[n*i+j] = b[j];
}

Carnegie Mellon

Compiler-Generated Code Motion (-O1)

!6

set_row:
 testq %rcx, %rcx # Test n
 jle .L1 # If 0, goto done
 imulq %rcx, %rdx # ni = n*i
 leaq (%rdi,%rdx,8), %rdx # rowp = A + ni*8
 movl $0, %eax # j = 0
.L3: # loop:
 movsd (%rsi,%rax,8), %xmm0 # t = b[j]
 movsd %xmm0, (%rdx,%rax,8) # M[A+ni*8 + j*8] = t
 addq $1, %rax # j++
 cmpq %rcx, %rax # j:n
 jne .L3 # if !=, goto loop
.L1: # done:
 rep ; ret

void set_row(double *a, double *b,
 long i, long n)
{
 long j;
 for (j = 0; j < n; j++)
 a[n*i+j] = b[j];
}

 long j;
 int ni = n*i;
 for (j = 0; j < n; j++)
 a[ni+j] = b[j];

Carnegie Mellon

Reduction in Strength
• Replace costly operation with simpler one

• Shift, add instead of multiply or divide

• 16*x	 -->	 x << 4

• Depends on cost of multiply or divide instruction

• On Intel Nehalem, integer multiply requires 3 CPU cycles

• Recognize sequence of products

!7

Carnegie Mellon

Common Subexpression Elimination
• Reuse portions of expressions

• GCC will do this with –O1

!8

/* Sum neighbors of i,j */
up = val[(i-1)*n + j];
down = val[(i+1)*n + j];
left = val[i*n + j-1];
right = val[i*n + j+1];
sum = up + down + left + right;

long inj = i*n + j;
up = val[inj - n];
down = val[inj + n];
left = val[inj - 1];
right = val[inj + 1];
sum = up + down + left + right;

3 multiplications: i*n, (i–1)*n, (i+1)*n 1 multiplication: i*n

leaq 1(%rsi), %rax # i+1
leaq -1(%rsi), %r8 # i-1
imulq %rcx, %rsi # i*n
imulq %rcx, %rax # (i+1)*n
imulq %rcx, %r8 # (i-1)*n
addq %rdx, %rsi # i*n+j
addq %rdx, %rax # (i+1)*n+j
addq %rdx, %r8 # (i-1)*n+j

imulq %rcx, %rsi # i*n
addq %rdx, %rsi # i*n+j
movq %rsi, %rax # i*n+j
subq %rcx, %rax # i*n+j-n
leaq (%rsi,%rcx), %rcx # i*n+j+n

Carnegie Mellon

Today: Optimizing Code Transformation

• Hardware/Microarchitecture Independent Optimizations

• Code motion/precomputation

• Strength reduction

• Sharing of common subexpressions

• Optimization Blockers

• Procedure calls

• Exploit Hardware Microarchitecture

!9

Carnegie Mellon

Optimization Blocker #1: Procedure Calls

• Procedure to Convert String to Lower Case

void lower(char *s)
{
 size_t i;
 for (i = 0; i < strlen(s); i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
}

!10

Carnegie Mellon

Calling Strlen

• Strlen performance

• Has to scan the entire length of a string, looking for null character.
• O(N) complexity

• Overall performance

• N calls to strlen
• Overall O(N2) performance

!11

size_t strlen(const char *s)
{
 size_t length = 0;
 while (*s != '\0') {
 s++;
 length++;
 }
 return length;
}

Carnegie Mellon

Improving Performance
• Move call to strlen outside of loop

• Since result does not change from one iteration to another

• Form of code motion

!12

void lower(char *s)
{
 size_t i;
 size_t len = strlen(s);
 for (i = 0; i < len; i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
}

Carnegie Mellon

Optimization Blocker: Procedure Calls
Why couldn’t compiler move
strlen out of loop?

• Procedure may have side

effects, e.g., alters global
state each time called

• Function may not return
same value for given
arguments

!13

void lower(char *s)
{
 size_t i;
 for (i = 0; i < strlen(s); i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
}

size_t total_lencount = 0;
size_t strlen(const char *s)
{
 size_t length = 0;
 while (*s != '\0') {
 s++; length++;
 }
 total_lencount += length;
 return length;
}

Carnegie Mellon

Optimization Blocker: Procedure Calls

• Most compilers treat procedure call as a black box

• Assume the worst case, weak optimizations near them
• There are interprocedural optimizations (IPO), but they are expensive
• Sometimes the compiler doesn’t have access to source code of other

functions because they are object files in a library. Link-time optimizations
(LTO) comes into play, but are expensive as well.

!14

Carnegie Mellon

Optimization Blocker: Procedure Calls

• Most compilers treat procedure call as a black box

• Assume the worst case, weak optimizations near them
• There are interprocedural optimizations (IPO), but they are expensive
• Sometimes the compiler doesn’t have access to source code of other

functions because they are object files in a library. Link-time optimizations
(LTO) comes into play, but are expensive as well.

• Remedies:

• Use of inline functions
• Do your own code motion

!14

Carnegie Mellon

Optimization Blocker: Procedure Calls

• Most compilers treat procedure call as a black box

• Assume the worst case, weak optimizations near them
• There are interprocedural optimizations (IPO), but they are expensive
• Sometimes the compiler doesn’t have access to source code of other

functions because they are object files in a library. Link-time optimizations
(LTO) comes into play, but are expensive as well.

• Remedies:

• Use of inline functions
• Do your own code motion

!14

inline void swap(int *m, int *n) {
 int tmp = *m;
 *m = *n;
 *n = tmp;
}

void foo () {
 swap(&x, &y);
}

void foo () {
 int tmp = x;
 x = y;
 y = tmp;
}

Carnegie Mellon

Today: Optimizing Code Transformation

• Overview

• Hardware/Microarchitecture Independent Optimizations

• Code motion/precomputation

• Strength reduction

• Sharing of common subexpressions

• Optimization Blockers

• Procedure calls

• Exploit Hardware Microarchitecture

!15

Carnegie Mellon

Exploiting Instruction-Level Parallelism

• Hardware can execute multiple instructions in parallel

• Pipeline is a classic technique

• Performance limited by control/data dependencies

• Simple transformations can yield dramatic performance improvement

• Compilers often cannot make these transformations
• Lack of associativity and distributivity in floating-point arithmetic

!16

Carnegie Mellon

Baseline Code

!17

.L519:
 imulq (%rax,%rdx,4), %ecx
 addq $1, %rdx # i++
 cmpq %rdx, %rbp # Compare length:i
 jg .L519 # If >, goto Loop

for (i = 0; i < length; i++) {
 t = t * d[i];
 *dest = t;
}

Overhead

Real work

Carnegie Mellon

Loop Unrolling (2x1)

• Perform 2x more useful work per iteration

• Reduce loop overhead (comp, jmp, index dec, etc.)

!18

long limit = length-1;
long i;
/* Combine 2 elements at a time */
for (i = 0; i < limit; i+=2) {
 x = (x * d[i]) * d[i+1];
}

/* Finish any remaining elements */
for (; i < length; i++) {
 x = x * d[i];
}
*dest = x;

Carnegie Mellon

Loop Unrolling with Separate Accumulators

!19

long limit = length-1;
long i;
/* Combine 2 elements at a time */
for (i = 0; i < limit; i+=2) {
 x0 = x0 * d[i];
 x1 = x1 * d[i+1];
}

/* Finish any remaining elements */
for (; i < length; i++) {
 x0 = x0 * d[i];
}
*dest = x0 * x1;

Carnegie Mellon

Separate Accumulators

!20

*

*

x1 d1

d3

*

d5

*

d7

*

*

*

x0 d0

d2

*

d4

*

d6

 x0 = x0 * d[i];
 x1 = x1 * d[i+1];

• What changed:

• Two independent “streams” of

operations
• Reduce data dependency

Carnegie Mellon

Code Optimization Summary

• Three entities can optimize the program: programmer, compiler, and
hardware

• The best thing a programmer can do is to pick a good algorithm.
Compilers/hardware can’t do that in general.

• Quicksort: O(n log n) = K * n * log(n)

• Bubblesort: O(n^2) = K * n^2

• Algorithm choice decides overall complexity (big O), compiler/

hardware decides the constant factor in the big O notation

• Compiler and hardware implementations decide the K.

!21

Carnegie Mellon

Code Optimization Summary
• From a programmer’s perspective:

• What you know: the functionality/intention of your code; the inputs to the
program; all the code in the program

• What you might not know: the hardware details.
• From a compiler’s perspective:

• What you know: all the code in the program; (maybe) the hardware
details.

• What you might not know: the inputs to the program; the intention of the
code

• From the hardware’s perspective:

• What you know: the hardware details; some part of the code
• What you might not know: the inputs to the program; the intention of the

code
• The different perspectives indicate that different entities have different

responsibilities, limitations, and advantages in optimizing the code
!22

Carnegie Mellon

Code Optimization Summary

• Things that programmer/compilers can do

• Code motion/precomputation

• Strength reduction

• Sharing of common subexpressions

• Exploiting hardware microarchitecture

• Things that compilers can’t do but programmers can do

• Optimizing across function calls

!23

Carnegie Mellon

About Code Optimization

• Things that programmer/compilers can do

• Code motion/precomputation

• Strength reduction

• Sharing of common subexpressions

• Exploiting hardware microarchitecture

• Things that compilers can’t do but programmers can do

• Optimizing across function calls

!24

Carnegie Mellon

Another Example

!25

float foo(int x, int y)
{
 return pow(x, y) * 100 / log(x) * sqrt(y);
}

Carnegie Mellon

Another Example

• As a programmer, if you know what x and y will be, say 5, you could
direct return the results 23769.8 without having to the computation

!25

float foo(int x, int y)
{
 return pow(x, y) * 100 / log(x) * sqrt(y);
}

Carnegie Mellon

Another Example

• As a programmer, if you know what x and y will be, say 5, you could
direct return the results 23769.8 without having to the computation

• Compiler would have no idea

!25

float foo(int x, int y)
{
 return pow(x, y) * 100 / log(x) * sqrt(y);
}

Carnegie Mellon

Another Example

• As a programmer, if you know what x and y will be, say 5, you could
direct return the results 23769.8 without having to the computation

• Compiler would have no idea
• Except…Profile-guided optimizations:

!25

float foo(int x, int y)
{
 return pow(x, y) * 100 / log(x) * sqrt(y);
}

Carnegie Mellon

Another Example

• As a programmer, if you know what x and y will be, say 5, you could
direct return the results 23769.8 without having to the computation

• Compiler would have no idea
• Except…Profile-guided optimizations:

• Run the code multiple times using some sample inputs, and observe
the values of x and y (statistically).

!25

float foo(int x, int y)
{
 return pow(x, y) * 100 / log(x) * sqrt(y);
}

Carnegie Mellon

Another Example

• As a programmer, if you know what x and y will be, say 5, you could
direct return the results 23769.8 without having to the computation

• Compiler would have no idea
• Except…Profile-guided optimizations:

• Run the code multiple times using some sample inputs, and observe
the values of x and y (statistically).

• If let’s say 99% of the time, x = 2 and y = 5, what could the compiler
do then?

!25

float foo(int x, int y)
{
 return pow(x, y) * 100 / log(x) * sqrt(y);
}

Carnegie Mellon

Another Example

• As a programmer, if you know what x and y will be, say 5, you could
direct return the results 23769.8 without having to the computation

• Compiler would have no idea
• Except…Profile-guided optimizations:

• Run the code multiple times using some sample inputs, and observe
the values of x and y (statistically).

• If let’s say 99% of the time, x = 2 and y = 5, what could the compiler
do then?

!25

float foo(int x, int y)
{
 return pow(x, y) * 100 / log(x) * sqrt(y);
}

float foo(int x, int y)
{
 if (x == 2 && y == 5) return 23769.8;
 else return pow(x, y) * 100 / log(x) * sqrt(y);
}

!26

CPU

So far in 252…

PC
Register

File

Memory
Code
Data
Stack

Addresses

Data

InstructionsCondition
CodesALU

•We have been discussing the CPU microarchitecture

• Single Cycle, sequential implementation
• Pipeline implementation
• Resolving data dependency and control dependency

•What about memory?

Carnegie Mellon

Memory in a Modern System

!27

CORE 1

L2 C
A

C
H

E 0

SH
A

R
ED

 L3 C
A

C
H

E

D
R

A
M

 IN
TER

FA
C

E

CORE 0

CORE 2 CORE 3
L2 C

A
C

H
E 1

L2 C
A

C
H

E 2

L2 C
A

C
H

E 3

D
R

A
M

 M
odules

DRAM MEMORY
CONTROLLER

Carnegie Mellon

Ideal Memory

• Zero access time (latency)

• Infinite capacity

• Zero cost

• Infinite bandwidth (to support multiple accesses in parallel)

!28

Carnegie Mellon

The Problem

• Ideal memory’s requirements oppose each other

!29

Carnegie Mellon

The Problem

• Ideal memory’s requirements oppose each other

• Bigger is slower

!29

Carnegie Mellon

The Problem

• Ideal memory’s requirements oppose each other

• Bigger is slower
• Bigger ! Takes longer to determine the location

!29

Carnegie Mellon

The Problem

• Ideal memory’s requirements oppose each other

• Bigger is slower
• Bigger ! Takes longer to determine the location

• Faster is more expensive

!29

Carnegie Mellon

The Problem

• Ideal memory’s requirements oppose each other

• Bigger is slower
• Bigger ! Takes longer to determine the location

• Faster is more expensive
• Memory technology: Flip-flop vs. SRAM vs. DRAM vs. Disk vs.

Tape

!29

Carnegie Mellon

The Problem

• Ideal memory’s requirements oppose each other

• Bigger is slower
• Bigger ! Takes longer to determine the location

• Faster is more expensive
• Memory technology: Flip-flop vs. SRAM vs. DRAM vs. Disk vs.

Tape

• Higher bandwidth is more expensive

!29

Carnegie Mellon

The Problem

• Ideal memory’s requirements oppose each other

• Bigger is slower
• Bigger ! Takes longer to determine the location

• Faster is more expensive
• Memory technology: Flip-flop vs. SRAM vs. DRAM vs. Disk vs.

Tape

• Higher bandwidth is more expensive
• Need more banks, more ports, higher frequency, or faster

technology

!29

Carnegie Mellon

Memory Technology: D Flip-Flop (DFF)

�30

Q+

Q–

R

S

D

C

Data

Clock T
Trigger

• Very fast

• Very expensive to build

• 6 NOT gates (2 transistors / gate)
• 3 AND gates (3 transistors / gate)
• 2 OR gates (3 transistors / gate)
• 27 transistors in total for just one bit!!

Carnegie Mellon

Memory Technology: SRAM

!31

Carnegie Mellon

Memory Technology: SRAM

• Static random access memory

• Random access means you can supply an arbitrary address to the

memory and get a value back

• Two cross coupled inverters store a single bit

• Feedback path enables the stored value to persist in the “cell”
• 4 transistors for storage
• 2 transistors for access
• 6 transistors in total per bit

!31

Carnegie Mellon

Memory Technology: SRAM

• Static random access memory

• Random access means you can supply an arbitrary address to the

memory and get a value back

• Two cross coupled inverters store a single bit

• Feedback path enables the stored value to persist in the “cell”
• 4 transistors for storage
• 2 transistors for access
• 6 transistors in total per bit

!31

1

Carnegie Mellon

Memory Technology: SRAM

• Static random access memory

• Random access means you can supply an arbitrary address to the

memory and get a value back

• Two cross coupled inverters store a single bit

• Feedback path enables the stored value to persist in the “cell”
• 4 transistors for storage
• 2 transistors for access
• 6 transistors in total per bit

!31

1 0

Carnegie Mellon

Memory Technology: SRAM

• Static random access memory

• Random access means you can supply an arbitrary address to the

memory and get a value back

• Two cross coupled inverters store a single bit

• Feedback path enables the stored value to persist in the “cell”
• 4 transistors for storage
• 2 transistors for access
• 6 transistors in total per bit

!31

1 0

1

Carnegie Mellon

Memory Technology: SRAM

• Static random access memory

• Random access means you can supply an arbitrary address to the

memory and get a value back

• Two cross coupled inverters store a single bit

• Feedback path enables the stored value to persist in the “cell”
• 4 transistors for storage
• 2 transistors for access
• 6 transistors in total per bit

!31

row select

bi
tli

ne

_b
itl

in
e1 0

1

Carnegie Mellon

Memory Technology: SRAM

• Static random access memory

• Random access means you can supply an arbitrary address to the

memory and get a value back

• Two cross coupled inverters store a single bit

• Feedback path enables the stored value to persist in the “cell”
• 4 transistors for storage
• 2 transistors for access
• 6 transistors in total per bit

!31

row select

bi
tli

ne

_b
itl

in
e1 0

11 0

Carnegie Mellon

SRAM Array

�32

word line 0

word line 1

b0 b0 b1 b1 b2 b2 b3 b3

word line 2

word line 3

Column decoder / mux

Ro
w

 d
ec

od
er

Carnegie Mellon

Abstract View of SRAM

!33

Address
n

CE (chip enable)

WE (write enable)

k

Content

Carnegie Mellon

Memory Technology: DRAM

• Dynamic random access memory
• Capacitor charge state indicates stored value

• Whether the capacitor is charged or
discharged indicates storage of 1 or 0

• 1 capacitor

!34

Carnegie Mellon

Memory Technology: DRAM

• Dynamic random access memory
• Capacitor charge state indicates stored value

• Whether the capacitor is charged or
discharged indicates storage of 1 or 0

• 1 capacitor
• 1 access transistor

• Capacitors will leak!

!34

row enable

_b
itl

in
e

Carnegie Mellon

Memory Technology: DRAM

• Dynamic random access memory
• Capacitor charge state indicates stored value

• Whether the capacitor is charged or
discharged indicates storage of 1 or 0

• 1 capacitor
• 1 access transistor

• Capacitors will leak!
• DRAM cell loses charge over time

!34

row enable

_b
itl

in
e

Carnegie Mellon

Memory Technology: DRAM

• Dynamic random access memory
• Capacitor charge state indicates stored value

• Whether the capacitor is charged or
discharged indicates storage of 1 or 0

• 1 capacitor
• 1 access transistor

• Capacitors will leak!
• DRAM cell loses charge over time
• DRAM cell needs to be refreshed.

!34

row enable

_b
itl

in
e

Carnegie Mellon

Memory Technology: DRAM

• Dynamic random access memory
• Capacitor charge state indicates stored value

• Whether the capacitor is charged or
discharged indicates storage of 1 or 0

• 1 capacitor
• 1 access transistor

• Capacitors will leak!
• DRAM cell loses charge over time
• DRAM cell needs to be refreshed.
• Refresh takes time and power. When

refreshing can’t read the data. A major issue,
lots of research going on to reduce the refresh
overhead.

!34

row enable

_b
itl

in
e

Carnegie Mellon

DRAM Cell

�35 37

• Capacitor holding value
leaks, eventually you will
lose information (everything
turns to 0)

• How do you maintain the
values in DRAM?

• Refresh periodically
• A major source for power

consumption in DRAM

Carnegie Mellon

DRAM Cell

�35 37

• Capacitor holding value
leaks, eventually you will
lose information (everything
turns to 0)

• How do you maintain the
values in DRAM?

• Refresh periodically
• A major source for power

consumption in DRAM

Carnegie Mellon

DRAM Cell

�35 37

• Capacitor holding value
leaks, eventually you will
lose information (everything
turns to 0)

• How do you maintain the
values in DRAM?

• Refresh periodically
• A major source for power

consumption in DRAM

Carnegie Mellon

Latch vs. DRAM vs. SRAM

• DFF

• Fastest
• Low density (27 transistors per bit)
• High cost

• SRAM

• Faster access (no capacitor)
• Lower density (6 transistors per bit)
• Higher cost
• No need for refresh
• Manufacturing compatible with logic process (no capacitor)

• DRAM

• Slower access (capacitor)
• Higher density (1 transistor + 1 capacitor per bit)
• Lower cost
• Requires refresh (power, performance, circuitry)
• Manufacturing requires putting capacitor and logic together

!36

Carnegie Mellon

Nonvolatile Memories

!37

Carnegie Mellon

Nonvolatile Memories

• DFF, DRAM and SRAM are volatile memories

• Lose information if powered off.

!37

Carnegie Mellon

Nonvolatile Memories

• DFF, DRAM and SRAM are volatile memories

• Lose information if powered off.

• Nonvolatile memories retain value even if powered off

• Flash (~ 5 years)
• Hard Disk (~ 5 years)
• Tape (~ 15-30 years)
• DNA (centuries)

!37

Carnegie Mellon

Nonvolatile Memories

• DFF, DRAM and SRAM are volatile memories

• Lose information if powered off.

• Nonvolatile memories retain value even if powered off

• Flash (~ 5 years)
• Hard Disk (~ 5 years)
• Tape (~ 15-30 years)
• DNA (centuries)

!37

Carnegie Mellon

Nonvolatile Memories

• DFF, DRAM and SRAM are volatile memories

• Lose information if powered off.

• Nonvolatile memories retain value even if powered off

• Flash (~ 5 years)
• Hard Disk (~ 5 years)
• Tape (~ 15-30 years)
• DNA (centuries)

• Uses for Nonvolatile Memories

• Firmware (BIOS, controllers for disks, network cards, graphics accelerators,

security subsystems,…)
• Files in Smartphones, mp3 players, tablets, laptops
• Backup

!37

