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Announcements
• You can choose pass/fail or request a letter grade (there is a 

deadline; you should have received an email from the school)

• Mid-term solution will be posted tonight

• Mid-term grades will be posted next week

• Lectures will be recorded and posted online

• Office hours will be held through Zoom; links on the website
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So far in 252…
C Program

Assembly Program

Processor

Microarchitecture

Circuits

Instruction Set Architecture

Compiler

Assembler

(Mostly) Manual Process

Logic Synthesis Tools
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Optimizing Code Transformation

• Hardware/Microarchitecture Independent Optimizations

• Code motion/precomputation

• Strength reduction

• Sharing of common subexpressions


• Optimization Blockers

• Procedure calls


• Exploit Hardware Microarchitecture
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Generally Useful Optimizations

• Optimizations that you or the compiler should do regardless of 
processor


• Code Motion

• Reduce frequency with which computation performed 

• If it will always produce same result 
• Especially moving code out of loop
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    long j; 
    int ni = n*i; 
    for (j = 0; j < n; j++) 
 a[ni+j] = b[j];

void set_row(double *a, double *b, 
   long i, long n) 
{ 
    long j; 
    for (j = 0; j < n; j++) 
 a[n*i+j] = b[j]; 
}
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Compiler-Generated Code Motion (-O1)
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set_row: 
 testq %rcx, %rcx  # Test n 
 jle .L1   # If 0, goto done 
 imulq %rcx, %rdx  # ni = n*i 
 leaq (%rdi,%rdx,8), %rdx # rowp = A + ni*8 
 movl $0, %eax                 # j = 0 
.L3:           # loop: 
 movsd (%rsi,%rax,8), %xmm0     # t = b[j] 
 movsd %xmm0, (%rdx,%rax,8)    # M[A+ni*8 + j*8] = t 
 addq $1, %rax   # j++ 
 cmpq %rcx, %rax  # j:n 
 jne .L3   # if !=, goto loop 
.L1:           # done: 
 rep ; ret

void set_row(double *a, double *b, 
   long i, long n) 
{ 
    long j; 
    for (j = 0; j < n; j++) 
 a[n*i+j] = b[j]; 
}

    long j; 
    int ni = n*i; 
    for (j = 0; j < n; j++) 
 a[ni+j] = b[j];
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Reduction in Strength
• Replace costly operation with simpler one

• Shift, add instead of multiply or divide


• 16*x	 -->	 x << 4

• Depends on cost of multiply or divide instruction

• On Intel Nehalem, integer multiply requires 3 CPU cycles


• Recognize sequence of products
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Common Subexpression Elimination
• Reuse portions of expressions

• GCC will do this with –O1
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/* Sum neighbors of i,j */ 
up =    val[(i-1)*n + j  ]; 
down =  val[(i+1)*n + j  ]; 
left =  val[i*n     + j-1]; 
right = val[i*n     + j+1]; 
sum = up + down + left + right;

long inj = i*n + j; 
up =    val[inj - n]; 
down =  val[inj + n]; 
left =  val[inj - 1]; 
right = val[inj + 1]; 
sum = up + down + left + right;

3 multiplications: i*n, (i–1)*n, (i+1)*n 1 multiplication: i*n

leaq   1(%rsi), %rax  # i+1 
leaq   -1(%rsi), %r8  # i-1 
imulq  %rcx, %rsi     # i*n 
imulq  %rcx, %rax     # (i+1)*n 
imulq  %rcx, %r8      # (i-1)*n 
addq   %rdx, %rsi     # i*n+j 
addq   %rdx, %rax     # (i+1)*n+j 
addq   %rdx, %r8      # (i-1)*n+j

imulq %rcx, %rsi  # i*n 
addq %rdx, %rsi  # i*n+j 
movq %rsi, %rax  # i*n+j 
subq %rcx, %rax  # i*n+j-n 
leaq (%rsi,%rcx), %rcx # i*n+j+n
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Today: Optimizing Code Transformation

• Hardware/Microarchitecture Independent Optimizations

• Code motion/precomputation

• Strength reduction

• Sharing of common subexpressions


• Optimization Blockers

• Procedure calls


• Exploit Hardware Microarchitecture
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Optimization Blocker #1: Procedure Calls

• Procedure to Convert String to Lower Case

void lower(char *s) 
{ 
  size_t i; 
  for (i = 0; i < strlen(s); i++) 
    if (s[i] >= 'A' && s[i] <= 'Z') 
      s[i] -= ('A' - 'a'); 
}
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Calling Strlen

• Strlen performance

• Has to scan the entire length of a string, looking for null character. 
• O(N) complexity 

• Overall performance

• N calls to strlen 
• Overall O(N2) performance
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size_t strlen(const char *s) 
{ 
    size_t length = 0; 
    while (*s != '\0') { 
 s++;  
 length++; 
    } 
    return length; 
}
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Improving Performance
• Move call to strlen outside of loop

• Since result does not change from one iteration to another

• Form of code motion
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void lower(char *s) 
{ 
  size_t i; 
  size_t len = strlen(s); 
  for (i = 0; i < len; i++) 
    if (s[i] >= 'A' && s[i] <= 'Z') 
      s[i] -= ('A' - 'a'); 
}



Carnegie Mellon

Optimization Blocker: Procedure Calls
Why couldn’t compiler move 
strlen out of loop?

• Procedure may have side 

effects, e.g., alters global 
state each time called


• Function may not return 
same value for given 
arguments
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void lower(char *s) 
{ 
  size_t i; 
  for (i = 0; i < strlen(s); i++) 
    if (s[i] >= 'A' && s[i] <= 'Z') 
      s[i] -= ('A' - 'a'); 
} 

size_t total_lencount = 0; 
size_t strlen(const char *s) 
{ 
    size_t length = 0; 
    while (*s != '\0') { 
 s++; length++; 
    } 
    total_lencount += length; 
    return length; 
}
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Optimization Blocker: Procedure Calls

• Most compilers treat procedure call as a black box

• Assume the worst case, weak optimizations near them 
• There are interprocedural optimizations (IPO), but they are expensive 
• Sometimes the compiler doesn’t have access to source code of other 

functions because they are object files in a library. Link-time optimizations 
(LTO) comes into play, but are expensive as well.
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inline void swap(int *m, int *n) { 
 int tmp = *m; 
 *m = *n; 
 *n = tmp; 
} 

void foo () { 
  swap(&x, &y); 
}

void foo () { 
  int tmp = x; 
  x = y; 
  y = tmp; 
}
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Today: Optimizing Code Transformation

• Overview

• Hardware/Microarchitecture Independent Optimizations


• Code motion/precomputation

• Strength reduction

• Sharing of common subexpressions


• Optimization Blockers

• Procedure calls


• Exploit Hardware Microarchitecture
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Exploiting Instruction-Level Parallelism

• Hardware can execute multiple instructions in parallel

• Pipeline is a classic technique 

• Performance limited by control/data dependencies

• Simple transformations can yield dramatic performance improvement


• Compilers often cannot make these transformations 
• Lack of associativity and distributivity in floating-point arithmetic
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Baseline Code
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.L519: 
 imulq (%rax,%rdx,4), %ecx 
 addq  $1, %rdx # i++ 
 cmpq  %rdx, %rbp # Compare length:i 
 jg  .L519 # If >, goto Loop

for (i = 0; i < length; i++) { 
  t = t * d[i]; 
  *dest = t; 
}

Overhead

Real work
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Loop Unrolling (2x1)

• Perform 2x more useful work per iteration


• Reduce loop overhead (comp, jmp, index dec, etc.)
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long limit = length-1; 
long i; 
/* Combine 2 elements at a time */ 
for (i = 0; i < limit; i+=2) { 
    x = (x * d[i]) * d[i+1]; 
} 

/* Finish any remaining elements */ 
for (; i < length; i++) { 
    x = x * d[i]; 
} 
*dest = x;
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Loop Unrolling with Separate Accumulators
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long limit = length-1; 
long i; 
/* Combine 2 elements at a time */ 
for (i = 0; i < limit; i+=2) { 
    x0 = x0 * d[i]; 
    x1 = x1 * d[i+1]; 
} 

/* Finish any remaining elements */ 
for (; i < length; i++) { 
    x0 = x0 * d[i]; 
} 
*dest = x0 * x1;
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Separate Accumulators
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*

*

x1 d1

d3

*

d5

*

d7

*

*

*

x0 d0

d2

*

d4

*

d6

 x0 = x0 * d[i]; 
 x1 = x1 * d[i+1];

• What changed:

• Two independent “streams” of 

operations 
• Reduce data dependency
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Code Optimization Summary

• Three entities can optimize the program: programmer, compiler, and 
hardware


• The best thing a programmer can do is to pick a good algorithm. 
Compilers/hardware can’t do that in general.


• Quicksort: O(n log n) = K * n * log(n)

• Bubblesort: O(n^2) = K * n^2

• Algorithm choice decides overall complexity (big O), compiler/

hardware decides the constant factor in the big O notation

• Compiler and hardware implementations decide the K.
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Code Optimization Summary
• From a programmer’s perspective:


• What you know: the functionality/intention of your code; the inputs to the 
program; all the code in the program 

• What you might not know: the hardware details. 
• From a compiler’s perspective:


• What you know: all the code in the program; (maybe) the hardware 
details. 

• What you might not know: the inputs to the program; the intention of the 
code 

• From the hardware’s perspective:

• What you know: the hardware details; some part of the code 
• What you might not know: the inputs to the program; the intention of the 

code 
• The different perspectives indicate that different entities have different 

responsibilities, limitations, and advantages in optimizing the code
!22
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Code Optimization Summary

• Things that programmer/compilers can do

• Code motion/precomputation

• Strength reduction

• Sharing of common subexpressions

• Exploiting hardware microarchitecture


• Things that compilers can’t do but programmers can do

• Optimizing across function calls

!23



Carnegie Mellon

About Code Optimization

• Things that programmer/compilers can do

• Code motion/precomputation

• Strength reduction

• Sharing of common subexpressions

• Exploiting hardware microarchitecture


• Things that compilers can’t do but programmers can do

• Optimizing across function calls
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Another Example
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float foo(int x, int y) 
{ 
    return pow(x, y) * 100 / log(x) * sqrt(y); 
}
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direct return the results 23769.8 without having to the computation
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Another Example

• As a programmer, if you know what x and y will be, say 5, you could 
direct return the results 23769.8 without having to the computation

• Compiler would have no idea
• Except…Profile-guided optimizations:

• Run the code multiple times using some sample inputs, and observe 
the values of x and y (statistically).

• If let’s say 99% of the time, x = 2 and y = 5, what could the compiler 
do then?
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float foo(int x, int y) 
{ 
    return pow(x, y) * 100 / log(x) * sqrt(y); 
}

float foo(int x, int y) 
{ 
  if (x == 2 && y == 5) return 23769.8;     
  else return pow(x, y) * 100 / log(x) * sqrt(y); 
}
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CPU

So far in 252…

PC
Register 

File

Memory
Code 
Data 
Stack

Addresses

Data

InstructionsCondition 
CodesALU

•We have been discussing the CPU microarchitecture

• Single Cycle, sequential implementation 
• Pipeline implementation 
• Resolving data dependency and control dependency 

•What about memory?
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Memory in a Modern System
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Ideal Memory

• Zero access time (latency)

• Infinite capacity

• Zero cost

• Infinite bandwidth (to support multiple accesses in parallel)

!28



Carnegie Mellon

The Problem

• Ideal memory’s requirements oppose each other
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The Problem

• Ideal memory’s requirements oppose each other

• Bigger is slower
• Bigger ! Takes longer to determine the location

• Faster is more expensive
• Memory technology: Flip-flop vs. SRAM vs. DRAM vs. Disk vs. 

Tape

• Higher bandwidth is more expensive
• Need more banks, more ports, higher frequency, or faster 

technology

!29
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Memory Technology:  D Flip-Flop (DFF)

�30

Q+

Q–

R

S

D

C

Data

Clock T
Trigger

• Very fast

• Very expensive to build

• 6 NOT gates (2 transistors / gate) 
• 3 AND gates (3 transistors / gate) 
• 2 OR gates (3 transistors / gate) 
• 27 transistors in total for just one bit!!



Carnegie Mellon

Memory Technology: SRAM

!31



Carnegie Mellon

Memory Technology: SRAM

• Static random access memory

• Random access means you can supply an arbitrary address to the 

memory and get a value back

• Two cross coupled inverters store a single bit


• Feedback path enables the stored value to persist in the “cell” 
• 4 transistors for storage 
• 2 transistors for access 
• 6 transistors in total per bit
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Memory Technology: SRAM

• Static random access memory
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• Feedback path enables the stored value to persist in the “cell” 
• 4 transistors for storage 
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SRAM Array
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word line 0
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Abstract View of SRAM
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Address
n

CE (chip enable)

WE (write enable)
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Content
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Memory Technology: DRAM

• Dynamic random access memory
• Capacitor charge state indicates stored value

• Whether the capacitor is charged or 
discharged indicates storage of 1 or 0

• 1 capacitor
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Memory Technology: DRAM

• Dynamic random access memory
• Capacitor charge state indicates stored value

• Whether the capacitor is charged or 
discharged indicates storage of 1 or 0

• 1 capacitor
• 1 access transistor

• Capacitors will leak!
• DRAM cell loses charge over time
• DRAM cell needs to be refreshed.
• Refresh takes time and power. When 

refreshing can’t read the data. A major issue, 
lots of research going on to reduce the refresh 
overhead.
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DRAM Cell

�35 37

• Capacitor holding value 
leaks, eventually you will 
lose information (everything 
turns to 0)

• How do you maintain the 
values in DRAM?

• Refresh periodically 
• A major source for power 

consumption in DRAM
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Latch vs. DRAM vs. SRAM

• DFF

• Fastest 
• Low density (27 transistors per bit) 
• High cost 

• SRAM

• Faster access (no capacitor) 
• Lower density (6 transistors per bit) 
• Higher cost 
• No need for refresh 
• Manufacturing compatible with logic process (no capacitor) 

• DRAM

• Slower access (capacitor) 
• Higher density (1 transistor + 1 capacitor per bit) 
• Lower cost 
• Requires refresh (power, performance, circuitry) 
• Manufacturing requires putting capacitor and logic together

!36
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Nonvolatile Memories
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• Lose information if powered off.
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• DNA (centuries)
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Nonvolatile Memories

• DFF, DRAM and SRAM are volatile memories

• Lose information if powered off.

• Nonvolatile memories retain value even if powered off

• Flash (~ 5 years) 
• Hard Disk (~ 5 years) 
• Tape (~ 15-30 years) 
• DNA (centuries)

• Uses for Nonvolatile Memories

• Firmware (BIOS, controllers for disks, network cards, graphics accelerators, 

security subsystems,…) 
• Files in Smartphones, mp3 players, tablets, laptops 
• Backup
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