CSC 252: Computer Organization
Spring 2020: Lecture 15

Instructor: Yuhao Zhu
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University of Rochester



Announcements

* You can choose pass/fail or request a letter grade (there is a
deadline; you should have received an email from the school)

» Mid-term solution will be posted tonight

» Mid-term grades will be posted next week

* Lectures will be recorded and posted online

- Office hours will be held through Zoom; links on the website



So far in 252...

C Program
Compiler l

Assembly Program

Assembler l
Instruction Set Architecture

(Mostly) Manual Process l

Processor
Microarchitecture

Logic Synthesis Tools l

Circuits
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Optimizing Code Transformation

e Hardware/Microarchitecture Independent Optimizations
» Code motion/precomputation
« Strength reduction
« Sharing of common subexpressions



Generally Useful Optimizations

e Optimizations that you or the compiler should do regardless of

pProcessor

e Code Motion
» Reduce frequency with which computation performed

o If it will always produce same result
» Especially moving code out of loop

void set row(double *a, double *b,

long i, long n)

{ long j;
long j; . int n? - n*if .
for (j = 0; j < n; j++) for (J = 9;_3 < n;_3++)

a[ni+j] = b[]j]-

a[n*i+j] = b[]];



Compiler-Generated Code Motion (-O1)

void set_row(double *a, double *b,

long i, long n)
{
long j;
for (j = 0; j < n; j++)
a[n*i+j] = b[]j]’

N

set_row:
testqg
jle
imulg
leaq
movl
.L3:
movsd
movsd
addg
cmpgq
jne
.L1:
rep ;

ret

$rcx, %rcx
L1
$rcx, %$rdx

long j
int ni
for (j

.
4

n*i;
0; j < n; j++)

a[ni+j] = b[]j]:;

#
#
#

($rdi, %$rdx,8), %$rdx # rowp = A + ni*8

$0, %eax

(%rsi,%rax,8), %$xmmO
$xmm0, (%rdx,%rax,8)

$1, %rax
$rcx, Srax
.L3

#
#
#
#
#
#
#
#

Test n

If 0, goto done
ni = n*i

j=20

loop:

t = b[j]
M[A+ni*8 + j*8]
J++

j:n

if '=, goto loop
done:

t



Reduction in Strength

e Replace costly operation with simpler one
e Shift, add instead of multiply or divide

e 16*x --> X << 4

» Depends on cost of multiply or divide instruction

* On Intel Nehalem, integer multiply requires 3 CPU cycles
e Recognize sequence of products



Common Subexpression Elimination

« Reuse portions of expressions
« GCC will do this with —-O1

3 multiplications: i*n, (i-1)*n, (i+1)*n 1 multiplication: i*n

/* Sum neighbors of i,j */ long inj = i*n + j;

up = val[(i-1)*n + J 1; up = val[inj - n];

down = wval[(i+l)*n + j 1, down = wval[in]j + n];

left = wval[i*n + j-11; left = wval[inj - 1];

right = val[i*n + j+1]; right = val[inj + 1];

sum = up + down + left + right; sum = up + down + left + right;

| |

leaq 1(%rsi), %rax # i+l
leaq -1(%rsi), %r8 # i-1

imulqg %rcx, %rsi # i*n imulq Srcx, %rsi # i*n

imulqg %rcx, %rax # (i+1)*n addgq srdx, %rsi # i*n+j

imulg %rcx, %r8 # (i-1)*n movq srsi, %rax # i*n+j

addq $rdx, $rsi # i*n+j subq $rcx, Srax # i*n+j—n

addq $rdx, %rax # (i+1) *n+j leaq ($rsi,%rcx), %rcx # i*n+j+n
addg  %rdx, %r8 # (i-1)*n+j



Today: Optimizing Code Transformation

e Optimization Blockers
e Procedure calls



Optimization Blocker #1: Procedure Calls

e Procedure to Convert String to Lower Case

void lower (char *s)
{
size t i;
for (1 = 0; i < strlen(s); i++)
if (s[i] >= 'A' && s[i] <= 'Z")
S[l] —_— (IAI - vav)’.

10



Calling Strlen

size t strlen(const char *s)

{
size_t length = 0;
while (*s != '\0'") {
s++;
length++;
}
return length;
}

e Strlen performance
« Has to scan the entire length of a string, looking for null character.
« O(N) complexity
e Qverall performance
« N calls to strlen
« Overall O(N2?) performance

11



Improving Performance

« Move call to strlen outside of loop

 Since result does not change from one iteration to another
* Form of code motion

void lower (char *s)
{
size t i;
size t len = strlen(s);
for (1 = 0; i < len; i++)
if (s[i] >= 'A' && s[i] <= 'Z")
S[l] _—— (vAv - vav);

12



Optimization Blocker: Procedure Calls

void lower (char *s) Why couldn’t compiler move
L : strlen out of loop?
size_ t 1i;
for (i = 0; i < strlen(s); i++) * Procedure may have side
1t (s[1] >= "A" && s[i] <= '2%) effects, e.g., alters global
s[i] -= ('A' - 'a');

state each time called

* Function may not return

size_t total_lencount = 0; same Value for glven
1 1l h *
size t strlen(const char *s) arguments

{

}

size t length = 0;
while (*s !'= '\0') {
s++; length++;
}
total lencount += length;
return length;

13



Optimization Blocker: Procedure Calls

e Most compilers treat procedure call as a black box
» Assume the worst case, weak optimizations near them
» There are interprocedural optimizations (IPO), but they are expensive

¢ Sometimes the compiler doesn’t have access to source code of other
functions because they are object files in a library. Link-time optimizations
(LTO) comes into play, but are expensive as well.

14
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Optimization Blocker: Procedure Calls

e Most compilers treat procedure call as a black box
» Assume the worst case, weak optimizations near them
» There are interprocedural optimizations (IPO), but they are expensive

¢ Sometimes the compiler doesn’t have access to source code of other
functions because they are object files in a library. Link-time optimizations
(LTO) comes into play, but are expensive as well.

e Remedies:
o Use of inline functions
« Do your own code motion

inline void swap(int *m, int *n) ({
int tmp = *m;

*m = *n; void foo () {
*n = tmp; int tmp = x;
} X =y,

y = tmp;
void foo () { }

swap (&x, &y);
}

14



Today: Optimizing Code Transformation

« Exploit Hardware Microarchitecture

15



Exploiting Instruction-Level Parallelism

e Hardware can execute multiple instructions in parallel
* Pipeline is a classic technique
e Performance limited by control/data dependencies

e Simple transformations can yield dramatic performance improvement
« Compilers often cannot make these transformations
» Lack of associativity and distributivity in floating-point arithmetic

16



Baseline Code

for (1 = 0; 1 < length; i++) {

t =t * d[i];
*dest = t;

.L519:
imulqg (%rax,%rdx,4),
addg $1, %$rdx
cmpqg %rdx, %rbp
jg .L519

Fecx

# i++

# Compare length:i
# If >, goto Loop

«— Real work

«— Qverhead

17



Loop Unrolling (2x1)

long limit = length-1;
long i;
/* Combine 2 elements at a time */
for (i = 0; i < limit; i+=2) {
x = (x * d[i]) * d[i+1];
}

/* Finish any remaining elements */
for (; i < length; i++) {

Xx =x * d[1i];
}

*dest = x;

e Perform 2x more useful work per iteration
e Reduce loop overhead (comp, jmp, index dec, etc.)



Loop Unrolling with Separate Accumulators

long limit = length-1;

long i;

/* Combine 2 elements at a time */
for (i = 0; i < limit; i+=2) {

x0 = x0 * d[i];

x1 = x1 * d[i+1];

}

/* Finish any remaining elements */
for (; i < length; i++) {

x0 = x0 * d[i];
}

*dest = x0 * x1;

19



Separate Accumulators

x0 = x0 * d[i]; * What changed:
Al AR « Two independent “streams” of
operations
x0 d, x1 d, * Reduce data dependency
| | ||
* d % d

20



Code Optimization Summary

e Three entities can optimize the program: programmer, compiler, and
hardware

* The best thing a programmer can do is to pick a good algorithm.
Compilers/hardware can’t do that in general.

e Quicksort: O(n log n) = K* n * log(n)
e Bubblesort: O(n"2) = K* n"\2

e Algorithm choice decides overall complexity (big O), compiler/
hardware decides the constant factor in the big O notation

* Compiler and hardware implementations decide the K.

21



Code Optimization Summary

* From a programmer’s perspective:

« \What you know: the functionality/intention of your code; the inputs to the
program; all the code in the program

* What you might not know: the hardware details.
e From a compiler’s perspective:

* What you know: all the code in the program; (maybe) the hardware
details.

* What you might not know: the inputs to the program; the intention of the
code

* From the hardware’s perspective:
* What you know: the hardware details; some part of the code

* \WWhat you might not know: the inputs to the program; the intention of the
code

e The different perspectives indicate that different entities have different
responsibilities, limitations, and advantages in optimizing the code

22



Code Optimization Summary

e Things that programmer/compilers can do
» Code motion/precomputation
« Strength reduction
« Sharing of common subexpressions
« Exploiting hardware microarchitecture

23



About Code Optimization

e Things that compilers can’t do but programmers can do
* Optimizing across function calls

24



Another Example

float foo(int x, int y)

{
return pow(x, y) * 100 / log(x) * sqrt(y):

}

25



Another Example

e As a programmer, if you know what x and y will be, say 5, you could
direct return the results 23769.8 without having to the computation
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Another Example

e As a programmer, if you know what x and vy will be, say 5, you could
direct return the results 23769.8 without having to the computation

e Compiler would have no idea
e Except...Profile-guided optimizations:

* Run the code multiple times using some sample inputs, and observe
the values of x and v (statistically).

o |f let’s say 99% of the time, x = 2 and y = 5, what could the compiler
do then?

float foo(int x, int y)

{
return pow(x, y) * 100 / log(x) * sqrt(y):

}

float foo(int x, int y)

{

if (x == 2 && y == 5) return 23769.8;

else return pow(x, y) * 100 / log(x) * sqrt(y):;
}

25



So far in 252...

CPU

PC

ALU

Register Addresses
File
Data
<
Condition Instructions
Codes <

Memory

Code
Data
Stack

* \We have been discussing the CPU microarchitecture
 Single Cycle, sequential implementation

* Pipeline implementation

* Resolving data dependency and control dependency

e What about memory?

26



Memory in a Modern System

»

> ORE 0 OF

. |

” v
DRAM
»'l,@ “".I

jI.

LER & » Muf’ : f ﬁ b »
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Ideal Memory

e Zero access time (latency)

* Infinite capacity

e Zero cost

e |nfinite bandwidth (to support multiple accesses in parallel)

28



The Problem

e |deal memory’s requirements oppose each other
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The Problem

e |deal memory’s requirements oppose each other

e Bigger is slower
» Bigger > Takes longer to determine the location

e Faster is more expensive
* Memory technology: Flip-flop vs. SRAM vs. DRAM vs. Disk vs.
Tape

e Higher bandwidth is more expensive
* Need more banks, more ports, higher frequency, or faster
technology

29



Memory Technology: D Flip-Flop (DFF)

Data %j R

CW%D . .

Clock

e \lery fast
e \ery expensive to build
e 6 NOT gates (2 transistors / gate)
e 3 AND gates (3 transistors / gate)
e 2 OR gates (3 transistors / gate)
e 27/ transistors in total for just one bit!!

Q+

30



Memory Technology: SRAM
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Memory Technology: SRAM

e Static random access memory

* Random access means you can supply an arbitrary address to the
memory and get a value back

e Two cross coupled inverters store a single bit
¢ Feedback path enables the stored value to persist in the “cel
¢ 4 transistors for storage
¢ 2 transistors for access
® O transistors in total per bit
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Memory Technology: SRAM

e Static random access memory

* Random access means you can supply an arbitrary address to the
memory and get a value back

e Two cross coupled inverters store a single bit
¢ Feedback path enables the stored value to persist in the “cell”
¢ 4 transistors for storage
¢ 2 transistors for access
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Memory Technology: SRAM

e Static random access memory

* Random access means you can supply an arbitrary address to the

memory and get a value back

e Two cross coupled inverters store a single bit

¢ Feedback path enables the stored value to persist in the “cel

¢ 4 transistors for storage
e 2 transistors for access
® O transistors in total per bit

bitline

row select

|”

1500
<=

bitline
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Memory Technology: SRAM

e Static random access memory

* Random access means you can supply an arbitrary address to the

memory and get a value back

e Two cross coupled inverters store a single bit

¢ Feedback path enables the stored value to persist in the “cel

¢ 4 transistors for storage
e 2 transistors for access
® O transistors in total per bit

= bitline

row select

|”

1500
<=

© Dbitline
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SRAM Array

b0 b1 b1 b2 b2 b3 b3
word line 0

S

word line 1

word line 2

Row decoder
5
alala
.

5

word line 3

NSigirigienigies:
\Column decoder / mux




Abstract View of SRAM

Address

—— CE (chip enable)

—— WE (write enable)

%k

Content
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Memory Technology: DRAM

e Dynamic random access memory

* Capacitor charge state indicates stored value
¢ \Whether the capacitor is charged or
discharged indicates storage of 1 or O
¢ 1 capacitor
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Memory Technology: DRAM

e Dynamic random access memory

* Capacitor charge state indicates stored value
¢ \Whether the capacitor is charged or
discharged indicates storage of 1 or O
¢ 1 capacitor
e 1 access transistor

e Capacitors will leak!

* DRAM cell loses charge over time row enable
e DRAM cell needs to be refreshed.
e Refresh takes time and power. \When o
: , . : )
refreshing can’t read the data. A major issue, S| [
lots of research going on to reduce the refresh ] =L
overhead. V4
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DRAM Cell

e Capacitor holding value
leaks, eventually you will
lose information (everything
turns to 0)

* How do you maintain the
values in DRAM?

» Refresh periodically

* A major source for power
consumption in DRAM
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Latch vs. DRAM vs. SRAM

e DFF
» Fastest
e L ow density (27 transistors per bit)
* High cost

e SRAM
e Faster access (No capacitor)
e [ ower density (6 transistors per bit)
e Higher cost
e No need for refresh
e Manufacturing compatible with logic process (no capacitor)

* DRAM
e Slower access (capacitor)
e Higher density (1 transistor + 1 capacitor per bit)
® | ower cost
e Requires refresh (power, performance, circuitry)
e Manufacturing requires putting capacitor and logic together
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Nonvolatile Memories
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e DFF, DRAM and SRAM are volatile memories
» Lose information if powered off.
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Nonvolatile Memories

e DFF, DRAM and SRAM are volatile memories
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e Nonvolatile memories retain value even if powered off
* Flash (~ 5 years)
» Hard Disk (~ 5 years)
e Tape (~ 15-30 years)
* DNA (centuries)
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Nonvolatile Memories

e DFF, DRAM and SRAM
» Lose information if pow
e Nonvolatile memories re
e Flash (~ 5 years)
» Hard Disk (~ 5 years)
e Tape (~ 15-30 years)
* DNA (centuries)

Rewriting Life

Microsoft Has a Plan to
Add DNA Data Storage

to Its Cloud

Tech companies think biology may solve a looming data
storage problem.

by Antonio Regalado May 22,2017

Based on early research involving the storage of movies and documentsin
DNA, Microsoft is developing an apparatus that uses biology to replace

tape drives, researchers at the company say.

Computer architects at Microsoft Research say the company has

formalized a goal of having an operational storage system based on DNA
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Nonvolatile Memories

e DFF, DRAM and SRAM are volatile memories
» Lose information if powered off.

e Nonvolatile memories retain value even if powered off
* Flash (~ 5 years)
» Hard Disk (~ 5 years)
e Tape (~ 15-30 years)
* DNA (centuries)
e Uses for Nonvolatile Memories

* Firmware (BIOS, controllers for disks, network cards, graphics accelerators,
security subsystems,...)

« Files in Smartphones, mp3 players, tablets, laptops
» Backup
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