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Announcements
• By default 252/452 will be pass/fail

• 4/10 is the deadline to opt-out and request a letter grade

• Mid-term solution has been posted

• Mid-term grades will be posted this weekend

• Lectures will be recorded and posted online

• Office hours will be held through Zoom; links on the website
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The Problem

• Bigger is slower

• Flip-flops/Small SRAM, sub-nanosec 
• SRAM,  KByte~MByte, ~nanosec 
• DRAM, Gigabyte, ~50 nanosec 
• Hard Disk, Terabyte, ~10 millisec 

• Faster is more expensive (dollars and chip area)

• SRAM, < 10$ per Megabyte 
• DRAM, < 1$ per Megabyte 
• Hard Disk < 1$ per Gigabyte 

• Other technologies have their place as well 

• PC-RAM, MRAM, RRAM
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We want both fast and large Memory

• But we cannot achieve both with a single level of memory


• Idea: Memory Hierarchy

• Have multiple levels of storage (progressively bigger and slower as the 

levels are farther from the processor) 
• ensure most of the data the processor needs in the near future is kept 

in the fast(er) level(s)
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Memory Hierarchy
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Memory Hierarchy

• Fundamental tradeoff

• Fast memory: small 
• Large memory: slow 

• Balance latency, cost, size, 
bandwidth
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The Bookshelf Analogy

• Book in your hand

• Desk

• Bookshelf

• Boxes at home

• Boxes in storage


• Recently-used books tend to stay on desk

• Comp Org. books, books for classes you are currently taking 
• Until the desk gets full 

• Adjacent books in the shelf needed around the same time
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Register File (DFF)
32 words, sub-nsec

L1 cache (SRAM)
~32 KB, ~nsec

L2 cache (SRAM)
512 KB ~ 1MB, many nsec

L3 cache (SRAM)
.....

Main memory (DRAM), 
GB, ~100 nsec

Hard Disk
100 GB, ~10 msec

A Modern Memory Hierarchy

!8



Carnegie Mellon

How Things Have Progressed

1995 low-mid 
range
Hennessy & Patterson, Computer 
Arch., 1996

200B
5ns

64KB
10ns

32MB
100ns

2GB
5ms

2009 low-mid 
range
www.dell.com, $449 including 17” 
LCD flat panel

~200B
0.33ns

8MB 
0.33ns

4GB
<100ns

750GB
4ms

2015  
mid range

~200B
0.33ns

8MB 
0.33ns

16GB
<100ns

256GB
10us
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How to Make Effective Use of the Hierarchy

• Fundamental question: how do we know what data to put in the fast 
and small memory?


• Answer: ensure most of the data the processor needs in the near 
future is kept in the fast(er) level(s)


• How do we know what data will be needed in the future?

• Do we know before the program runs? 

• If so, programmers or compiler can place the right data at the 
right place 

• Do we know only after the program runs? 
• If so, only the hardware can effectively place the data
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How to Make Effective Use of the Hierarchy

• Modern computers provide both ways

• Register file: programmers explicitly move data from the main 

memory (slow but big DRAM) to registers (small, very fast)

• movq (%rdi), %rdx 

• Cache, on the other hand, is automatically managed by hardware

• Sits between registers and main memory, “invisible” to programmers 
• The hardware automatically figures out what data will be used in the 

near future, and place in the cache. 
• How does the hardware know that??

!1144
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Locality

• Principle of Locality: Programs tend to use data and instructions with 
addresses near or equal to those they have used recently
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Locality

• Principle of Locality: Programs tend to use data and instructions with 
addresses near or equal to those they have used recently

• Temporal locality:  
• Recently referenced items are likely  

to be referenced again in the near future
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Locality

• Principle of Locality: Programs tend to use data and instructions with 
addresses near or equal to those they have used recently

• Temporal locality:  
• Recently referenced items are likely  

to be referenced again in the near future

• Spatial locality:  
• Items with nearby addresses tend  

to be referenced close together in time
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Locality Example

• Data references

• Spatial Locality: Reference array elements in succession (stride-1 reference 

pattern) 
• Temporal Locality: Reference variable sum each iteration. 

• Instruction references

• Spatial Locality: Reference instructions in sequence. 
• Temporal Locality: Cycle through loop repeatedly. 

!13

sum = 0; 
for (i = 0; i < n; i++) 
 sum += a[i]; 
return sum;
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Cache Illustrations
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Cache Illustrations
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Cache Illustrations
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Cache Illustrations
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Cache Hit Rate

• Cache hit is when you find the data in the cache

• Hit rate indicates the effectiveness of the cache

!17

Accesses #
 Hits#  Hit Rate =
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Two Fundamental Issues in Cache Management

• Finding the data in the cache

• Given an address, how do we decide whether it’s in the cacher not? 

• Kicking data out of the cache

• Cache is small than memory, so when there’s no place left in the 

cache, we need to kick something out before we can put new data 
into it, but who to kick out?
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A Simple Cache

• 16 memory locations
• 4 cache locations

!19
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A Simple Cache

• 16 memory locations
• 4 cache locations
• Also called cache-line

!19
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A Simple Cache

• 16 memory locations
• 4 cache locations
• Also called cache-line
• Every location has a valid bit, indicating 

whether that location contains valid data; 
0 initially.

!19
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A Simple Cache

• 16 memory locations
• 4 cache locations
• Also called cache-line
• Every location has a valid bit, indicating 

whether that location contains valid data; 
0 initially.

• For now, assume cache location size 
== memory location size == 1 B
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• 4 cache locations
• Also called cache-line
• Every location has a valid bit, indicating 

whether that location contains valid data; 
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only reside in one cache-line
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• 4 cache locations
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• Every location has a valid bit, indicating 

whether that location contains valid data; 
0 initially.

• For now, assume cache location size 
== memory location size == 1 B

• Assume each memory location can 
only reside in one cache-line

• Cache is smaller than memory 
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!19

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

Content Valid?



Carnegie Mellon

A Simple Cache

• 16 memory locations
• 4 cache locations
• Also called cache-line
• Every location has a valid bit, indicating 

whether that location contains valid data; 
0 initially.

• For now, assume cache location size 
== memory location size == 1 B

• Assume each memory location can 
only reside in one cache-line

• Cache is smaller than memory 
(obviously)
• Thus, not all memory locations can 

be cached at the same time
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Cache Placement
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Cache Placement
• Given a memory addr, say 0x0001, we 

want to put the data there into the 
cache; where does the data go?
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• Simplest way is to take a subset 
of address bits


• Six combinations in total

• CA = ADDR[3],ADDR[2] 
• CA = ADDR[3],ADDR[1] 
• CA = ADDR[3],ADDR[0] 
• CA = ADDR[2],ADDR[1] 
• CA = ADDR[2],ADDR[0] 
• CA = ADDR[1],ADDR[0] 

•Direct-Mapped Cache

• CA = ADDR[1],ADDR[0]

Function to Address Cache
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•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address 

bits

Direct-Mapped Cache
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•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address 

bits

•Multiple addresses can be 
mapped to the same location

Direct-Mapped Cache

!22

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11



Carnegie Mellon

•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address 

bits

•Multiple addresses can be 
mapped to the same location

• E.g., 0010 and 1010

Direct-Mapped Cache
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•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address 

bits

•Multiple addresses can be 
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate between 
different memory locations that 
are mapped to the same cache 
location?

Direct-Mapped Cache
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•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address 

bits

•Multiple addresses can be 
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate between 
different memory locations that 
are mapped to the same cache 
location?

• Add a tag field for that purpose
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•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address 

bits

•Multiple addresses can be 
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate between 
different memory locations that 
are mapped to the same cache 
location?

• Add a tag field for that purpose
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•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address 

bits

•Multiple addresses can be 
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate between 
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Example: Direct-Mapped Cache
for (i = 0; i < 4; ++i) {


A += mem[i]; 
}	 

for (i = 0; i < 4; ++i) {


B *= (mem[i] + A); 
}


• Assume mem == 0b1000

• Read 0b1000

• Read 0b1001

• Read 0b1010

• Read 0b1011


• Read 0b1000; cache hit?
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Conflicts
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