
CSC 252: Computer Organization 
 Spring 2020: Lecture 16

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Carnegie Mellon

Announcements
• By default 252/452 will be pass/fail

• 4/10 is the deadline to opt-out and request a letter grade

• Mid-term solution has been posted

• Mid-term grades will be posted this weekend

• Lectures will be recorded and posted online

• Office hours will be held through Zoom; links on the website

!2

Carnegie Mellon

The Problem

• Bigger is slower

• Flip-flops/Small SRAM, sub-nanosec
• SRAM, KByte~MByte, ~nanosec
• DRAM, Gigabyte, ~50 nanosec
• Hard Disk, Terabyte, ~10 millisec

• Faster is more expensive (dollars and chip area)

• SRAM, < 10$ per Megabyte
• DRAM, < 1$ per Megabyte
• Hard Disk < 1$ per Gigabyte

• Other technologies have their place as well

• PC-RAM, MRAM, RRAM

!3

Carnegie Mellon

We want both fast and large Memory

• But we cannot achieve both with a single level of memory

• Idea: Memory Hierarchy

• Have multiple levels of storage (progressively bigger and slower as the

levels are farther from the processor)
• ensure most of the data the processor needs in the near future is kept

in the fast(er) level(s)

!4

Carnegie Mellon

Memory Hierarchy

!5

fast

small

big but slow

move what you use here

backup

everything

here

With good locality of reference,
memory appears as fast as

and as large as

fa
st

er
 p

er
 b

yt
e

ch
ea

pe
r p

er
 b

yt
e

Carnegie Mellon

Memory Hierarchy

!5

fast

small

big but slow

move what you use here

backup

everything

here

With good locality of reference,
memory appears as fast as

and as large as

fa
st

er
 p

er
 b

yt
e

ch
ea

pe
r p

er
 b

yt
e

Carnegie Mellon

Memory Hierarchy

• Fundamental tradeoff

• Fast memory: small
• Large memory: slow

• Balance latency, cost, size,
bandwidth

!6

CPU Main
Memory
(DRAM) Registers

(DFF)

Cache
(SRAM)

Hard Disk

Carnegie Mellon

The Bookshelf Analogy

• Book in your hand

• Desk

• Bookshelf

• Boxes at home

• Boxes in storage

• Recently-used books tend to stay on desk

• Comp Org. books, books for classes you are currently taking
• Until the desk gets full

• Adjacent books in the shelf needed around the same time

!7

Carnegie Mellon

Register File (DFF)
32 words, sub-nsec

L1 cache (SRAM)
~32 KB, ~nsec

L2 cache (SRAM)
512 KB ~ 1MB, many nsec

L3 cache (SRAM)
.....

Main memory (DRAM),
GB, ~100 nsec

Hard Disk
100 GB, ~10 msec

A Modern Memory Hierarchy

!8

Carnegie Mellon

How Things Have Progressed

1995 low-mid
range
Hennessy & Patterson, Computer
Arch., 1996

200B
5ns

64KB
10ns

32MB
100ns

2GB
5ms

2009 low-mid
range
www.dell.com, $449 including 17”
LCD flat panel

~200B
0.33ns

8MB
0.33ns

4GB
<100ns

750GB
4ms

2015  
mid range

~200B
0.33ns

8MB
0.33ns

16GB
<100ns

256GB
10us

!9

RF
(DFF)

Cache
(SRAM)

Main
Memory
(DRAM) Disk

http://www.dell.com/

Carnegie Mellon

How to Make Effective Use of the Hierarchy

• Fundamental question: how do we know what data to put in the fast
and small memory?

• Answer: ensure most of the data the processor needs in the near
future is kept in the fast(er) level(s)

• How do we know what data will be needed in the future?

• Do we know before the program runs?

• If so, programmers or compiler can place the right data at the
right place

• Do we know only after the program runs?
• If so, only the hardware can effectively place the data

!10

Carnegie Mellon

How to Make Effective Use of the Hierarchy

• Modern computers provide both ways

• Register file: programmers explicitly move data from the main

memory (slow but big DRAM) to registers (small, very fast)

• movq (%rdi), %rdx

• Cache, on the other hand, is automatically managed by hardware

• Sits between registers and main memory, “invisible” to programmers
• The hardware automatically figures out what data will be used in the

near future, and place in the cache.
• How does the hardware know that??

!1144

CPU Cache
$ MemoryRegisters

Carnegie Mellon

Locality

• Principle of Locality: Programs tend to use data and instructions with
addresses near or equal to those they have used recently

!12

Carnegie Mellon

Locality

• Principle of Locality: Programs tend to use data and instructions with
addresses near or equal to those they have used recently

• Temporal locality:
• Recently referenced items are likely  

to be referenced again in the near future

!12

Carnegie Mellon

Locality

• Principle of Locality: Programs tend to use data and instructions with
addresses near or equal to those they have used recently

• Temporal locality:
• Recently referenced items are likely  

to be referenced again in the near future

• Spatial locality:
• Items with nearby addresses tend  

to be referenced close together in time

!12

Carnegie Mellon

Locality Example

• Data references

• Spatial Locality: Reference array elements in succession (stride-1 reference

pattern)
• Temporal Locality: Reference variable sum each iteration.

• Instruction references

• Spatial Locality: Reference instructions in sequence.
• Temporal Locality: Cycle through loop repeatedly.

!13

sum = 0;
for (i = 0; i < n; i++)
 sum += a[i];
return sum;

Carnegie Mellon

Cache Illustrations

!14

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Memory

(big but slow)

CPU

Carnegie Mellon

Cache Illustrations

!15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations

!15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Data in address b is neededRequest Data
at Address 14

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations

!15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Data in address b is neededRequest Data
at Address 14

14 Address b is in cache: Hit!

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations

!16

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations

!16

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Request data
at Address 12

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations

!16

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Request data
at Address 12

Data in address b is needed

Address b is not in
cache: Miss!

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations

!16

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Request data
at Address 12

Address b is fetched from
memory

Request: 12

Data in address b is needed

Address b is not in
cache: Miss!

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations

!16

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Request data
at Address 12

Address b is fetched from
memory

Request: 12

12

Data in address b is needed

Address b is not in
cache: Miss!

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations

!16

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Request data
at Address 12

Address b is fetched from
memory

Request: 12

12

12

Data in address b is needed

Address b is not in
cache: Miss!

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations

!16

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Request data
at Address 12

Address b is fetched from
memory

Request: 12

12

12

Address b is stored in cache

Data in address b is needed

Address b is not in
cache: Miss!

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Hit Rate

• Cache hit is when you find the data in the cache

• Hit rate indicates the effectiveness of the cache

!17

Accesses #
 Hits# Hit Rate =

Carnegie Mellon

Two Fundamental Issues in Cache Management

• Finding the data in the cache

• Given an address, how do we decide whether it’s in the cacher not?

• Kicking data out of the cache

• Cache is small than memory, so when there’s no place left in the

cache, we need to kick something out before we can put new data
into it, but who to kick out?

!18

Carnegie Mellon

A Simple Cache

• 16 memory locations
• 4 cache locations

!19

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

Content Valid?

Carnegie Mellon

A Simple Cache

• 16 memory locations
• 4 cache locations
• Also called cache-line

!19

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

Content Valid?

Carnegie Mellon

A Simple Cache

• 16 memory locations
• 4 cache locations
• Also called cache-line
• Every location has a valid bit, indicating

whether that location contains valid data;
0 initially.

!19

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

Content Valid?

Carnegie Mellon

A Simple Cache

• 16 memory locations
• 4 cache locations
• Also called cache-line
• Every location has a valid bit, indicating

whether that location contains valid data;
0 initially.

• For now, assume cache location size
== memory location size == 1 B

!19

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

Content Valid?

Carnegie Mellon

A Simple Cache

• 16 memory locations
• 4 cache locations
• Also called cache-line
• Every location has a valid bit, indicating

whether that location contains valid data;
0 initially.

• For now, assume cache location size
== memory location size == 1 B

• Assume each memory location can
only reside in one cache-line

!19

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

Content Valid?

Carnegie Mellon

A Simple Cache

• 16 memory locations
• 4 cache locations
• Also called cache-line
• Every location has a valid bit, indicating

whether that location contains valid data;
0 initially.

• For now, assume cache location size
== memory location size == 1 B

• Assume each memory location can
only reside in one cache-line

• Cache is smaller than memory
(obviously)

!19

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

Content Valid?

Carnegie Mellon

A Simple Cache

• 16 memory locations
• 4 cache locations
• Also called cache-line
• Every location has a valid bit, indicating

whether that location contains valid data;
0 initially.

• For now, assume cache location size
== memory location size == 1 B

• Assume each memory location can
only reside in one cache-line

• Cache is smaller than memory
(obviously)
• Thus, not all memory locations can

be cached at the same time

!19

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

Content Valid?

Carnegie Mellon

Cache Placement

!20

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

???

00
01
10
11

CA

Carnegie Mellon

Cache Placement
• Given a memory addr, say 0x0001, we

want to put the data there into the
cache; where does the data go?

!20

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

???

00
01
10
11

CA

Carnegie Mellon

• Simplest way is to take a subset
of address bits

• Six combinations in total

• CA = ADDR[3],ADDR[2]
• CA = ADDR[3],ADDR[1]
• CA = ADDR[3],ADDR[0]
• CA = ADDR[2],ADDR[1]
• CA = ADDR[2],ADDR[0]
• CA = ADDR[1],ADDR[0]

•Direct-Mapped Cache

• CA = ADDR[1],ADDR[0]

Function to Address Cache

!21

a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

CA

Carnegie Mellon

•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address

bits

Direct-Mapped Cache

!22

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

Carnegie Mellon

•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address

bits

•Multiple addresses can be
mapped to the same location

Direct-Mapped Cache

!22

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

Carnegie Mellon

•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address

bits

•Multiple addresses can be
mapped to the same location

• E.g., 0010 and 1010

Direct-Mapped Cache

!22

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

Carnegie Mellon

•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address

bits

•Multiple addresses can be
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate between
different memory locations that
are mapped to the same cache
location?

Direct-Mapped Cache

!22

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

Carnegie Mellon

•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address

bits

•Multiple addresses can be
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate between
different memory locations that
are mapped to the same cache
location?

• Add a tag field for that purpose

Direct-Mapped Cache

!22

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

Carnegie Mellon

•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address

bits

•Multiple addresses can be
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate between
different memory locations that
are mapped to the same cache
location?

• Add a tag field for that purpose
• ADDR[3] and ADDR[2] in this

particular example

Direct-Mapped Cache

!22

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

Carnegie Mellon

•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address

bits

•Multiple addresses can be
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate between
different memory locations that
are mapped to the same cache
location?

• Add a tag field for that purpose
• ADDR[3] and ADDR[2] in this

particular example

Direct-Mapped Cache

!22

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

addr [3:2]

addr [3:2]
addr [3:2]

addr [3:2]

Carnegie Mellon

•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address

bits

•Multiple addresses can be
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate between
different memory locations that
are mapped to the same cache
location?

• Add a tag field for that purpose
• ADDR[3] and ADDR[2] in this

particular example

Direct-Mapped Cache

!22

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

addr [3:2]

addr [3:2]
addr [3:2]

addr [3:2]

Tag

Carnegie Mellon

•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address

bits

•Multiple addresses can be
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate between
different memory locations that
are mapped to the same cache
location?

• Add a tag field for that purpose
• ADDR[3] and ADDR[2] in this

particular example

Direct-Mapped Cache

!22

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

addr [3:2]

addr [3:2]
addr [3:2]

addr [3:2]

= Hit?

addr[3:2]

Tag

Carnegie Mellon

Example: Direct-Mapped Cache
for (i = 0; i < 4; ++i) {

A += mem[i];
}	

for (i = 0; i < 4; ++i) {

B *= (mem[i] + A);
}

• Assume mem == 0b1000

• Read 0b1000

• Read 0b1001

• Read 0b1010

• Read 0b1011

• Read 0b1000; cache hit?

!23

a

a
b
c
d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

addr

addr[1:0] = Hit?

addr[3:2]

Carnegie Mellon

Example: Direct-Mapped Cache
for (i = 0; i < 4; ++i) {

A += mem[i];
}	

for (i = 0; i < 4; ++i) {

B *= (mem[i] + A);
}

• Assume mem == 0b1000

• Read 0b1000

• Read 0b1001

• Read 0b1010

• Read 0b1011

• Read 0b1000; cache hit?

!23

a

a
b
c
d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

10a 1

addr

addr[1:0] = Hit?

addr[3:2]

Carnegie Mellon

Example: Direct-Mapped Cache
for (i = 0; i < 4; ++i) {

A += mem[i];
}	

for (i = 0; i < 4; ++i) {

B *= (mem[i] + A);
}

• Assume mem == 0b1000

• Read 0b1000

• Read 0b1001

• Read 0b1010

• Read 0b1011

• Read 0b1000; cache hit?

!23

a

a
b
c
d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

10
10

a
b

1
1

addr

addr[1:0] = Hit?

addr[3:2]

Carnegie Mellon

Example: Direct-Mapped Cache
for (i = 0; i < 4; ++i) {

A += mem[i];
}	

for (i = 0; i < 4; ++i) {

B *= (mem[i] + A);
}

• Assume mem == 0b1000

• Read 0b1000

• Read 0b1001

• Read 0b1010

• Read 0b1011

• Read 0b1000; cache hit?

!23

a

a
b
c
d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

10

10
10

a
b
c

1
1
1

addr

addr[1:0] = Hit?

addr[3:2]

Carnegie Mellon

Example: Direct-Mapped Cache
for (i = 0; i < 4; ++i) {

A += mem[i];
}	

for (i = 0; i < 4; ++i) {

B *= (mem[i] + A);
}

• Assume mem == 0b1000

• Read 0b1000

• Read 0b1001

• Read 0b1010

• Read 0b1011

• Read 0b1000; cache hit?

!23

a

a
b
c
d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

10

10
10

10

a
b
c
d

1
1
1
1

addr

addr[1:0] = Hit?

addr[3:2]

Carnegie Mellon

Example: Direct-Mapped Cache
for (i = 0; i < 4; ++i) {

A += mem[i];
}	

for (i = 0; i < 4; ++i) {

B *= (mem[i] + A);
}

• Assume mem == 0b1000

• Read 0b1000

• Read 0b1001

• Read 0b1010

• Read 0b1011

• Read 0b1000; cache hit?

!23

a

a
b
c
d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

10

10
10

10

a
b
c
d

1
1
1
1

addr

addr[1:0] = Hit?

addr[3:2]

Carnegie Mellon

Conflicts

!24

a

a
b
c

d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

addr

addr[1:0] = Hit?

addr[3:2]

Assume the following memory
access stream:

Carnegie Mellon

Conflicts

!24

a

a
b
c

d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

addr

addr[1:0] = Hit?

addr[3:2]

Assume the following memory
access stream:
• Read 1000

Carnegie Mellon

Conflicts

!24

a

a
b
c

d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

10a 1

addr

addr[1:0] = Hit?

addr[3:2]

Assume the following memory
access stream:
• Read 1000

Carnegie Mellon

Conflicts

!24

a

a
b
c

d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

10a 1

addr

addr[1:0] = Hit?

addr[3:2]

Assume the following memory
access stream:
• Read 1000
• Read 1001

Carnegie Mellon

Conflicts

!24

a

a
b
c

d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

10
10

a
b

1
1

addr

addr[1:0] = Hit?

addr[3:2]

Assume the following memory
access stream:
• Read 1000
• Read 1001

Carnegie Mellon

Conflicts

!24

a

a
b
c

d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

10
10

a
b

1
1

addr

addr[1:0] = Hit?

addr[3:2]

Assume the following memory
access stream:
• Read 1000
• Read 1001
• Read 1010

Carnegie Mellon

Conflicts

!24

a

a
b
c

d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

10

10
10

a
b
c

1
1
1

addr

addr[1:0] = Hit?

addr[3:2]

Assume the following memory
access stream:
• Read 1000
• Read 1001
• Read 1010

Carnegie Mellon

Conflicts

!24

a

a
b
c

d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

10

10
10

a
b
c

1
1
1

addr

addr[1:0] = Hit?

addr[3:2]

Assume the following memory
access stream:
• Read 1000
• Read 1001
• Read 1010
• Read 1101 (kick out 1001)

Carnegie Mellon

Conflicts

!24

a

a
b
c

d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

10

10
10

a
b
c

1
1
1

addr

addr[1:0] = Hit?

addr[3:2]

Assume the following memory
access stream:
• Read 1000
• Read 1001
• Read 1010
• Read 1101 (kick out 1001)

• addr[1:0]: 01

Carnegie Mellon

Conflicts

!24

a

a
b
c

d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

10

10
10

a
b
c

1
1
1

addr

addr[1:0] = Hit?

addr[3:2]

Assume the following memory
access stream:
• Read 1000
• Read 1001
• Read 1010
• Read 1101 (kick out 1001)

• addr[1:0]: 01
• addr[3:2]: 11

Carnegie Mellon

Conflicts

!24

a

a
b
c

d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

10

10

a

c

1
1
1

addr

addr[1:0] = Hit?

addr[3:2]

Assume the following memory
access stream:
• Read 1000
• Read 1001
• Read 1010
• Read 1101 (kick out 1001)

• addr[1:0]: 01
• addr[3:2]: 11

11d

Carnegie Mellon

Conflicts

!24

a

a
b
c

d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

10

10

a

c

1
1
1

addr

addr[1:0] = Hit?

addr[3:2]

Assume the following memory
access stream:
• Read 1000
• Read 1001
• Read 1010
• Read 1101 (kick out 1001)

• addr[1:0]: 01
• addr[3:2]: 11

• Read 1001 -> Miss!

11d

Carnegie Mellon

Conflicts

!24

a

a
b
c

d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

10

10

a

c

1
1
1

addr

addr[1:0] = Hit?

addr[3:2]

Assume the following memory
access stream:
• Read 1000
• Read 1001
• Read 1010
• Read 1101 (kick out 1001)

• addr[1:0]: 01
• addr[3:2]: 11

• Read 1001 -> Miss!
• Why? Each memory location is

mapped to only one cache
location

11d

Carnegie Mellon

Sets
• Each cacheable memory location is

mapped to a set of cache locations
• A set is one or more cache locations
• Set size is the number of locations in a

set, also called associativity

!25

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

Carnegie Mellon

2 Way Set Associative

!26

Set 1

Set 00

1

Carnegie Mellon

2 Way Set Associative
• 2 sets, each set has two entries

!26

Set 1

Set 00

1

Carnegie Mellon

2 Way Set Associative
• 2 sets, each set has two entries
• Only need one bit, addr[0] to index into the

cache now

!26

Set 1

Set 00

1

Carnegie Mellon

2 Way Set Associative
• 2 sets, each set has two entries
• Only need one bit, addr[0] to index into the

cache now
• Correspondingly, the tag needs 3 bits:

Addr[3:1]

!26

Set 1

Set 00

1

Carnegie Mellon

2 Way Set Associative
• 2 sets, each set has two entries
• Only need one bit, addr[0] to index into the

cache now
• Correspondingly, the tag needs 3 bits:

Addr[3:1]
• Either entry can store any address that gets

mapped to that set

!26

Set 1

Set 00

1

Carnegie Mellon

2 Way Set Associative
• 2 sets, each set has two entries
• Only need one bit, addr[0] to index into the

cache now
• Correspondingly, the tag needs 3 bits:

Addr[3:1]
• Either entry can store any address that gets

mapped to that set
• Now with the same access stream:

!26

Set 1

Set 00

1

Carnegie Mellon

2 Way Set Associative
• 2 sets, each set has two entries
• Only need one bit, addr[0] to index into the

cache now
• Correspondingly, the tag needs 3 bits:

Addr[3:1]
• Either entry can store any address that gets

mapped to that set
• Now with the same access stream:

• Read 1000

!26

Set 1

Set 00

1

100

Carnegie Mellon

2 Way Set Associative
• 2 sets, each set has two entries
• Only need one bit, addr[0] to index into the

cache now
• Correspondingly, the tag needs 3 bits:

Addr[3:1]
• Either entry can store any address that gets

mapped to that set
• Now with the same access stream:

• Read 1000
• Read 1001

!26

Set 1

Set 00

1

100

100

Carnegie Mellon

2 Way Set Associative
• 2 sets, each set has two entries
• Only need one bit, addr[0] to index into the

cache now
• Correspondingly, the tag needs 3 bits:

Addr[3:1]
• Either entry can store any address that gets

mapped to that set
• Now with the same access stream:

• Read 1000
• Read 1001
• Read 1010

!26

Set 1

Set 00

1

100

100

101

Carnegie Mellon

2 Way Set Associative
• 2 sets, each set has two entries
• Only need one bit, addr[0] to index into the

cache now
• Correspondingly, the tag needs 3 bits:

Addr[3:1]
• Either entry can store any address that gets

mapped to that set
• Now with the same access stream:

• Read 1000
• Read 1001
• Read 1010
• Read 1101 (1001 can still stay)

!26

Set 1

Set 00

1

100

100

101

Carnegie Mellon

2 Way Set Associative
• 2 sets, each set has two entries
• Only need one bit, addr[0] to index into the

cache now
• Correspondingly, the tag needs 3 bits:

Addr[3:1]
• Either entry can store any address that gets

mapped to that set
• Now with the same access stream:

• Read 1000
• Read 1001
• Read 1010
• Read 1101 (1001 can still stay)
• Read 1001 -> Hit!

!26

Set 1

Set 00

1

100

100

101

110

Carnegie Mellon

4 Way Set Associative
• One single set that contains all the cache locations

• Also called Fully-Associative Cache

• Every entry can store any cache-line that maps to that set

!27

0

Carnegie Mellon

4 Way Set Associative
• One single set that contains all the cache locations

• Also called Fully-Associative Cache

• Every entry can store any cache-line that maps to that set

!27

0

Assuming the same access stream

Carnegie Mellon

4 Way Set Associative
• One single set that contains all the cache locations

• Also called Fully-Associative Cache

• Every entry can store any cache-line that maps to that set

!27

0 1000

Assuming the same access stream
• Read 1000

Carnegie Mellon

4 Way Set Associative
• One single set that contains all the cache locations

• Also called Fully-Associative Cache

• Every entry can store any cache-line that maps to that set

!27

0 1000 1001

Assuming the same access stream
• Read 1000
• Read 1001

Carnegie Mellon

4 Way Set Associative
• One single set that contains all the cache locations

• Also called Fully-Associative Cache

• Every entry can store any cache-line that maps to that set

!27

0 1000 10101001

Assuming the same access stream
• Read 1000
• Read 1001
• Read 1010

Carnegie Mellon

4 Way Set Associative
• One single set that contains all the cache locations

• Also called Fully-Associative Cache

• Every entry can store any cache-line that maps to that set

!27

0 1000 10101001 1101

Assuming the same access stream
• Read 1000
• Read 1001
• Read 1010
• Read 1101

Carnegie Mellon

4 Way Set Associative
• One single set that contains all the cache locations

• Also called Fully-Associative Cache

• Every entry can store any cache-line that maps to that set

!27

0 1000 10101001 1101

Assuming the same access stream
• Read 1000
• Read 1001
• Read 1010
• Read 1101
• Read 1001 -> Hit!

Carnegie Mellon

Associative verses Direct Mapped Trade-offs

!28

Carnegie Mellon

Associative verses Direct Mapped Trade-offs
• Direct-Mapped cache

• Generally lower hit rate
• Simpler, Faster

!28

Carnegie Mellon

Associative verses Direct Mapped Trade-offs
• Direct-Mapped cache

• Generally lower hit rate
• Simpler, Faster

!28

00
01
10
11

10

10
10

10

a
b
c
d

1
1
1
1

addr

addr[1:0] = Hit?

addr[3:2]

Carnegie Mellon

Associative verses Direct Mapped Trade-offs
• Direct-Mapped cache

• Generally lower hit rate
• Simpler, Faster

• Associative cache

• Generally higher hit rate. Better utilization of cache resources
• Slower. Why?

!28

00
01
10
11

10

10
10

10

a
b
c
d

1
1
1
1

addr

addr[1:0] = Hit?

addr[3:2]

0
1

101 100
101 100

a
b

c
d

1
1

1
1

Carnegie Mellon

Associative verses Direct Mapped Trade-offs
• Direct-Mapped cache

• Generally lower hit rate
• Simpler, Faster

• Associative cache

• Generally higher hit rate. Better utilization of cache resources
• Slower. Why?

!28

00
01
10
11

10

10
10

10

a
b
c
d

1
1
1
1

addr

addr[1:0] = Hit?

addr[3:2]

0
1

101 100
101 100

a
b

c
d

1
1

1
1

addr

addr[0]

Carnegie Mellon

Associative verses Direct Mapped Trade-offs
• Direct-Mapped cache

• Generally lower hit rate
• Simpler, Faster

• Associative cache

• Generally higher hit rate. Better utilization of cache resources
• Slower. Why?

!28

00
01
10
11

10

10
10

10

a
b
c
d

1
1
1
1

addr

addr[1:0] = Hit?

addr[3:2]

0
1

101 100
101 100

a
b

c
d

1
1

1
1

addr

addr[0]

=

addr[3:1]

=

Carnegie Mellon

Associative verses Direct Mapped Trade-offs
• Direct-Mapped cache

• Generally lower hit rate
• Simpler, Faster

• Associative cache

• Generally higher hit rate. Better utilization of cache resources
• Slower. Why?

!28

00
01
10
11

10

10
10

10

a
b
c
d

1
1
1
1

addr

addr[1:0] = Hit?

addr[3:2]

0
1

101 100
101 100

a
b

c
d

1
1

1
1

addr

addr[0]

=

addr[3:1]

=

Hit?

Or

