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Announcement

* Recall: 75 full score + 20 extra credit
e Max: 90

e Min: 11.3

* Median: 58.25

* Mean: 57.71

e Standard Deviation: 16.23
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* Point distribution:
e 8% per lab: 40% in total
e 22% for mid-term
* 38% for final

* If you can’t make an office hour (mine or TAs), feel free to email
and/or schedule a different time at your convenience
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Fully Associative Cache

Content Valid? Tag

Every memory location can be mapped to any
cache line in the cache.

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

OxEF

OxAC

0x06

0x70




Fully Associative Cache

B 1001 B 1010 B 1101

/ ‘[ \ 0000
Content Valid? Tag 0001

0010
0011

* Every memory location can be mapped to any

cache line in the cache. o
e Given a request to address A from the CPU, 0110
detecting cache hit/miss requires: 0111
e Comparing address A with all four tags in 1000) OXEF
the cache (a.k.a., associative search) 18‘1’; %’)‘(’%‘g

1011
1100
1101 0x70
1110
1111




Fully Associative Cache

B 1001 B 1010 B 1101

// T K\\ 0000
Content Valid? Tag 0001

0010
0011

* Every memory location can be mapped to any

cache line in the cache. o
e Given a request to address A from the CPU, 0110
detecting cache hit/miss requires: 0111
e Comparing address A with all four tags in 1000) OXEF
the cache (a.k.a., associative search) 183; %’)‘(’%‘g
* A cache line: content + valid bit + tag bits 1011
e \alid bit + tag bits are “overhead” 1100
1101, OX70

e Content is what you really want to store 110

 But we need valid and tag bits to correctly 1111
access the cache
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2-Way Associative Cache

B o1
B 10

Content Valid? Tag

e 4 cache lines are organized into two sets; each
set has 2 cache lines (i.e., 2 ways)

e Even address go to first set and odd addresses
go to the second set

e Each address can be mapped to either cache
line in the same set

e Using the LSB to find the set (i.e., odd vs.
even)

* Tag now stores the higher 3 bits instead of
the entire address
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2-Way Associative Cache

Content Valid? Tag

* Given a request to address, say 1011, from the
CPU, detecting cache hit/miss requires:

e Using the LSB to index into the cache and
find the corresponding set, in this case set 1

* Then do an associative search in that set,
l.e., compare the highest 3 bits 101 with both
tags in set 1

e Only two comparisons required
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Direct-Mapped (1-way Associative) Cache

Content Valid? Tag

e 4 cache lines are organized into four sets

e Each memory localization can only be
mapped to one set

* Using the 2 LSBs to find the set
* Tag now stores the higher 2 bits
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Direct-Mapped (1-way Associative) Cache

Content Valid? Tag

* Given a request to address, say 1101, from the
CPU, detecting cache hit/miss requires:

e Using the 2 LSBs to index into the cache and
find the set, in this case set 01

* Then do an associative search in that set,
l.e., compare the highest 2 bits 11 in the
address with the tag in set 01 —> miss

e Only one comparison required
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Associative verses Direct Mapped Trade-offs

* Direct-Mapped cache
* Generally lower hit rate

e Simpler, Faster
e Associative cache

* Generally higher hit rate. Better utilization of cache resources

* Slower and higher power consumption. Why?

AT

addr

1

addr

@

13



Associative verses Direct Mapped Trade-offs
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Cache Organization

* Finding a name in a roster

e If the roster is completely unorganized
* Need to compare the name with all the names in the roster
* Same as a fully-associative cache

* If the roster is ordered by last name, and within the same last
name different first names are unordered

* First find the last name group

 Then compare the first name with all the first names in the
same group

e Same as a set-associative cache

15



Cache Access Summary (So far...)

* Assuming b bits in a memory address

e The b bits are split into two halves:
* Lower s bits used as index to find a set. Total sets S = 2s
e The higher (b - s) bits are used for the tag

e Associativity n (i.e., the number of ways in a cache set) is
independent of the the split between index and tag

b S 0

tag iIndex

Memory
Address
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Locality again

* So far: temporal locality
e \What about spatial?
e |dea: Each cache location (cache line) store multiple bytes

17
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Cache Access Summary

e Assuming b bits in a memory address
e The b bits are split into three fields:

* Lower [ bits are used for byte offset within a cache line. Cache line
sizeL=2

* Next s bits used as index to find a set. Total sets S = 2s

e The higher (b -/ - s) bits are used for the tag

e Associativity n is independent of the the split between index and tag

b [+s / 0

index ‘ offset ‘

Memory
Address tag
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Handling Reads

* Read miss: Put into cache
e Any reason not to put into cache?
* Read hit: Nothing special. Enjoy the hit!
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Handling Writes (Hit)

e Intricacy: data value is modified!
¢ Implication: value in cache will be different from that in memory/!

¢ \When do we write the modified data in a cache to the next level?
¢ \Vrite through: At the time the write happens
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Handling Writes (Hit)

e Intricacy: data value is modified!
¢ Implication: value in cache will be different from that in memory/!

¢ \When do we write the modified data in a cache to the next level?
¢ \Vrite through: At the time the write happens
¢ \/\rite back: When the cache line is evicted

¢ \Write-back
e + Can consolidate multiple writes to the same block before eviction. Potentially

saves bandwidth between cache and memory + saves energy
¢ - Need a bit in the tag store indicating the block is “dirty/modified”

¢ \Write-through
e + Simpler
e + Memory is up to date
¢ - More bandwidth intensive; no coalescing of writes

e - Requires transfer of the whole cache line (although only one byte might have
been modified)
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Handling Writes (Miss)

e Do we allocate a cache line on a write miss?
o \/\/rite-allocate: Allocate on write miss
e Non-\Write-Allocate: No-allocate on write miss

e Allocate on write miss
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Handling Writes (Miss)

e Do we allocate a cache line on a write miss?
o \/\/rite-allocate: Allocate on write miss
o Non-Write-Allocate: No-allocate on write miss

¢ Allocate on write miss
e + Can consolidate writes instead of writing each of them
individually to memory

e + Simpler because write misses can be treated the same way
as read misses

e Non-allocate

e + Conserves cache space if locality of writes is low (potentially
better cache hit rate)
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Instruction vs. Data Caches

e Separate or Unified?

e Unified:
¢ + Dynamic sharing of cache space: no overprovisioning that might
happen with static partitioning (i.e., split Inst and Data caches)
e - |nstructions and data can thrash each other (i.e., no guaranteed
space for either)
¢ - |[nst and Data are accessed in different places in the pipeline.
Where do we place the unified cache for fast access?

e First level caches are almost always split
e Mainly for the last reason above

e Second and higher levels are almost always unified
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* Which cache line should be replaced?
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Eviction/Replacement Policy

* Which cache line should be replaced?
e Direct mapped? Only one place!
e Associative caches”? Multiple places!
e For associative cache:
e Any invalid cache line first
e [f all are valid, consult the replacement policy
e Randomly pick one”???

e |deally: Replace the cache line that’s least likely going to be
used again

e Approximation: Least recently used (LRU)
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Implementing LRU

* |dea: Evict the least recently accessed block
e Challenge: Need to keep track of access ordering of blocks

e Question: 2-way set associative cache:
¢ \What do you need to implement LRU perfectly”? One bit?

Cache Lines HE Bl

LRU index (1-bit) ]
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Implementing LRU

Address stream:
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Implementing LRU

* Question: 4-way set associative cache:
e \What do you need to implement LRU perfectly?
¢ \Will the same mechanism work?
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Implementing LRU

* Question: 4-way set associative cache:
e \What do you need to implement LRU perfectly?
¢ \Will the same mechanism work?
¢ Essentially have to track the ordering of all cache lines
e How many possible orderings are there?
¢ \What are the hardware structures needed?
¢ |n reality, true LRU is never implemented. Too complex.

e Google Pseudo-LRU
Address stream:

CacheLines BOM IEM BOE ’ E‘I O”g
. IT ON
LRU index (2 bits) Ca . Hit on 3

What to update now??? « Miss, evict 1
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