CSC 252: Computer Organization
Spring 2020: Lecture 17

Instructor: Yuhao Zhu

Department of Computer Science
University of Rochester

Announcement

* Recall: 75 full score + 20 extra credit
e Max: 90

e Min: 11.3

* Median: 58.25

* Mean: 57.71

e Standard Deviation: 16.23

Announcement

* Mid-term grade distribution

21

17

13

+

0-25

Announcement

Announcement

* Point distribution:
e 8% per lab: 40% in total
e 22% for mid-term
* 38% for final

Announcement

* Point distribution:
e 8% per lab: 40% in total
e 22% for mid-term
* 38% for final

* If you can’t make an office hour (mine or TAs), feel free to email
and/or schedule a different time at your convenience

Cache lllustrations

CPU

Memory

(big but slow)

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Cache lllustrations

CPU

Cache
(small but fast)

Memory
(big but slow)

8 9 14 3
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Cache lllustrations

CPU

Cache
(small but fast)

Memory
(big but slow)

Request Data
at Address 14

8 9 14 3
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Data in address b is needed

Cache lllustrations

CPU
Request Data Data in address b is needed
at Address 14
Cache ..)
(small but fast) 8 9 14 3 Address b is in cache: Hit!
0 1 2 3
Memory 2 z S -
(big but slow)
8 9 10 11
12 13 14 15
0000000000 00000 OCOG®OIOIO

Cache lllustrations

CPU

Cache
(small but fast)

Memory
(big but slow)

8 9 14 3
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Cache lllustrations

CPU

Cache
(small but fast)

Memory
(big but slow)

Request data
at Address 12
8 9 14 3
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Cache lllustrations

CPU
Request data Data in address b is needed
at Address 12
Cache 3 S 12 3 Address b is not in
(small but fast) cache: Miss!
0 1 2 3
Memory
(big but slow) 4 S 6 !
8 9 10 11
12 13 14 15
0 000000000000 O0COGCOGEOGSOSO

Cache lllustrations

CPU

Cache

(small but fast)

Memory

(big but slow)

Request data
at Address 12

8 9 14 3

Request: 12
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Data in address b is needed

Address b is not in
cache: Miss!

Address b is fetched from
memory

Cache lllustrations

CPU

Cache

(small but fast)

Memory

(big but slow)

Request data
at Address 12

8 9 14 3

Request: 12
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Data in address b is needed

Address b is not in
cache: Miss!

Address b is fetched from
memory

Cache lllustrations

CPU
Request data Data in address b is needed
at Address 12
Cache 3 S 12 3 Address b is not in
(small but fast) cache: Miss!
_ Address b is fetched from
12 Request: 12
memory
0 1 2 3
Memory 2 : 5 -
(big but slow)
8 9 10 11
12 13 14 15
0 000000000000 O0COGCOGEOGSOSO

Cache lllustrations

CPU

Cache

(small but fast)

Memory

(big but slow)

Request data
at Address 12

8 12 14 3

Request: 12
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Data in address b is needed

Address b is not in
cache: Miss!

Address b is fetched from
memory

Address b is stored in cache

Fully Associative Cache

Content Valid? Tag

Every memory location can be mapped to any
cache line in the cache.

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

OxEF

OxAC

0x06

0x70

Fully Associative Cache

B 1001 B 1010 B 1101

/ ‘[\ 0000
Content Valid? Tag 0001

0010
0011

* Every memory location can be mapped to any

cache line in the cache. o
e Given a request to address A from the CPU, 0110
detecting cache hit/miss requires: 0111
e Comparing address A with all four tags in 1000) OXEF
the cache (a.k.a., associative search) 18‘1’; %’)‘(’%‘g

1011
1100
1101 0x70
1110
1111

Fully Associative Cache

B 1001 B 1010 B 1101

// T K\\ 0000
Content Valid? Tag 0001

0010
0011

* Every memory location can be mapped to any

cache line in the cache. o
e Given a request to address A from the CPU, 0110
detecting cache hit/miss requires: 0111
e Comparing address A with all four tags in 1000) OXEF
the cache (a.k.a., associative search) 183; %’)‘(’%‘g
* A cache line: content + valid bit + tag bits 1011
e \alid bit + tag bits are “overhead” 1100
1101, OX70

e Content is what you really want to store 110

 But we need valid and tag bits to correctly 1111
access the cache

2-Way Associative Cache

B o1

Content Valid? Tag

e 4 cache lines are organized into two sets; each
set has 2 cache lines (i.e., 2 ways)

2-Way Associative Cache

B o1

Content Valid? Tag

e 4 cache lines are organized into two sets; each
set has 2 cache lines (i.e., 2 ways)

e Even address go to first set and odd addresses
go to the second set

2-Way Associative Cache

B o1
B 10

Content Valid? Tag

e 4 cache lines are organized into two sets; each
set has 2 cache lines (i.e., 2 ways)

e Even address go to first set and odd addresses
go to the second set

e Each address can be mapped to either cache
line in the same set

e Using the LSB to find the set (i.e., odd vs.
even)

* Tag now stores the higher 3 bits instead of
the entire address

2-Way Associative Cache

B o1

Content Valid? Tag

* Given a request to address, say 1011, from the
CPU, detecting cache hit/miss requires:

10

2-Way Associative Cache

Content Valid? Tag

* Given a request to address, say 1011, from the
CPU, detecting cache hit/miss requires:

e Using the LSB to index into the cache and
find the corresponding set, in this case set 1

10

2-Way Associative Cache

Content Valid? Tag

* Given a request to address, say 1011, from the
CPU, detecting cache hit/miss requires:
e Using the LSB to index into the cache and
find the corresponding set, in this case set 1

* Then do an associative search in that set,
l.e., compare the highest 3 bits 101 with both
tags in set 1

10

2-Way Associative Cache

Content Valid? Tag

* Given a request to address, say 1011, from the
CPU, detecting cache hit/miss requires:

e Using the LSB to index into the cache and
find the corresponding set, in this case set 1

* Then do an associative search in that set,
l.e., compare the highest 3 bits 101 with both
tags in set 1

e Only two comparisons required

10

Direct-Mapped (1-way Associative) Cache

Content Valid? Tag

e 4 cache lines are organized into four sets

e Each memory localization can only be
mapped to one set

* Using the 2 LSBs to find the set
* Tag now stores the higher 2 bits

11

Direct-Mapped (1-way Associative) Cache

Content Valid? Tag

* Given a request to address, say 1101, from the
CPU, detecting cache hit/miss requires:

12

Direct-Mapped (1-way Associative) Cache

Content Valid? Tag

* Given a request to address, say 1101, from the
CPU, detecting cache hit/miss requires:

e Using the 2 LSBs to index into the cache and
find the set, in this case set 01

12

Direct-Mapped (1-way Associative) Cache

Content Valid? Tag

* Given a request to address, say 1101, from the
CPU, detecting cache hit/miss requires:

e Using the 2 LSBs to index into the cache and
find the set, in this case set 01

* Then do an associative search in that set,
l.e., compare the highest 2 bits 11 in the
address with the tag in set 01 —> miss

12

Direct-Mapped (1-way Associative) Cache

Content Valid? Tag

* Given a request to address, say 1101, from the
CPU, detecting cache hit/miss requires:

e Using the 2 LSBs to index into the cache and
find the set, in this case set 01

* Then do an associative search in that set,
l.e., compare the highest 2 bits 11 in the
address with the tag in set 01 —> miss

e Only one comparison required

Associative verses Direct Mapped Trade-offs

Associative verses Direct Mapped Trade-offs

* Direct-Mapped cache
* Generally lower hit rate
e Simpler, Faster

13

Associative verses Direct Mapped Trade-offs

* Direct-Mapped cache
* Generally lower hit rate
e Simpler, Faster

addr

Associative verses Direct Mapped Trade-offs

* Direct-Mapped cache
* Generally lower hit rate
e Simpler, Faster
e Associative cache
* Generally higher hit rate. Better utilization of cache resources
* Slower and higher power consumption. Why?

0
1

addr @

Associative verses Direct Mapped Trade-offs

* Direct-Mapped cache
* Generally lower hit rate
e Simpler, Faster
e Associative cache
* Generally higher hit rate. Better utilization of cache resources
* Slower and higher power consumption. Why?

1

b oo
addr addr

Associative verses Direct Mapped Trade-offs

* Direct-Mapped cache
* Generally lower hit rate
e Simpler, Faster
e Associative cache
* Generally higher hit rate. Better utilization of cache resources
* Slower and higher power consumption. Why?

1

l
e

b oo
addr addr

Associative verses Direct Mapped Trade-offs

* Direct-Mapped cache
* Generally lower hit rate

e Simpler, Faster
e Associative cache

* Generally higher hit rate. Better utilization of cache resources

* Slower and higher power consumption. Why?

AT

addr

1

addr

@

13

Associative verses Direct Mapped Trade-offs

0.1

0.01

0.001
v
.

p 1e-04
=

1e-05

1e-06

1 1 1 1 1
1K 4K 16K 64K 25K i Inf
cache size

Miss rate versus cache size on the Integer portion of SPEC CPU2000

14

Cache Organization

* Finding a name in a roster

e If the roster is completely unorganized
* Need to compare the name with all the names in the roster
* Same as a fully-associative cache

* If the roster is ordered by last name, and within the same last
name different first names are unordered

* First find the last name group

 Then compare the first name with all the first names in the
same group

e Same as a set-associative cache

15

Cache Access Summary (So far...)

* Assuming b bits in a memory address

e The b bits are split into two halves:
* Lower s bits used as index to find a set. Total sets S = 2s
e The higher (b - s) bits are used for the tag

e Associativity n (i.e., the number of ways in a cache set) is
independent of the the split between index and tag

b S 0

tag iIndex

Memory
Address

16

Locality again

* So far: temporal locality
e \What about spatial?
e |dea: Each cache location (cache line) store multiple bytes

17

Cache-Line Size of 2

Cache

addr[1:0]

Q
Qo
o
=

-

—» Hit?

é

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory

Q0|

18

Cache-Line Size of 2

Cache Memory

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100

| 1101
addr[1:0] @_’ Hit? 1110
1111

addr @

Q0|

Cache-Line Size of 2

Cache Memory e Read 1000

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100

| 1101
addr[1:0] @_’ Hit? 1110
1111

addr @

Q0|

Cache-Line Size of 2

Cache

addr[1:0]

‘T

addr

@—» Hit?

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory

Q0|

e Read 1000
* Read 1001 (Hit!)

18

Cache-Line Size of 2

Cache

addr[1:0]

‘T

addr

|

@—» Hit?

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory

Q0|

e Read 1000
* Read 1001 (Hit!)
e Read 1010

18

Cache-Line Size of 2
Cache Memory Read 1000
0001 Read 1001 (Hit!)
gg—_lg’ Read 1010
Read 1011 (Hit))

0100
0101
0110
0111
1000

1001
1010
1011
1100
. 1101
@—V Hit? 1110
1111
T
addr @

Q0|

18

Cache Access Summary

e Assuming b bits in a memory address
e The b bits are split into three fields:

* Lower [bits are used for byte offset within a cache line. Cache line
sizeL=2

* Next s bits used as index to find a set. Total sets S = 2s

e The higher (b -/ - s) bits are used for the tag

e Associativity n is independent of the the split between index and tag

b [+s / 0

index ‘ offset ‘

Memory
Address tag

19

Handling Reads

Handling Reads

e Read miss: Put into cache

233

Handling Reads

* Read miss: Put into cache
e Any reason not to put into cache?

233

Handling Reads

* Read miss: Put into cache
e Any reason not to put into cache?
* Read hit: Nothing special. Enjoy the hit!

233

Handling Writes (Hit)

e Intricacy: data value is modified!
¢ Implication: value in cache will be different from that in memory/!

¢ \When do we write the modified data in a cache to the next level?
¢ \Vrite through: At the time the write happens

21

Handling Writes (Hit)

e Intricacy: data value is modified!
¢ Implication; value in cache will be different from that in memory!

¢ \When do we write the modified data in a cache to the next level?
¢ \\rite through: At the time the write happens
¢ \/\rite back: When the cache line is evicted

21

Handling Writes (Hit)

e Intricacy: data value is modified!
¢ Implication: value in cache will be different from that in memory/!

¢ \When do we write the modified data in a cache to the next level?
¢ \Vrite through: At the time the write happens
¢ \/\rite back: When the cache line is evicted

e \Write-back

e + Can consolidate multiple writes to the same block before eviction. Potentially
saves bandwidth between cache and memory + saves energy
¢ - Need a bit in the tag store indicating the block is “dirty/modified”

21

Handling Writes (Hit)

e Intricacy: data value is modified!
¢ Implication: value in cache will be different from that in memory/!

¢ \When do we write the modified data in a cache to the next level?
¢ \Vrite through: At the time the write happens
¢ \/\rite back: When the cache line is evicted

e \Write-back

e + Can consolidate multiple writes to the same block before eviction. Potentially
saves bandwidth between cache and memory + saves energy
¢ - Need a bit in the tag store indicating the block is “dirty/modified”

21

Handling Writes (Hit)

e Intricacy: data value is modified!
¢ Implication: value in cache will be different from that in memory/!

¢ \When do we write the modified data in a cache to the next level?
¢ \Vrite through: At the time the write happens
¢ \/\rite back: When the cache line is evicted

e \Write-back

e + Can consolidate multiple writes to the same block before eviction. Potentially
saves bandwidth between cache and memory + saves energy
¢ - Need a bit in the tag store indicating the block is “dirty/modified”

¢ \Write-through

21

Handling Writes (Hit)

e Intricacy: data value is modified!
¢ Implication: value in cache will be different from that in memory/!

¢ \When do we write the modified data in a cache to the next level?
¢ \Vrite through: At the time the write happens
¢ \/\rite back: When the cache line is evicted

e \Write-back

e + Can consolidate multiple writes to the same block before eviction. Potentially
saves bandwidth between cache and memory + saves energy
¢ - Need a bit in the tag store indicating the block is “dirty/modified”

¢ \Write-through
e + Simpler

21

Handling Writes (Hit)

e Intricacy: data value is modified!
¢ Implication: value in cache will be different from that in memory/!

¢ \When do we write the modified data in a cache to the next level?
¢ \Vrite through: At the time the write happens
¢ \/\rite back: When the cache line is evicted

e \Write-back

e + Can consolidate multiple writes to the same block before eviction. Potentially
saves bandwidth between cache and memory + saves energy
¢ - Need a bit in the tag store indicating the block is “dirty/modified”

¢ \Write-through

e + Simpler
e + Memory is up to date

21

Handling Writes (Hit)

e Intricacy: data value is modified!
¢ Implication: value in cache will be different from that in memory/!

¢ \When do we write the modified data in a cache to the next level?
¢ \Vrite through: At the time the write happens
¢ \/\rite back: When the cache line is evicted

e \Write-back

e + Can consolidate multiple writes to the same block before eviction. Potentially
saves bandwidth between cache and memory + saves energy
¢ - Need a bit in the tag store indicating the block is “dirty/modified”

¢ \Write-through
e + Simpler
e + Memory is up to date
¢ - More bandwidth intensive; no coalescing of writes

21

Handling Writes (Hit)

e Intricacy: data value is modified!
¢ Implication: value in cache will be different from that in memory/!

¢ \When do we write the modified data in a cache to the next level?
¢ \Vrite through: At the time the write happens
¢ \/\rite back: When the cache line is evicted

¢ \Write-back
e + Can consolidate multiple writes to the same block before eviction. Potentially

saves bandwidth between cache and memory + saves energy
¢ - Need a bit in the tag store indicating the block is “dirty/modified”

¢ \Write-through
e + Simpler
e + Memory is up to date
¢ - More bandwidth intensive; no coalescing of writes

e - Requires transfer of the whole cache line (although only one byte might have
been modified)

21

Handling Writes (Miss)

e Do we allocate a cache line on a write miss?
o \/\/rite-allocate: Allocate on write miss
e Non-\Write-Allocate: No-allocate on write miss

e Allocate on write miss

22

Handling Writes (Miss)

e Do we allocate a cache line on a write miss?
o \/\/rite-allocate: Allocate on write miss
o Non-Write-Allocate: No-allocate on write miss

¢ Allocate on write miss
e + Can consolidate writes instead of writing each of them
individually to memory

22

Handling Writes (Miss)

e Do we allocate a cache line on a write miss?
o \/\/rite-allocate: Allocate on write miss
o Non-Write-Allocate: No-allocate on write miss

e Allocate on write miss
e + Can consolidate writes instead of writing each of them
individually to memory
e + Simpler because write misses can be treated the same way
as read misses

22

Handling Writes (Miss)

e Do we allocate a cache line on a write miss?
o \/\/rite-allocate: Allocate on write miss
o Non-Write-Allocate: No-allocate on write miss

¢ Allocate on write miss
e + Can consolidate writes instead of writing each of them
individually to memory

e + Simpler because write misses can be treated the same way
as read misses

e Non-allocate

e + Conserves cache space if locality of writes is low (potentially
better cache hit rate)

22

Instruction vs. Data Caches

e Separate or Unified?

23

Instruction vs. Data Caches

e Separate or Unified?

e Unified:

23

Instruction vs. Data Caches

e Separate or Unified?

e Unified:
¢ + Dynamic sharing of cache space: no overprovisioning that might
happen with static partitioning (i.e., split Inst and Data caches)

23

Instruction vs. Data Caches

e Separate or Unified?

e Unified:
¢ + Dynamic sharing of cache space: no overprovisioning that might
happen with static partitioning (i.e., split Inst and Data caches)
e - |nstructions and data can thrash each other (i.e., no guaranteed
space for either)

23

Instruction vs. Data Caches

e Separate or Unified?

e Unified:
¢ + Dynamic sharing of cache space: no overprovisioning that might
happen with static partitioning (i.e., split Inst and Data caches)
e - |nstructions and data can thrash each other (i.e., no guaranteed
space for either)
¢ - |[nst and Data are accessed in different places in the pipeline.
Where do we place the unified cache for fast access?

23

Instruction vs. Data Caches

e Separate or Unified?

e Unified:
¢ + Dynamic sharing of cache space: no overprovisioning that might
happen with static partitioning (i.e., split Inst and Data caches)
e - |nstructions and data can thrash each other (i.e., no guaranteed
space for either)
¢ - |[nst and Data are accessed in different places in the pipeline.
Where do we place the unified cache for fast access?

e First level caches are almost always split
e Mainly for the last reason above

e Second and higher levels are almost always unified

23

Eviction/Replacement Policy

* Which cache line should be replaced?

24

Eviction/Replacement Policy

* Which cache line should be replaced?
e Direct mapped? Only one place!

24

Eviction/Replacement Policy

* Which cache line should be replaced?
e Direct mapped? Only one place!
e Associative caches”? Multiple places!

24

Eviction/Replacement Policy

* Which cache line should be replaced?
e Direct mapped? Only one place!
e Associative caches”? Multiple places!
e For associative cache:

24

Eviction/Replacement Policy

* Which cache line should be replaced?
e Direct mapped? Only one place!
e Associative caches”? Multiple places!
e For associative cache:
e Any invalid cache line first

24

Eviction/Replacement Policy

* Which cache line should be replaced?
e Direct mapped? Only one place!
e Associative caches”? Multiple places!
e For associative cache:
e Any invalid cache line first
e [f all are valid, consult the replacement policy

24

Eviction/Replacement Policy

* Which cache line should be replaced?
e Direct mapped? Only one place!
e Associative caches”? Multiple places!
e For associative cache:
e Any invalid cache line first
e [f all are valid, consult the replacement policy
e Randomly pick one”???

24

Eviction/Replacement Policy

* Which cache line should be replaced?
e Direct mapped? Only one place!
e Associative caches”? Multiple places!
e For associative cache:
e Any invalid cache line first
e [f all are valid, consult the replacement policy
e Randomly pick one”???

e |deally: Replace the cache line that’s least likely going to be
used again

24

Eviction/Replacement Policy

* Which cache line should be replaced?
e Direct mapped? Only one place!
e Associative caches”? Multiple places!
e For associative cache:
e Any invalid cache line first
e [f all are valid, consult the replacement policy
e Randomly pick one”???

e |deally: Replace the cache line that’s least likely going to be
used again

e Approximation: Least recently used (LRU)

24

Implementing LRU

* |dea: Evict the least recently accessed block
e Challenge: Need to keep track of access ordering of blocks

e Question: 2-way set associative cache:
¢ \What do you need to implement LRU perfectly”? One bit?

Cache Lines HE Bl

LRU index (1-bit)]

25

Implementing LRU

* |dea: Evict the least recently accessed block
e Challenge: Need to keep track of access ordering of blocks

e Question: 2-way set associative cache:
¢ \What do you need to implement LRU perfectly”? One bit?

Address stream:

« Hton O
Cache Lines HE Bl . Hit on 1

« Miss, evict O
LRU index (1-bit)]

25

Implementing LRU

* |dea: Evict the least recently accessed block
e Challenge: Need to keep track of access ordering of blocks

e Question: 2-way set associative cache:
¢ \What do you need to implement LRU perfectly”? One bit?

i Address stream:

« Hton O <+
Cache Lines HE Bl . Hit on 1

« Miss, evict O
LRU index (1-bit) 1

25

Implementing LRU

* |dea: Evict the least recently accessed block
e Challenge: Need to keep track of access ordering of blocks

e Question: 2-way set associative cache:
¢ \What do you need to implement LRU perfectly”? One bit?

* Address stream:

* Hiton O
Cache Lines Il EN . Hit on 1 <

« Miss, evict O
LRU index (1-bit) L 0

25

Implementing LRU

* |dea: Evict the least recently accessed block
e Challenge: Need to keep track of access ordering of blocks

e Question: 2-way set associative cache:
¢ \What do you need to implement LRU perfectly”? One bit?

Address stream:

« Hton O
Cache Lines HE Bl . Hit on 1

« Miss, evict 0 €—
LRU index (1-bit) L 0

25

Implementing LRU

* |dea: Evict the least recently accessed block
e Challenge: Need to keep track of access ordering of blocks

e Question: 2-way set associative cache:
¢ \What do you need to implement LRU perfectly”? One bit?

Address stream:

« Hton O
Cache Lines HE Bl . Hit on 1

« Miss, evict 0 €—
LRU index (1-bit) 1

25

Implementing LRU

Address stream:

CacheLines NI NI el ' m ong
°* At oNn
LRU index (2 bits) L0 . Uit on 3

« Miss, evict 1

26

Implementing LRU

* Question: 4-way set associative cache:
e \What do you need to implement LRU perfectly?
¢ \Will the same mechanism work?

Address stream:

CacheLines BOM IEM BOE ’ E‘I O”g
. IT ON
LRU index (2 bits) 1 . Hit on 3

- Miss, evict 1

26

Implementing LRU

* Question: 4-way set associative cache:
e \What do you need to implement LRU perfectly?
¢ \Will the same mechanism work?

Address stream:

CacheLines NI NI el ' m ong -
°* At oNn
LRU index (2 bits) L0 . Uit on 3

« Miss, evict 1

26

Implementing LRU

* Question: 4-way set associative cache:
e \What do you need to implement LRU perfectly?
¢ \Will the same mechanism work?

Address stream:

CacheLines NI NI el * Hiton O
: . * Hiton 2 =
LRU index (2 bits) L0 . Uit on 3

« Miss, evict 1

26

Implementing LRU

* Question: 4-way set associative cache:
e \What do you need to implement LRU perfectly?
¢ \Will the same mechanism work?

Address stream:

CachelLines B IEm W ‘ m O”g
° IT ON
LRU index (2 bits) 1 . Hit on 3 <

- Miss, evict 1

26

Implementing LRU

* Question: 4-way set associative cache:
e \What do you need to implement LRU perfectly?
¢ \Will the same mechanism work?

Address stream:

CacheLines BOM IEM BOE ’ E‘I O”g
. IT ON
LRU index (2 bits) 1 . Hit on 3

« Miss, evict1 <—

26

Implementing LRU

* Question: 4-way set associative cache:
e \What do you need to implement LRU perfectly?
¢ \Will the same mechanism work?

Address stream:

CacheLines BOM IEM BOE ’ E‘I O”g
. IT ON
LRU index (2 bits) 1 . Hit on 3

What to update now??? « Miss, evict 1

26

Implementing LRU

* Question: 4-way set associative cache:
e \What do you need to implement LRU perfectly?
¢ \Will the same mechanism work?
¢ Essentially have to track the ordering of all cache lines

Address stream:

CacheLines BOM IEM BOE ’ E‘I O”g
. IT ON
LRU index (2 bits) 1 . Hit on 3

What to update now??? « Miss, evict 1

26

Implementing LRU

* Question: 4-way set associative cache:
e \What do you need to implement LRU perfectly?
¢ \Will the same mechanism work?
¢ Essentially have to track the ordering of all cache lines
e How many possible orderings are there?

Address stream:

CacheLines BOM IEM BOE ’ E‘I O”g
. IT ON
LRU index (2 bits) 1 . Hit on 3

What to update now??? « Miss, evict 1

26

Implementing LRU

* Question: 4-way set associative cache:
e \What do you need to implement LRU perfectly?
¢ \Will the same mechanism work?
¢ Essentially have to track the ordering of all cache lines
e How many possible orderings are there?
¢ \What are the hardware structures needed?

Address stream:

CacheLines BOM IEM BOE ’ E‘I O”g
. IT ON
LRU index (2 bits) 1 . Hit on 3

What to update now??? « Miss, evict 1

26

Implementing LRU

* Question: 4-way set associative cache:
e \What do you need to implement LRU perfectly?
¢ \Will the same mechanism work?
¢ Essentially have to track the ordering of all cache lines
e How many possible orderings are there?
¢ \What are the hardware structures needed?
¢ |n reality, true LRU is never implemented. Too complex.

Address stream:

CacheLines BOM IEM BOE ’ E‘I O”g
. IT ON
LRU index (2 bits) Ca . Hit on 3

What to update now??? « Miss, evict 1

26

Implementing LRU

* Question: 4-way set associative cache:
e \What do you need to implement LRU perfectly?
¢ \Will the same mechanism work?
¢ Essentially have to track the ordering of all cache lines
e How many possible orderings are there?
¢ \What are the hardware structures needed?
¢ |n reality, true LRU is never implemented. Too complex.

e Google Pseudo-LRU
Address stream:

CacheLines BOM IEM BOE ’ E‘I O”g
. IT ON
LRU index (2 bits) Ca . Hit on 3

What to update now??? « Miss, evict 1

26

