CSC 252: Computer Organization
Spring 2020: Lecture 18

Instructor: Yuhao Zhu

Department of Computer Science
University of Rochester

Announcements

e Cache problem set: https:/www.cs.rochester.edu/
courses/252/spring2020/handouts.htmi

* Not to be turned in
* Assignment 4 soon to be released later today

https://www.cs.rochester.edu/courses/252/spring2020/handouts.html
https://www.cs.rochester.edu/courses/252/spring2020/handouts.html
https://www.cs.rochester.edu/courses/252/spring2020/handouts.html

General Cache Organization (S, E, B)

E = 2¢ lines per set

'd A N\
4 —
t -
d oo
S = +
2s sets
+..

General Cache Organization (S, E, B)

E = 2¢ lines per set
A

0 boos &\ji::/
| S
= < +ooo
2s sets
\ Jeeo

\4 tag 0j1]2] - B-1

N— i
~—

B = 2b bytes per cache block (the data)
3

General Cache Organization (S, E, B)

E = 2¢ lines per set
A

Tooc -

oo

S= < +..o

Tooc

v tag 011]2] =< B-1
\ N— 7
~—

valid bit B = 2b bytes per cache block (the data)
3

General Cache Organization (S, E, B)

E = 2¢ lines per set

A
'd N\

4 —
+ooo \\
+0..0

S: < +ooo
2s sets

k +000

d ' tag 011]2] =< B-1

dirty bit / ~ ~—

(if write-back) valid bit B = 2b bytes per cache block (the data)
3

General Cache Organization (S, E, B)

E = 2¢ lines per set
A

Tooc

lacoc

Tooc

Tooc

N\
L

\

Cache size:

C =S x E x B data bytes

Overhead:
Tag, valid bit, dirty bit.
Plus bits for implementing

replacement policy

(not shown).

T ——

d \'}

tag

B-1

dirty bit / \

7

(if write-back) valid bit

B = 2b bytes per cache block (the data)

3

Cache Access

E = 2¢ lines per set
A

' Y
-
o0 00
Address of word:
eoee t bits | s bits | b bits
_ — A
S = 2s st eeee tag set Line

index offset

Cache Access

S = 2s set¥

E = 2¢ lines per set
A

» Locate set

Address of word:

t bits s bits | b bits

— A

tag set Line
index offset

Cache Access

S = 2s set¥

E = 2¢ lines per set

A

* Locate set

« Check if any line in set
has matching tag

* Yes + line valid: hit

Address of word:
t bits s bits | b bits
— "
tag set Line
index offset

\'J

tag

B-1

A

|
valid bit

7

B = 2b bytes per cache block (the data)

Cache Access

S = 2s set¥

E = 2¢ lines per set
A

 Locate set
« Check if any line in set
has matching tag
* Yes + line valid: hit
 Locate data starting
at offset

Address of word:
t bits s bits | b bits
— "
tag set Line
index offset

data begins at this offset

\V/ tag 0 1 2 B-1

A
| — _

valid bit B = 2b bytes per cache block (the data)

Example: Direct Mapped Cache

Direct mapped: One line per set
Assume: cache block size 8 bytes

(Address of char:

v | tag | [0]1]|2[3]4]|5]|6]7 tbits | 0...01 100

vl | tag | [o|1]2]|3]4]5]6]7

S=Zsset§
v tag o[1|2]3|4]|5]|6|7

\"} tag 01]1]213]|41]|5]|6]|7

Example: Direct Mapped Cache

Direct mapped: One line per set
Assume: cache block size 8 bytes

(Address of char:

v | tag | [0]1]|2[3]4]|5]|6]7 tbits | 0...01 100

vl | tag | [o|1]2]|3]4]5]6]7

find set

S=Zsset§
v tag o[1|2]3|4]|5]|6|7

\"} tag 01]1]213]|41]|5]|6]|7

Example: Direct Mapped Cache

Direct mapped: One line per set
Assume: cache block size 8 bytes

Address of char:

tbits | 0...01 [100

Example: Direct Mapped Cache

Direct mapped: One line per set
Assume: cache block size 8 bytes

Address of char:

valid? +match: assume yes = hit

tbits | 0...01 [100

v tag 0|1]2|3]14|5]|6]7

Example: Direct Mapped Cache

Direct mapped: One line per set
Assume: cache block size 8 bytes

Address of char:

valid? +match: assume yes = hit

tbits | 0...01 [100

v tag 0|1]2|3]14|5]|6]7

block offset

Example: Direct Mapped Cache

Direct mapped: One line per set
Assume: cache block size 8 bytes

Address of char:

valid? +match: assume yes = hit

tbits | 0...01 [100

vl | tag | [o|1]2|3]4]5]6]7

block offset

Byte 4 is here

Example: Direct Mapped Cache

Direct mapped: One line per set
Assume: cache block size 8 bytes

Address of char:

valid? +match: assume yes = hit

tbits | 0...01 [100

vl | tag | [o|1]2|3]4]5]6]7

block offset

Byte 4 is here

If tag doesn’t match: old line is evicted and replaced

Direct-Mapped Cache Simulation

4-bit address space, i.e., Memory = 16

B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):

t=1 s=2 b=1

X XX X bytes
0
1
7
8
0

v Tag Line

Set0| O ? ?

Set 1

Set 2

Set 3

0000,
0001,
0111,
1000,

0000,

Direct-Mapped Cache Simulation

t=1 s=2 b=t
X XX X bytes
v Tag Line
Set0| O ? ?
Set 1
Set 2

Set 3

4-bit address space, i.e., Memory = 16

B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):

0

O 00 N =

0000,
0001,
0111,
1000,

, miss
J

0000,

Direct-Mapped Cache Simulation

t=1 s=2 b=t
X XX X bytes
v Tag Line
Set0| 1 0 M[O-1]
Set 1
Set 2

Set 3

4-bit address space, i.e., Memory = 16

B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):

0

O 00 N =

0000,
0001,
0111,
1000,

, miss
J

0000,

Direct-Mapped Cache Simulation

t=1 s=2 b=1 4-bit address space, i.e., Memory = 16
X | XX | X bytes
B=2 bytes/line, S=4 sets, E=1 line/set
Address trace (reads, one byte per read):
0 0000,], miss
1 0001,],
7 0111,],
8 1000,],
0 (0000,
v Tag Line
Set0| 1 0 M[O-1] |« The two bytes at memory address 0 and 1
Set 1
Set 2

Set 3

Direct-Mapped Cache Simulation

t=1 s=2 Db=1 4-bit address space, i.e., Memory = 16
X XX X bytes
B=2 bytes/line, S=4 sets, E=1 line/set
Address trace (reads, one byte per read):
0 0000,], miss
1 0001,], hit
7 0111,],
8 1000,],
0 (0000,
v Tag Line
Set0| 1 0 M[O-1] |« The two bytes at memory address 0 and 1
Set 1
Set 2

Set 3

Direct-Mapped Cache Simulation

t=1 s=2 Db=1 4-bit address space, i.e., Memory = 16
X XX X bytes
B=2 bytes/line, S=4 sets, E=1 line/set
Address trace (reads, one byte per read):
0 0000,], miss
1 0001,], hit
7 0111,], miss
8 1000,],
0 (0000,
v Tag Line
Set0| 1 0 M[O-1] |« The two bytes at memory address 0 and 1
Set 1
Set 2

Set 3

Direct-Mapped Cache Simulation

t=1 s=2 b=1 4-bit address space, i.e., Memory = 16
X | XX | X bytes
B=2 bytes/line, S=4 sets, E=1 line/set
Address trace (reads, one byte per read):
0 0000,], miss
1 0001,], hit
7 0111,], miss
8 1000,],
0 (0000,
v Tag Line
Set0| 1 0 M[O-1] |« The two bytes at memory address 0 and 1
Set 1
Set 2
Set3| 1 0 M[6-7]

Direct-Mapped Cache Simulation

t=1 s=2 b=1 4-bit address space, i.e., Memory = 16
X | XX | X bytes
B=2 bytes/line, S=4 sets, E=1 line/set
Address trace (reads, one byte per read):
0 0000,], miss
1 0001,], hit
7 0111,], miss
8 1000,],
0 (0000,
v Tag Line
Set0| 1 0 M[O-1] |« The two bytes at memory address 0 and 1
Set 1
Set 2
Set3| 1 0 M[6-7] |<*— The two bytes at memory address 6 and 7

8

Direct-Mapped Cache Simulation

t=1 s=2 b=1 4-bit address space, i.e., Memory = 16
X | XX | X bytes
B=2 bytes/line, S=4 sets, E=1 line/set
Address trace (reads, one byte per read):
0 0000,], miss
1 0001,], hit
7 0111,], miss
8 1000,], miss
0 (0000,
v Tag Line
Set0| 1 0 M[O-1] |« The two bytes at memory address 0 and 1
Set 1
Set 2
Set3| 1 0 M[6-7] |<*— The two bytes at memory address 6 and 7

8

Direct-Mapped Cache Simulation

t=1 s=2 b=1 4-bit address space, i.e., Memory = 16
X XX X bytes
B=2 bytes/line, S=4 sets, E=1 line/set
Address trace (reads, one byte per read):
0 0000,], miss
1 0001,], hit
7 0111,], miss
8 1000,], miss
0 (0000,
v Tag Line
Set0| 1 1 M[8-9] |« The two bytes at memory address 8 and 9
Set 1
Set 2
Set3| 1 0 M[6-7] |<*— The two bytes at memory address 6 and 7

8

Direct-Mapped Cache Simulation

t=1 s=2 b=1 4-bit address space, i.e., Memory = 16
X XX X bytes
B=2 bytes/line, S=4 sets, E=1 line/set
Address trace (reads, one byte per read):
0 0000,], miss
1 0001,], hit
7 0111,], miss
8 1000,], miss
0 0000, miss
v Tag Line
Set0| 1 1 M[8-9] |« The two bytes at memory address 8 and 9
Set 1
Set 2
Set3| 1 0 M[6-7] |<*— The two bytes at memory address 6 and 7

8

Direct-Mapped Cache Simulation

t=1 s=2 b=1 4-bit address space, i.e., Memory = 16
X | XX | X bytes
B=2 bytes/line, S=4 sets, E=1 line/set
Address trace (reads, one byte per read):
0 0000,], miss
1 0001,], hit
7 0111,], miss
8 1000,], miss
0 0000, miss
v Tag Line
Set0| 1 0 M[O-1] |« The two bytes at memory address 0 and 1
Set 1
Set 2
Set3| 1 0 M[6-7] |<*— The two bytes at memory address 6 and 7

8

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes Address of short int:

tbits | 0...01 [100

v| [tag | [0[1]2]3]4]|5[6]7]| |[v] | tag | [0]1]2]3]4]5]6]7

v| | tag | [0]1]2]3]4]5[6]7]]| ||v] [tag | [0]1]2]3]4]5[6]7

v| [tag | [0[1[2]3]4]|5[6]7]| |[v] | tag | [0]1]2]3]4]5]6]7

v| [tag | [0[1[2]3]4]|5[6]7]| |[v] | tag | [0]1]2]3]4]5]6]7

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes Address of short int:

tbits | 0...01 [100

v| [tag | [0[1]2]3]4]|5[6]7]| |[v] | tag | [0]1]2]3]4]5]6]7

v] [tag] [o]1]2[3]4]5]6]7]| |[v] [tag] [o]1]2]3]4]5]6]7]| —Tind set

v| [tag | [0[1[2]3]4]|5[6]7]| |[v] | tag | [0]1]2]3]4]5]6]7

v| [tag | [0[1[2]3]4]|5[6]7]| |[v] | tag | [0]1]2]3]4]5]6]7

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes Address of short int:

tbits | 0...01 [100

10

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes Address of short int:

tbits | 0...01 [100

compare both

10

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes Address of short int:

tbits | 0...01 [100

compare both

valid? Hmatch: yes = hit

v| | tag | [0]1]2]3]4]|5]6]|7]| |[v] [tag | [0]1]2][3]4]5]6]7|] —

10

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes Address of short int:

tbits | 0...01 [100

compare both

valid? Hmatch: yes = hit

v| | tag | [0]1]2]3]4]|5]6]|7]| |[v] [tag | [0]1]2][3]4]5]6]7|] —

block offset

10

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes Address of short int:

tbits | 0...01 [100

compare both

valid? +match: yes = hit

v| | tag | [0]1]2]3]4]|5]6]7]| [|v] | tag | [0]1]2]3]4]5]6]7|| —

block offset

short int (2 Bytes) is here

1

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes Address of short int:

tbits | 0...01 [100

compare both

valid? +match: yes = hit

v| | tag | [0]1]2]3]4]|5]6]7]| [|v] | tag | [0]1]2]3]4]5]6]7|| —

block offset

short int (2 Bytes) is here

No match:
* One line in set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU),

1

2-Way Set Associative Cache Simulation

t=2 s=1 b=t _ .
XX X X 4-bit address space, i.e., Memory = 16 bytes

S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
0 0000,],

1 0001,],

7 0111,],

8 1000,],

0

'}

0000,

Tag Block
? ?

Set 0

Set 1

oOlo]| OO0

2-Way Set Associative Cache Simulation

t=2 s=1 b=t _ .
XX X X 4-bit address space, i.e., Memory = 16 bytes

S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
0 (0000,], miss

1 0001,],

7 0111,],

8 1000,],

0

'}

0000,

Tag Block
? ?

Set 0

Set 1

oOlo]| OO0

12

2-Way Set Associative Cache Simulation

t=2

S

=1

b=1

XX

X

X

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

Set 0

Set 1

Tag

0000,]
0001,
0111,],
1000,
0000,

miss

Block

00

M[O-1]

12

2-Way Set Associative Cache Simulation

t=2

S

=1

b=1

XX

X

X

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

Set 0

Set 1

Tag

0000,]
0001,
0111,],
1000,
0000,

: miss
, hit

Block

00

M[O-1]

12

2-Way Set Associative Cache Simulation

t=2

S

=1

b=1

XX

X

X

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

Set 0

Set 1

Tag

(0000,
(0001,
0111,], miss
1000,
(0000,

: miss
, hit

Block

00

M[O-1]

12

2-Way Set Associative Cache Simulation

t=2

S

=1

b=1

XX

X

X

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

Set 0

Set 1

0

1
7
8
0

v

Tag

(0000,
(0001,
0111,], miss
1000,
(0000,

: miss
, hit

Block

00

M[O-1]

1
0

1

01

M[6-7]

0

12

2-Way Set Associative Cache Simulation

t=2

S

=1

b=1

XX

X

X

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

Set 0

Set 1

0 (0000,], miss
1 0001,], hit
7 0111,], miss
8 1000,], miss
0 0000,)]
v Tag Block

1 00 |[M[O-1]

0

1 01 |M[6-7]

0

12

2-Way Set Associative Cache Simulation

t=2

S

=1

b=1

XX

X

X

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

Set 0

Set 1

0

1
7
8
0

v

Tag

(0000,
(0001,
0111,], miss
1000,
(0000,

: miss
, hit

, miss

Block

1

00

M[O-1]

10

M[8-9]

—h

01

M[6-7]

12

2-Way Set Associative Cache Simulation

t=2

S

=1

b=1

XX

X

X

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

Set 0

Set 1

0 (0000,], miss
1 0001,], hit
7 0111,], miss
8 1000,], miss
0 0000,)] hit
v Tag Block

1 00 [M[O-1]

10 |M[8-9]
1 01 |M[6-7]
0

12

General Rule: Bigger == Slower

* How big should the cache be?
* Too large and cache slows down execution (high latency)

* Too small and too much memory traffic

133

General Rule: Bigger == Slower

CPU

Cache
$

* How big should the cache be?

* Too small and too much memory traffic

* Too large and cache slows down execution (high latency)
 Make multiple levels of cache

« Small L1 backed up by larger L2

Memory

* Today’s processors typically have 3 cache levels

133

General Rule: Bigger == Slower

S S e

* How big should the cache be?

* Too small and too much memory traffic

* Too large and cache slows down execution (high latency)
e Make multiple levels of cache

 Small L1 backed up by larger L2

* Today’s processors typically have 3 cache levels

133

General Rule: Bigger == Slower

o T R e

* How big should the cache be?

* Too small and too much memory traffic

* Too large and cache slows down execution (high latency)
e Make multiple levels of cache

 Small L1 backed up by larger L2

* Today’s processors typically have 3 cache levels

133

Summary

Nehalem-EP
Core, Core, Core, Core,
32KB L1+ 32KB L1+ 32KB L1-i 32KB L1+
and L1-d and L1-d and L1-d and L1-d
256KB L2 256KB L2 256KB L2 256KB L2
(NINE) (NINE) (NINE) (NINE)

.

-

v

1

8MB shared L3 cache
(Inclusive of L1 and L2 caches)

& |-

DDR3

14

So Far in CSC252...

* Processors do only one thing:

e From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

* This sequence is the CPU’s control flow (or flow of control)

Physical control flow

<startup>
inst,
inst,
inst,

Time

inst_
<shutdown>

Altering the Control Flow

* Up to now: two mechanisms for changing control flow:
« Jumps and branches
« Call and return

React to changes in program state

16

Altering the Control Flow

* Up to now: two mechanisms for changing control flow:
« Jumps and branches
« Call and return

React to changes in program state

* Insufficient for a useful system: Difficult to react to changes in
system state

e Data arrives from a disk or a network adapter
e Instruction divides by zero

« User hits Ctrl-C at the keyboard

e System timer expires

16

Altering the Control Flow

* Up to now: two mechanisms for changing control flow:
« Jumps and branches
« Call and return

React to changes in program state
* Insufficient for a useful system: Difficult to react to changes in
system state
e Data arrives from a disk or a network adapter
e Instruction divides by zero

« User hits Ctrl-C at the keyboard
e System timer expires

* System needs mechanisms for “exceptional control flow”

16

Exceptional Control Flow

* Exists at all levels of a computer system

17

Exceptional Control Flow

* Exists at all levels of a computer system
* | ow level mechanisms

e 1. Exceptions

« Change in control flow in response to a system event
(i.e., change in system state)

 Implemented using combination of hardware and OS software

17

Exceptional Control Flow

* Exists at all levels of a computer system
* | ow level mechanisms

e 1. Exceptions

« Change in control flow in response to a system event
(i.e., change in system state)

 Implemented using combination of hardware and OS software

* Higher level mechanisms
« 2. Process context switch
e Implemented by OS software and hardware timer
3. Signals
o Implemented by OS software
e 4. Nonlocal jJumps: setjmp () and longjmp ()
« Implemented by C runtime library

17

Today

* Exceptions/Interrupts
e Processes and Signals: Special kinds of exception

18

Exceptions

* An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)

« Kernel is the memory-resident part of the OS

« Examples of events: Divide by 0, arithmetic overflow, page fault, 1/0
request completes, typing Cirl-C

User code Kernel code

| _current v

19

Exceptions

* An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)

« Kernel is the memory-resident part of the OS

« Examples of events: Divide by 0, arithmetic overflow, page fault, 1/0
request completes, typing Cirl-C

User code Kernel code

Event—— | _currentv

19

Exceptions

* An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)

« Kernel is the memory-resident part of the OS

« Examples of events: Divide by 0, arithmetic overflow, page fault, 1/0
request completes, typing Cirl-C

User code Kernel code

Event—— I_current ¢ Exception

19

Exceptions

* An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)
« Kernel is the memory-resident part of the OS

« Examples of events: Divide by 0, arithmetic overflow, page fault, 1/0
request completes, typing Cirl-C

User code Kernel code
Event—— I_current ¢ Exception
1 Exception
processing

' by exception

handler

19

Exceptions

* An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)
« Kernel is the memory-resident part of the OS

« Examples of events: Divide by 0, arithmetic overflow, page fault, 1/0
request completes, typing Cirl-C

User code Kernel code
Event—> |_current v, Exception
v "EXcepﬁon
processing
» Return to |_current by exception
* Return to |_next handler

» Abort

19

Exceptions

* An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)
« Kernel is the memory-resident part of the OS

« Examples of events: Divide by 0, arithmetic overflow, page fault, 1/0
request completes, typing Cirl-C

User code Kernel code
Event——> |_current v, Exception
|_next [* >‘ Exception
processing
» Return to |_current by exception
* Return to |_next handler
* Abort

Asynchronous Exceptions (Interrupts)

* Caused by events external to the processor
e Events that can happen at any time. Computers have little control.
 Indicated by setting the processor’s interrupt pin
« Handler returns to “next” instruction

20

Asynchronous Exceptions (Interrupts)

* Caused by events external to the processor

e Events that can happen at any time. Computers have little control.

 Indicated by setting the processor’s interrupt pin
« Handler returns to “next” instruction

* Examples:
e Timer interrupt
« Every few ms, an external timer chip triggers an interrupt

20

Asynchronous Exceptions (Interrupts)

* Caused by events external to the processor

e Events that can happen at any time. Computers have little control.

 Indicated by setting the processor’s interrupt pin
« Handler returns to “next” instruction

* Examples:
e Timer interrupt
« Every few ms, an external timer chip triggers an interrupt
« Used by the kernel to take back control from user programs
 |/O interrupt from external device
 Hitting Ctrl-C at the keyboard
 Arrival of a packet from a network
« Arrival of data from a disk

20

Synchronous Exceptions

e Caused by events that occur as a result of executing an instruction:

21

Synchronous Exceptions

e Caused by events that occur as a result of executing an instruction:
e Traps
 Intentional
o Examples: system calls, breakpoint traps, special instructions
e Returns control to “next” instruction

21

Synchronous Exceptions

e Caused by events that occur as a result of executing an instruction:
e Traps
 Intentional
o Examples: system calls, breakpoint traps, special instructions
e Returns control to “next” instruction
e Faults
« Unintentional but possibly recoverable

« Examples: page faults (recoverable), protection faults (the
infamous Segmentation Fault!) (unrecoverable in Linux), floating
point exceptions (unrecoverable in Linux)

 Either re-executes faulting (“current”) instruction or aborts

21

Synchronous Exceptions

e Caused by events that occur as a result of executing an instruction:
e Traps
 Intentional
o Examples: system calls, breakpoint traps, special instructions
e Returns control to “next” instruction
e Faults
« Unintentional but possibly recoverable

« Examples: page faults (recoverable), protection faults (the
infamous Segmentation Fault!) (unrecoverable in Linux), floating
point exceptions (unrecoverable in Linux)

 Either re-executes faulting (“current”) instruction or aborts
« Aborts

* Unintentional and unrecoverable

« Examples: illegal instruction, parity error, machine check

» Aborts current program

21

Fault Example: Page Fault

e User writes to memory location

e That memory location is not found in memory
because it is currently on disk

e Trigger a Page Fault (recoverable), the exception handler loads the
data from disk to memory (will discuss in detall later in the class)

80483b7: c7 05 10 94 04 08 0d movl $0xd, 0x8049d10

22

Fault Example: Page Fault

e User writes to memory location

e That memory location is not found in memory
because it is currently on disk

e Trigger a Page Fault (recoverable), the exception handler loads the
data from disk to memory (will discuss in detall later in the class)

80483b7: c7 05 10 94 04 08 0d movl $0xd, 0x8049d10

User code

movl 1

22

Fault Example: Page Fault

e User writes to memory location

e That memory location is not found in memory
because it is currently on disk

e Trigger a Page Fault (recoverable), the exception handler loads the
data from disk to memory (will discuss in detall later in the class)

80483b7: c7 05 10 9d 04 08 0d movl $0xd, 0x8049d10

User code Kernel code

1 Exception: page fault

movl
Copy page from
disk to memory

22

Fault Example: Page Fault

e User writes to memory location

e That memory location is not found in memory
because it is currently on disk

e Trigger a Page Fault (recoverable), the exception handler loads the
data from disk to memory (will discuss in detall later in the class)

80483b7: c7 05 10 94 04 08 0d movl $0xd, 0x8049d10

User code Kernel code

Exception: page fault
movl

Copy page from

Return and disk to memory

reexecute movl

22

Fault Example: Page Fault

e User writes to memory location

e That memory location is not found in memory
because it is currently on disk

e Trigger a Page Fault (recoverable), the exception handler loads the
data from disk to memory (will discuss in detall later in the class)

80483b7: c7 05 10 94 04 08 0d movl $0xd, 0x8049d10

User code Kernel code

Exception: page fault

movl
N COpy page from
Return and disk to memory

v reexecute movl

22

Fault Example: Protection Fault

80483b7:

c7 05 60 e3 04 08 0d

movl

$0xd, 0x804e360

23

Fault Example: Protection Fault

80483b7:

c7 05 60 e3 04 08 0d

movl

$0xd, 0x804e360

User code

movl l

23

Fault Example: Protection Fault

80483b7: c7 05 60 e3 04 08 0d movl

$0xd, 0x804e360

User code Kernel code

l Exception: page fault X

movl

23

Fault Example: Protection Fault

80483b7: c7 05 60 e3 04 08 0d movl

$0xd, 0x804e360

User code Kernel code

l Exception: page fault

movl

Detect invalid
address

23

Fault Example: Protection Fault

80483b7: c7 05 60 e3 04 08 0d movl

$0xd, 0x804e360

User code Kernel code

l Exception: page fault

movl

Detect invalid
address

> Signal process
and abort

23

Fault Example: Protection Fault

e Access illegal memory location (e.g., dereferencing a null pointer)

80483b7: c7 05 60 e3 04 08 0d movl

$0xd, 0x804e360

User code Kernel code

l Exception: page fault

movl

Detect invalid
address

> Signal process
and abort

23

Fault Example: Protection Fault

e Access illegal memory location (e.g., dereferencing a null pointer)

e First trigger a Page Fault, the exception handler decides that this is
unrecoverable, so simply aborts

80483b7: c7 05 60 e3 04 08 0d movl $0xd, 0x804e360

User code Kernel code

l Exception: page fault

|
mov Detect invalid

address

> Signal process
and abort

23

Fault Example: Protection Fault

e Access illegal memory location (e.g., dereferencing a null pointer)

e First trigger a Page Fault, the exception handler decides that this is
unrecoverable, so simply aborts

e User process exits with “segmentation fault”

80483b7: c7 05 60 e3 04 08 0d movl $0xd, 0x804e360

User code Kernel code

l Exception: page fault

movl

Detect invalid
address

> Signal process
and abort

23

Fault Example: Protection Fault

e Access illegal memory location (e.g., dereferencing a null pointer)

e First trigger a Page Fault, the exception handler decides that this is
unrecoverable, so simply aborts

e User process exits with “segmentation fault”
e Again, later in the class...

80483b7: c7 05 60 e3 04 08 0d movl $0xd, 0x804e360

User code Kernel code

l Exception: page fault

movl

Detect invalid
address

> Signal process
and abort

23

Others’ Definitions

* The textbook’s definitions are not universally accepted

° |nte| (http://www.intel.com/cd/ids/developer/asmo-na/eng/microprocessors/ia32/xeon/19250.htm?page=2)

 Interrupt: An exception that comes from outside of the processor. There are two
Kinds of exceptions: local and external. A local exception is generated from a
program. External exceptions are usually generated by external I/O devices and
received at exception pins.
* PowerPC Architecture

* Interrupts “allow the processor to change state as a result of external signals, errors, or
unusual conditions arising in the execution of instructions”

* PowerPC 604

* Everything is an exception
Motorola 68K

« Everything is an exception
e VAX

 Interrupts: device, software, urgent
« Exceptions: faults, traps, aborts

24

When Do You Call the Handler?

* Interrupts: when convenient. Typically wait until the current
instructions in the pipeline are finished

e Exceptions: typically immediately as programs can’t continue
without resolving the exception (think of page fault)

* Maskable verses Unmaskable
* Interrupts can be individually masked (i.e., ignored by CPU)
* Synchronous exceptions are usually unmaskable

e Some interrupts are intentionally unmaskable
» Called non-maskable interrupts (NMI)

* Indicating a critical error has occurred, and that the system is
probably about to crash

25

Where Do You Restart?

* Interrupts/Traps
* Handler returns to the following instruction

26

Where Do You Restart?

* Interrupts/Traps
* Handler returns to the following instruction
* Faults

e Exception handler returns to the instruction that caused the
exception, i.e., re-execute it!

26

Where Do You Restart?

* Interrupts/Traps
* Handler returns to the following instruction
* Faults

e Exception handler returns to the instruction that caused the
exception, i.e., re-execute it!

e Aborts
* Never returns to the program

26

Where to Find Exception Handlers?

Exception
numbers

0
1

2

n-1

Exception

V Table

Code for
exception handler 0

v _~
C

Code for
exception handler 1

./

Code for
exception handler 2

bl

Code for
exception handler n-1

Each type of event has a
unigue exception number k

k = index into exception
table

Exception table lives in
memory. Its start address is
stored in a special register

Handler k is called each
time exception k occurs

27

Nested Exceptions

* One interrupt/exception occurs when another is already active
e Can fundamentally do it

» Subroutine calls within subroutine calls

* Handlers need to save appropriate state

28

Concurrent Interrupts

* More than one interrupts happen at the same time
* Pre-defined priority
* The chipset arbitrates which one to respond to first

29

Today

e Processes and Signals: Special kinds of exception
* Processes

30

Processes

e Definition: A process is an instance of a running program.
* One of the most profound ideas in computer science
* Not the same as “program” or “processor”

31

Processes

e Definition: A process is an instance of a running program.
* One of the most profound ideas in computer science
* Not the same as “program” or “processor”

* Process provides each program with two key
abstractions:

31

Processes

e Definition: A process is an instance of a running program.
* One of the most profound ideas in computer science
* Not the same as “program” or “processor”

* Process provides each program with two key
abstractions:

e “Owns” the CPU

CPU

Registers

31

Processes

e Definition: A process is an instance of a running program.
* One of the most profound ideas in computer science
* Not the same as “program” or “processor”

* Process provides each program with two key
abstractions:

e “Owns” the CPU
» Each program seems to have exclusive use of the CPU

CPU

Registers

31

Processes

e Definition: A process is an instance of a running program.
* One of the most profound ideas in computer science
* Not the same as “program” or “processor”

* Process provides each program with two key
abstractions:

e “Owns” the CPU
» Each program seems to have exclusive use of the CPU
» Provided by kernel mechanism called context switching

CPU

Registers

31

Processes

e Definition: A process is an instance of a running program.
* One of the most profound ideas in computer science
* Not the same as “program” or “processor”

* Process provides each program with two key
abstractions:

e “Owns” the CPU
« Each program seems to have exclusive use of the CPU
» Provided by kernel mechanism called context switching
 Private address space

CPU

Registers

31

Processes

e Definition: A process is an instance of a running program.
* One of the most profound ideas in computer science
* Not the same as “program” or “processor”

* Process provides each program with two key
abstractions:

e “Owns” the CPU

» Each program seems to have exclusive use of the CPU

» Provided by kernel mechanism called context switching
 Private address space

Memory

Stack

Heap

Data

Code

CPU

Registers

31

Processes

e Definition: A process is an instance of a running program.
* One of the most profound ideas in computer science

 Not the same as “program” or “processor” Memory
. Stack
* Process provides each program with two key Heap
abstractions:

Data
« “Owns” the CPU Code

» Each program seems to have exclusive use of the CPU

CPU
» Provided by kernel mechanism called context switching
, Registers
 Private address space)

* Each program seems to have exclusive use of main
memory.

31

Processes

e Definition: A process is an instance of a running program.
* One of the most profound ideas in computer science

 Not the same as “program” or “processor” Memory
. Stack
* Process provides each program with two key Heap
abstractions:

Data
« “Owns” the CPU Code

» Each program seems to have exclusive use of the CPU

CPU
» Provided by kernel mechanism called context switching
, Registers
 Private address space)

* Each program seems to have exclusive use of main
memory.

* Provided by kernel mechanism called virtual memory

31

Multiprocessing: The lllusion

Memory

Memory

Memory

Stack

Stack

Stack

Heap

Heap

Heap

Data

Data

Data

Code

Code

Code

CPU

CPU

CPU

Registers

Registers

Registers

* Computer runs many processes simultaneously
« Applications for one or more users

 Web browsers, email clients, editors, ...

« Background tasks
« Monitoring network & I/0O devices

32

Multiprocessing Example

X/ Xterm

Processes: 123 total, 5 running, 9 stuck, 109 sleeping, 611 threads
Load Avg: 1,03, 1,13, 1,14 CPU usage: 3,272 user, 5,15% sys, 91,562 idle

SharedLibs: 576K resident, OB data, OB linkedit,

MemRegions: 27358 total, 1127M resident, 35M private, 434M shared,
PhysMem: 1039M wired, 1974M active, 1062M inactive, 4076M used, 18M free,
YM: 280G vsize, 1091M framework vsize, 23075213(1) pageins, 5843367(0) pageouts,
MNetworks: packets: 41046228/11GC in, B6083096/77G out,

Disks: 17874331/3490G read, 12847373/534C written,

11:47:07

PID COMMAND #CPU TIME #TH #l/0 #PORT #MREG RPRVT RSHRD RSIZE VPRVT VSIZE
99217- Microsoft Of 0,0 02:28,34 4 1 202 418 2IM 244 21M BBM 763M

93051 usbmuxd 0,0 00:04,10 3 1 47 B6 436K 216K 480K BOM 2422M
93006 iTunesHelper 0,0 00:01,23 2 1 5 78 728K 3124K 1124K 43M 2429M
84286 bash 0,0 00:00,11 1 0 20 24 224K 732K 484K 17M 2378M
84285 xterm 0,0 00:00,83 1 0 32 73 B9EK 872K 632K 9728K 2382M
95933~ Microsoft Ex 0,3 21:58,97 10 3 360 954 16M B5M 46M 114M 1057M
94751 sleep 0,0 00:00,00 1 0 17 20 92k 212K 360K 9632K 2370M
94739 launchdadd 0,0 00:00,00 2 1 33 50 488K 220Kk 173BK 48M 2409M
94737 top 6,5 00:02,53 171 0 30 23 1416K 216K 2124K 17M 2378M
94713 automountd 0,0 00:00,02 7 1 53 B4 BBOK 216K 2184K 5H3M 2413M
94701 ocspd 0,0 00:00,05 4 1 61 54 1268K 2644K 3132K 5HOM 2426M
94661 Grab 0.6 00:02,75 6 3 222+ 383+ 15M+ 2BM+ 40M+ YOM+ 2006M+
94653 cookied 0,0 00:00,15 2 1 40 61 3316K 224K 4088K 42M 2411M
L2040 o] P T .. B e B | 4 o 04 o Tutu e P I D T Kx1 P I. Ral ¥ | A0kl o420k

* Running program “top” on Mac

« System has 123 processes, 5 of which are active

« |dentified by Process ID (PID)

33

Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data Data
Code Code Code
Saved Saved Saved
reqisters reqisters reqisters
CPU
Registers

* Single processor executes multiple processes concurrently
* Process executions interleaved (multitasking)
« Address spaces managed by virtual memory system (later in course)
» Register values for nonexecuting processes saved in memory

Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data Data
Code Code Code
Saved Saved Saved
reqisters reqisters reqisters
CPU
Registers

* Save current registers in memory

Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data Data
Code Code Code
Saved Saved Saved
reqisters reqisters reqisters
CPU
Registers

* Schedule next process for execution

Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data Data
Code Code Code
Saved Saved Saved
reqisters reqisters reqisters
CPU
Registers

e | oad saved registers and switch address space (context switch)

Multiprocessing: The (Modern) Reality

Memory

Stack Stack Stack

Heap Heap Heap

Data Data . m Data

Code Code Code

Saved Saved Saved
registers reqgisters reqgisters

* Multicore processors

CPU CPU » Multiple CPUs on single chip

Registers Registers . Share main memory (and some of the

caches)
« Each can execute a separate process

« Scheduling of processors onto
cores done by kernel

38

Concurrent Processes

* Each process is a logical control flow.

e Two processes run concurrently (are concurrent) if their flows
overlap in time

* Otherwise, they are sequential

39

Concurrent Processes

* Each process is a logical control flow.

e Two processes run concurrently (are concurrent) if their flows
overlap in time

* Otherwise, they are sequential
* Examples (running on single core):

Process A Process B Process C

Time

39

Concurrent Processes

* Each process is a logical control flow.

e Two processes run concurrently (are concurrent) if their flows
overlap in time

* Otherwise, they are sequential

* Examples (running on single core):
e« Concurrent: A& B,A&C

Process A Process B Process C

Time

39

Concurrent Processes

* Each process is a logical control flow.

e Two processes run concurrently (are concurrent) if their flows
overlap in time

* Otherwise, they are sequential

* Examples (running on single core):
e« Concurrent: A& B,A&C
e Sequential: B & C

Process A Process B Process C

Time

39

User View of Concurrent Processes

* Control flows for concurrent processes are physically disjoint in
time

* However, we can think of concurrent processes as running in
parallel with each other

Process A Process B Process C

Time

40

Context Switching

* Processes are managed by a shared chunk of memory-resident
OS code called the kernel
« Important: the kernel is not a separate process, but rather runs as
part of some existing process.

* Control flow passes from one process to another via a context
switch

Process A Process B

I
|
I
I
|
I user code
I

kernel code } context switch

Time user code

kernel code } context switch

user code

<

4

Today

e Processes and Signals: Special kinds of exception

* Process Control

42

Obtaining Process IDs

epid t getpid(void)
« Returns PID of current process

®*pid t getppid(void)
« Returns PID of parent process

43

Creating and Terminating Processes

From a programmer’s perspective, we can think of a process as
being in one of three states

* Running

« Process is either executing, or waiting to be executed and will
eventually be scheduled (i.e., chosen to execute) by the kernel

* Stopped

e Process execution is suspended and will not be scheduled until
further notice (through something call signals)

* Terminated
e Process is stopped permanently

44

Terminating Processes

* Process becomes terminated for one of three reasons:
 Receiving a signal whose default action is to terminate
« Returning from the main routine
« Calling the exit function

e vold exit (int status)
o Terminates with an exit status of status

« Convention: normal return status is 0, nonzero on error

« Another way to explicitly set the exit status is to return an integer
value from the main routine

® oxit Is called once but never returns.

45

