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Announcements

!2

• Cache problem set: https://www.cs.rochester.edu/
courses/252/spring2020/handouts.html

• Not to be turned in
• Assignment 4 soon to be released later today

https://www.cs.rochester.edu/courses/252/spring2020/handouts.html
https://www.cs.rochester.edu/courses/252/spring2020/handouts.html
https://www.cs.rochester.edu/courses/252/spring2020/handouts.html
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General Cache Organization (S, E, B)

!3

E = 2e lines per set

S =
2s sets

set
line

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

Cache size: 
C = S x E x B data bytes 
Overhead: 
Tag, valid bit, dirty bit. 
Plus bits for implementing 
replacement policy 
(not shown).

valid bit

d

dirty bit
(if write-back)
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E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit B = 2b bytes per cache block (the data)

t bits s bits b bits
Address of word:

tag set
index

Line
offset

• Locate set
• Check if any line in set 
has matching tag

• Yes + line valid: hit
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Cache Access

!4

E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit B = 2b bytes per cache block (the data)

t bits s bits b bits
Address of word:

tag set
index

Line
offset

data begins at this offset

• Locate set
• Check if any line in set 
has matching tag

• Yes + line valid: hit
• Locate data starting 
at offset



Carnegie Mellon

Example: Direct Mapped Cache
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S = 2s sets

Direct mapped: One line per set 
Assume: cache block size 8 bytes

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654
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Example: Direct Mapped Cache
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S = 2s sets

Direct mapped: One line per set 
Assume: cache block size 8 bytes

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set
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match: assume yes = hitvalid?   +
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Direct mapped: One line per set 
Assume: cache block size 8 bytes
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Example: Direct Mapped Cache
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t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

match: assume yes = hitvalid?   +

block offset

tag

Direct mapped: One line per set 
Assume: cache block size 8 bytes
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Example: Direct Mapped Cache
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t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

match: assume yes = hitvalid?   +

Byte 4 is here

block offset

Direct mapped: One line per set 
Assume: cache block size 8 bytes



Carnegie Mellon

Example: Direct Mapped Cache

!7

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

match: assume yes = hitvalid?   +

Byte 4 is here

block offset

If tag doesn’t match: old line is evicted and replaced

Direct mapped: One line per set 
Assume: cache block size 8 bytes
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4-bit address space, i.e., Memory = 16 
bytes
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Direct-Mapped Cache Simulation

!8

4-bit address space, i.e., Memory = 16 
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]
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Set 0
Set 1
Set 2
Set 3

The two bytes at memory address 0 and 1
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Direct-Mapped Cache Simulation
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4-bit address space, i.e., Memory = 16 
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
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Set 0
Set 1
Set 2
Set 3

The two bytes at memory address 0 and 1
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Direct-Mapped Cache Simulation
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4-bit address space, i.e., Memory = 16 
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]

miss

1 0 M[0-1]Set 0
Set 1
Set 2
Set 3 The two bytes at memory address 6 and 7

The two bytes at memory address 0 and 1
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E-way Set Associative Cache (Here: E = 2)
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E = 2: Two lines per set 
Assume: cache block size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654
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E-way Set Associative Cache (Here: E = 2)
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E = 2: Two lines per set 
Assume: cache block size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

find set
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E-way Set Associative Cache (Here: E = 2)
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t bits 0…01 100
Address of short int:
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E = 2: Two lines per set 
Assume: cache block size 8 bytes
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E-way Set Associative Cache (Here: E = 2)
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t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

E = 2: Two lines per set 
Assume: cache block size 8 bytes
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E-way Set Associative Cache (Here: E = 2)
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t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes = hit

tag

E = 2: Two lines per set 
Assume: cache block size 8 bytes
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E-way Set Associative Cache (Here: E = 2)
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t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes = hit

block offset

tag

E = 2: Two lines per set 
Assume: cache block size 8 bytes
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E-way Set Associative Cache (Here: E = 2)
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t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes = hit

block offset

short int (2 Bytes) is here

E = 2: Two lines per set 
Assume: cache block size 8 bytes
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E-way Set Associative Cache (Here: E = 2)
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t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes = hit

block offset

short int (2 Bytes) is here

No match: 
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …

E = 2: Two lines per set 
Assume: cache block size 8 bytes
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2-Way Set Associative Cache Simulation

!12

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Block

0

0
0

Set 0

Set 1
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4-bit address space, i.e., Memory = 16 bytes
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Set 0

Set 1
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2-Way Set Associative Cache Simulation

!12

4-bit address space, i.e., Memory = 16 bytes
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1 00 M[0-1]Set 0
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4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
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2-Way Set Associative Cache Simulation
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4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Block

0

0
0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

Set 0

Set 1
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2-Way Set Associative Cache Simulation
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4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Block

0

0
0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]
Set 0

Set 1
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2-Way Set Associative Cache Simulation

!12

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Block

0

0
0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]

hit

Set 0

Set 1
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General Rule: Bigger == Slower

• How big should the cache be?

• Too small and too much memory traffic 
• Too large and cache slows down execution (high latency)

•Make multiple levels of cache

• Small L1 backed up by larger L2 
• Today’s processors typically have 3 cache levels

!1343

CPU Cache 
$ MemoryCache 

$
Level 1 
(L1 $)

Level 2  
(L2 $)
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Summary
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So Far in CSC252…

<startup>
inst1
inst2
inst3
…
instn
<shutdown>

• Processors do only one thing:

• From startup to shutdown, a CPU simply reads and executes 

(interprets) a sequence of instructions, one at a time 
• This sequence is the CPU’s control flow (or flow of control)

!15

Physical control flow

Time
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Altering the Control Flow
• Up to now: two mechanisms for changing control flow:


• Jumps and branches 
• Call and return 
React to changes in program state
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Altering the Control Flow
• Up to now: two mechanisms for changing control flow:


• Jumps and branches 
• Call and return 
React to changes in program state

• Insufficient for a useful system: Difficult to react to changes in 
system state  
• Data arrives from a disk or a network adapter 
• Instruction divides by zero 
• User hits Ctrl-C at the keyboard 
• System timer expires

• System needs mechanisms for “exceptional control flow”

!16
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Exceptional Control Flow
• Exists at all levels of a computer system
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Exceptional Control Flow
• Exists at all levels of a computer system
• Low level mechanisms


• 1. Exceptions 

• Change in control flow in response to a system event  

(i.e.,  change in system state) 
• Implemented using combination of hardware and OS software	
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Exceptional Control Flow
• Exists at all levels of a computer system
• Low level mechanisms


• 1. Exceptions 

• Change in control flow in response to a system event  

(i.e.,  change in system state) 
• Implemented using combination of hardware and OS software	

• Higher level mechanisms

• 2. Process context switch


• Implemented by OS software and hardware timer 
• 3. Signals


• Implemented by OS software  
• 4. Nonlocal jumps: setjmp() and longjmp()


• Implemented by C runtime library

!17
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Today
• Exceptions/Interrupts

• Processes and Signals: Special kinds of exception

!18
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Exceptions

• An exception is a transfer of control to the OS kernel in 
response to some event  (i.e., change in processor state)

• Kernel is the memory-resident part of the OS
• Examples of events: Divide by 0, arithmetic overflow, page fault, I/O 

request completes, typing Ctrl-C

!19

User code Kernel code

I_current
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response to some event  (i.e., change in processor state)

• Kernel is the memory-resident part of the OS
• Examples of events: Divide by 0, arithmetic overflow, page fault, I/O 

request completes, typing Ctrl-C
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User code Kernel code

Exception
Exception 
processing
by exception 
handler

• Return to I_current
• Return to I_next
• Abort

Event I_current
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Exceptions

• An exception is a transfer of control to the OS kernel in 
response to some event  (i.e., change in processor state)

• Kernel is the memory-resident part of the OS
• Examples of events: Divide by 0, arithmetic overflow, page fault, I/O 

request completes, typing Ctrl-C

!19

User code Kernel code

Exception
Exception 
processing
by exception 
handler

• Return to I_current
• Return to I_next
• Abort

Event I_current
I_next
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Asynchronous Exceptions (Interrupts)
• Caused by events external to the processor

• Events that can happen at any time. Computers have little control.
• Indicated by setting the processor’s interrupt pin
• Handler returns to “next” instruction

!20



Carnegie Mellon

Asynchronous Exceptions (Interrupts)
• Caused by events external to the processor

• Events that can happen at any time. Computers have little control.
• Indicated by setting the processor’s interrupt pin
• Handler returns to “next” instruction

• Examples:
• Timer interrupt

• Every few ms, an external timer chip triggers an interrupt

!20



Carnegie Mellon

Asynchronous Exceptions (Interrupts)
• Caused by events external to the processor

• Events that can happen at any time. Computers have little control.
• Indicated by setting the processor’s interrupt pin
• Handler returns to “next” instruction

• Examples:
• Timer interrupt

• Every few ms, an external timer chip triggers an interrupt
• Used by the kernel to take back control from user programs

•  I/O interrupt from external device
• Hitting Ctrl-C at the keyboard
• Arrival of a packet from a network
• Arrival of data from a disk

!20
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Synchronous Exceptions
• Caused by events that occur as a result of executing an instruction:
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Synchronous Exceptions
• Caused by events that occur as a result of executing an instruction:

• Traps
• Intentional
• Examples: system calls, breakpoint traps, special instructions
• Returns control to “next” instruction

• Faults
• Unintentional but possibly recoverable 
• Examples: page faults (recoverable), protection faults (the 

infamous Segmentation Fault!) (unrecoverable in Linux), floating 
point exceptions (unrecoverable in Linux)

• Either re-executes faulting (“current”) instruction or aborts
• Aborts

• Unintentional and unrecoverable
• Examples: illegal instruction, parity error, machine check
• Aborts current program
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Fault Example: Page Fault
• User writes to memory location 
• That memory location is not found in memory  

because it is currently on disk 
• Trigger a Page Fault (recoverable), the exception handler loads the 

data from disk to memory (will discuss in detail later in the class)
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Fault Example: Protection Fault
• Access illegal memory location (e.g., dereferencing a null pointer)
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Fault Example: Protection Fault
• Access illegal memory location (e.g., dereferencing a null pointer)
• First trigger a Page Fault, the exception handler decides that this is 

unrecoverable, so simply aborts
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Fault Example: Protection Fault
• Access illegal memory location (e.g., dereferencing a null pointer)
• First trigger a Page Fault, the exception handler decides that this is 

unrecoverable, so simply aborts
• User process exits with “segmentation fault”
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Fault Example: Protection Fault
• Access illegal memory location (e.g., dereferencing a null pointer)
• First trigger a Page Fault, the exception handler decides that this is 

unrecoverable, so simply aborts
• User process exits with “segmentation fault”
• Again, later in the class…
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Others’ Definitions
• The textbook’s definitions are not universally accepted

• Intel (http://www.intel.com/cd/ids/developer/asmo-na/eng/microprocessors/ia32/xeon/19250.htm?page=2)


• Interrupt: An exception that comes from outside of the processor. There are two 
kinds of exceptions: local and external. A local exception is generated from a 
program. External exceptions are usually generated by external I/O devices and 
received at exception pins.  

• PowerPC Architecture

• Interrupts “allow the processor to change state as a result of external signals, errors, or 

unusual conditions arising in the execution of instructions” 
• PowerPC 604


• Everything is an exception 
• Motorola 68K


• Everything is an exception 
• VAX


• Interrupts: device, software, urgent 
• Exceptions: faults, traps, aborts
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When Do You Call the Handler?
• Interrupts: when convenient. Typically wait until the current 

instructions in the pipeline are finished

• Exceptions: typically immediately as programs can’t continue 

without resolving the exception (think of page fault)

•Maskable verses Unmaskable


• Interrupts can be individually masked (i.e., ignored by CPU) 
• Synchronous exceptions are usually unmaskable 

• Some interrupts are intentionally unmaskable

• Called non-maskable interrupts (NMI) 
• Indicating a critical error has occurred, and that the system is 

probably about to crash
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Where Do You Restart?
• Interrupts/Traps


• Handler returns to the following instruction
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Where Do You Restart?
• Interrupts/Traps


• Handler returns to the following instruction
• Faults


• Exception handler returns to the instruction that caused the 
exception, i.e., re-execute it!
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Where Do You Restart?
• Interrupts/Traps


• Handler returns to the following instruction
• Faults


• Exception handler returns to the instruction that caused the 
exception, i.e., re-execute it!

• Aborts

• Never returns to the program
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Where to Find Exception Handlers?
• Each type of event has a  

unique exception number k


• k = index into exception 
table


• Exception table lives in 
memory. Its start address is 
stored in a special register


• Handler k is called each 
time exception k occurs

!27
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Nested Exceptions
• One interrupt/exception occurs when another is already active

• Can fundamentally do it


• Subroutine calls within subroutine calls 
• Handlers need to save appropriate state
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Concurrent Interrupts
•More than one interrupts happen at the same time

• Pre-defined priority

• The chipset arbitrates which one to respond to first
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Today
• Exceptions/Interrupts

• Processes and Signals: Special kinds of exception


• Processes 
• Process Control 
• Signals
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Processes
• Definition: A process is an instance of a running program.

• One of the most profound ideas in computer science
• Not the same as “program” or “processor”
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Processes
• Definition: A process is an instance of a running program.

• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

• Process provides each program with two key 
abstractions:
• “Owns” the CPU

• Each program seems to have exclusive use of the CPU
• Provided by kernel mechanism called context switching

• Private address space
• Each program seems to have exclusive use of main 

memory. 
• Provided by kernel mechanism called virtual memory
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Multiprocessing: The Illusion

• Computer runs many processes simultaneously

• Applications for one or more users

• Web browsers, email clients, editors, …
• Background tasks

• Monitoring network & I/O devices
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Multiprocessing Example

• Running program “top” on Mac

• System has 123 processes, 5 of which are active
• Identified by Process ID (PID)
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Multiprocessing: The (Traditional) Reality

• Single processor executes multiple processes concurrently

• Process executions interleaved (multitasking) 
• Address spaces managed by virtual memory system (later in course)
• Register values for nonexecuting processes saved in memory
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Multiprocessing: The (Traditional) Reality

• Save current registers in memory
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Multiprocessing: The (Traditional) Reality

• Schedule next process for execution
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Multiprocessing: The (Traditional) Reality

• Load saved registers and switch address space (context switch)
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Multiprocessing: The (Modern) Reality

• Multicore processors

• Multiple CPUs on single chip
• Share main memory (and some of the 

caches)
• Each can execute a separate process

• Scheduling of processors onto 
cores done by kernel
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Concurrent Processes
• Each process is a logical control flow. 
• Two processes run concurrently (are concurrent) if their flows 

overlap in time
• Otherwise, they are sequential
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Concurrent Processes
• Each process is a logical control flow. 
• Two processes run concurrently (are concurrent) if their flows 

overlap in time
• Otherwise, they are sequential
• Examples (running on single core):

• Concurrent: A & B, A & C
• Sequential: B & C
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User View of Concurrent Processes
• Control flows for concurrent processes are physically disjoint in 

time


• However, we can think of concurrent processes as running in 
parallel with each other

!40
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Context Switching
• Processes are managed by a shared chunk of memory-resident 

OS code called the kernel
• Important: the kernel is not a separate process, but rather runs as 

part of some existing process.

• Control flow passes from one process to another via a context 
switch
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Today
• Exceptions/Interrupts

• Processes and Signals: Special kinds of exception


• Processes 
• Process Control 
• Signals
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Obtaining Process IDs
•pid_t getpid(void) 

• Returns PID of current process

•pid_t getppid(void) 
• Returns PID of parent process
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Creating and Terminating Processes
From a programmer’s perspective, we can think of a process as 
being in one of three states


• Running	 

• Process is either executing, or waiting to be executed and will 

eventually be scheduled (i.e., chosen to execute) by the kernel 

• Stopped

• Process execution is suspended and will not be scheduled until 

further notice (through something call signals) 

• Terminated

• Process is stopped permanently 

!44



Carnegie Mellon

Terminating Processes 
• Process becomes terminated for one of three reasons:


• Receiving a signal whose default action is to terminate
• Returning from the main routine
• Calling the exit function

•void exit(int status) 
• Terminates with an exit status of status
• Convention: normal return status is 0, nonzero on error
• Another way to explicitly set the exit status is to return an integer 

value from the main routine

•exit is called once but never returns.
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