
CSC 252: Computer Organization 
 Spring 2020: Lecture 18 

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Carnegie Mellon

Announcements

!2

• Cache problem set: https://www.cs.rochester.edu/
courses/252/spring2020/handouts.html

• Not to be turned in
• Assignment 4 soon to be released later today

https://www.cs.rochester.edu/courses/252/spring2020/handouts.html
https://www.cs.rochester.edu/courses/252/spring2020/handouts.html
https://www.cs.rochester.edu/courses/252/spring2020/handouts.html

Carnegie Mellon

General Cache Organization (S, E, B)

!3

E = 2e lines per set

S =
2s sets

set
line

Carnegie Mellon

General Cache Organization (S, E, B)

!3

E = 2e lines per set

S =
2s sets

set
line

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

Carnegie Mellon

General Cache Organization (S, E, B)

!3

E = 2e lines per set

S =
2s sets

set
line

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)valid bit

Carnegie Mellon

General Cache Organization (S, E, B)

!3

E = 2e lines per set

S =
2s sets

set
line

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)valid bit

d

dirty bit
(if write-back)

Carnegie Mellon

General Cache Organization (S, E, B)

!3

E = 2e lines per set

S =
2s sets

set
line

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

Cache size:
C = S x E x B data bytes
Overhead:
Tag, valid bit, dirty bit.
Plus bits for implementing
replacement policy
(not shown).

valid bit

d

dirty bit
(if write-back)

Carnegie Mellon

Cache Access

!4

E = 2e lines per set

S = 2s sets

t bits s bits b bits
Address of word:

tag set
index

Line
offset

Carnegie Mellon

Cache Access

!4

E = 2e lines per set

S = 2s sets

t bits s bits b bits
Address of word:

tag set
index

Line
offset

• Locate set

Carnegie Mellon

Cache Access

!4

E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit B = 2b bytes per cache block (the data)

t bits s bits b bits
Address of word:

tag set
index

Line
offset

• Locate set
• Check if any line in set 
has matching tag

• Yes + line valid: hit

Carnegie Mellon

Cache Access

!4

E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit B = 2b bytes per cache block (the data)

t bits s bits b bits
Address of word:

tag set
index

Line
offset

data begins at this offset

• Locate set
• Check if any line in set 
has matching tag

• Yes + line valid: hit
• Locate data starting 
at offset

Carnegie Mellon

Example: Direct Mapped Cache

!5

S = 2s sets

Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

Carnegie Mellon

Example: Direct Mapped Cache

!5

S = 2s sets

Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Carnegie Mellon

Example: Direct Mapped Cache

!6

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

Direct mapped: One line per set
Assume: cache block size 8 bytes

Carnegie Mellon

Example: Direct Mapped Cache

!6

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

tag

Direct mapped: One line per set
Assume: cache block size 8 bytes

Carnegie Mellon

Example: Direct Mapped Cache

!6

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

block offset

tag

Direct mapped: One line per set
Assume: cache block size 8 bytes

Carnegie Mellon

Example: Direct Mapped Cache

!7

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

Byte 4 is here

block offset

Direct mapped: One line per set
Assume: cache block size 8 bytes

Carnegie Mellon

Example: Direct Mapped Cache

!7

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

Byte 4 is here

block offset

If tag doesn’t match: old line is evicted and replaced

Direct mapped: One line per set
Assume: cache block size 8 bytes

Carnegie Mellon

Direct-Mapped Cache Simulation

!8

4-bit address space, i.e., Memory = 16
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

Set 0
Set 1
Set 2
Set 3

Carnegie Mellon

Direct-Mapped Cache Simulation

!8

4-bit address space, i.e., Memory = 16
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

Set 0
Set 1
Set 2
Set 3

Carnegie Mellon

Direct-Mapped Cache Simulation

!8

4-bit address space, i.e., Memory = 16
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]Set 0
Set 1
Set 2
Set 3

Carnegie Mellon

Direct-Mapped Cache Simulation

!8

4-bit address space, i.e., Memory = 16
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]Set 0
Set 1
Set 2
Set 3

The two bytes at memory address 0 and 1

Carnegie Mellon

Direct-Mapped Cache Simulation

!8

4-bit address space, i.e., Memory = 16
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]

hit

Set 0
Set 1
Set 2
Set 3

The two bytes at memory address 0 and 1

Carnegie Mellon

Direct-Mapped Cache Simulation

!8

4-bit address space, i.e., Memory = 16
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]

hit
miss

Set 0
Set 1
Set 2
Set 3

The two bytes at memory address 0 and 1

Carnegie Mellon

Direct-Mapped Cache Simulation

!8

4-bit address space, i.e., Memory = 16
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

Set 0
Set 1
Set 2
Set 3

The two bytes at memory address 0 and 1

Carnegie Mellon

Direct-Mapped Cache Simulation

!8

4-bit address space, i.e., Memory = 16
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

Set 0
Set 1
Set 2
Set 3

The two bytes at memory address 0 and 1

The two bytes at memory address 6 and 7

Carnegie Mellon

Direct-Mapped Cache Simulation

!8

4-bit address space, i.e., Memory = 16
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

Set 0
Set 1
Set 2
Set 3

The two bytes at memory address 0 and 1

The two bytes at memory address 6 and 7

Carnegie Mellon

Direct-Mapped Cache Simulation

!8

4-bit address space, i.e., Memory = 16
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]Set 0
Set 1
Set 2
Set 3 The two bytes at memory address 6 and 7

The two bytes at memory address 8 and 9

Carnegie Mellon

Direct-Mapped Cache Simulation

!8

4-bit address space, i.e., Memory = 16
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]

miss

Set 0
Set 1
Set 2
Set 3 The two bytes at memory address 6 and 7

The two bytes at memory address 8 and 9

Carnegie Mellon

Direct-Mapped Cache Simulation

!8

4-bit address space, i.e., Memory = 16
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]

miss

1 0 M[0-1]Set 0
Set 1
Set 2
Set 3 The two bytes at memory address 6 and 7

The two bytes at memory address 0 and 1

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

!9

E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

!9

E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

find set

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

!10

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

E = 2: Two lines per set
Assume: cache block size 8 bytes

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

!10

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

E = 2: Two lines per set
Assume: cache block size 8 bytes

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

!10

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

tag

E = 2: Two lines per set
Assume: cache block size 8 bytes

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

!10

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

block offset

tag

E = 2: Two lines per set
Assume: cache block size 8 bytes

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

!11

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

block offset

short int (2 Bytes) is here

E = 2: Two lines per set
Assume: cache block size 8 bytes

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

!11

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

block offset

short int (2 Bytes) is here

No match:
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …

E = 2: Two lines per set
Assume: cache block size 8 bytes

Carnegie Mellon

2-Way Set Associative Cache Simulation

!12

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Block

0

0
0

Set 0

Set 1

Carnegie Mellon

2-Way Set Associative Cache Simulation

!12

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Block

0

0
0

miss

Set 0

Set 1

Carnegie Mellon

2-Way Set Associative Cache Simulation

!12

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Block

0

0
0

miss

1 00 M[0-1]Set 0

Set 1

Carnegie Mellon

2-Way Set Associative Cache Simulation

!12

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Block

0

0
0

miss

1 00 M[0-1]

hit

Set 0

Set 1

Carnegie Mellon

2-Way Set Associative Cache Simulation

!12

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Block

0

0
0

miss

1 00 M[0-1]

hit
miss

Set 0

Set 1

Carnegie Mellon

2-Way Set Associative Cache Simulation

!12

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Block

0

0
0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

Set 0

Set 1

Carnegie Mellon

2-Way Set Associative Cache Simulation

!12

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Block

0

0
0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

Set 0

Set 1

Carnegie Mellon

2-Way Set Associative Cache Simulation

!12

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Block

0

0
0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]
Set 0

Set 1

Carnegie Mellon

2-Way Set Associative Cache Simulation

!12

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Block

0

0
0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]

hit

Set 0

Set 1

Carnegie Mellon

General Rule: Bigger == Slower

• How big should the cache be?

• Too small and too much memory traffic
• Too large and cache slows down execution (high latency)

!1343

CPU Cache
$ Memory

Carnegie Mellon

General Rule: Bigger == Slower

• How big should the cache be?

• Too small and too much memory traffic
• Too large and cache slows down execution (high latency)

•Make multiple levels of cache

• Small L1 backed up by larger L2
• Today’s processors typically have 3 cache levels

!1343

CPU Cache
$ Memory

Carnegie Mellon

General Rule: Bigger == Slower

• How big should the cache be?

• Too small and too much memory traffic
• Too large and cache slows down execution (high latency)

•Make multiple levels of cache

• Small L1 backed up by larger L2
• Today’s processors typically have 3 cache levels

!1343

CPU Cache
$ MemoryCache

$

Carnegie Mellon

General Rule: Bigger == Slower

• How big should the cache be?

• Too small and too much memory traffic
• Too large and cache slows down execution (high latency)

•Make multiple levels of cache

• Small L1 backed up by larger L2
• Today’s processors typically have 3 cache levels

!1343

CPU Cache
$ MemoryCache

$
Level 1
(L1 $)

Level 2  
(L2 $)

Carnegie Mellon

Summary

!14

Carnegie Mellon

So Far in CSC252…

<startup>
inst1
inst2
inst3
…
instn
<shutdown>

• Processors do only one thing:

• From startup to shutdown, a CPU simply reads and executes

(interprets) a sequence of instructions, one at a time
• This sequence is the CPU’s control flow (or flow of control)

!15

Physical control flow

Time

Carnegie Mellon

Altering the Control Flow
• Up to now: two mechanisms for changing control flow:

• Jumps and branches
• Call and return
React to changes in program state

!16

Carnegie Mellon

Altering the Control Flow
• Up to now: two mechanisms for changing control flow:

• Jumps and branches
• Call and return
React to changes in program state

• Insufficient for a useful system: Difficult to react to changes in
system state
• Data arrives from a disk or a network adapter
• Instruction divides by zero
• User hits Ctrl-C at the keyboard
• System timer expires

!16

Carnegie Mellon

Altering the Control Flow
• Up to now: two mechanisms for changing control flow:

• Jumps and branches
• Call and return
React to changes in program state

• Insufficient for a useful system: Difficult to react to changes in
system state
• Data arrives from a disk or a network adapter
• Instruction divides by zero
• User hits Ctrl-C at the keyboard
• System timer expires

• System needs mechanisms for “exceptional control flow”

!16

Carnegie Mellon

Exceptional Control Flow
• Exists at all levels of a computer system

!17

Carnegie Mellon

Exceptional Control Flow
• Exists at all levels of a computer system
• Low level mechanisms

• 1. Exceptions

• Change in control flow in response to a system event  

(i.e., change in system state)
• Implemented using combination of hardware and OS software	

!17

Carnegie Mellon

Exceptional Control Flow
• Exists at all levels of a computer system
• Low level mechanisms

• 1. Exceptions

• Change in control flow in response to a system event  

(i.e., change in system state)
• Implemented using combination of hardware and OS software	

• Higher level mechanisms

• 2. Process context switch

• Implemented by OS software and hardware timer
• 3. Signals

• Implemented by OS software
• 4. Nonlocal jumps: setjmp() and longjmp()

• Implemented by C runtime library

!17

Carnegie Mellon

Today
• Exceptions/Interrupts

• Processes and Signals: Special kinds of exception

!18

Carnegie Mellon

Exceptions

• An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)

• Kernel is the memory-resident part of the OS
• Examples of events: Divide by 0, arithmetic overflow, page fault, I/O

request completes, typing Ctrl-C

!19

User code Kernel code

I_current

Carnegie Mellon

Exceptions

• An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)

• Kernel is the memory-resident part of the OS
• Examples of events: Divide by 0, arithmetic overflow, page fault, I/O

request completes, typing Ctrl-C

!19

User code Kernel code

Event I_current

Carnegie Mellon

Exceptions

• An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)

• Kernel is the memory-resident part of the OS
• Examples of events: Divide by 0, arithmetic overflow, page fault, I/O

request completes, typing Ctrl-C

!19

User code Kernel code

ExceptionEvent I_current

Carnegie Mellon

Exceptions

• An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)

• Kernel is the memory-resident part of the OS
• Examples of events: Divide by 0, arithmetic overflow, page fault, I/O

request completes, typing Ctrl-C

!19

User code Kernel code

Exception
Exception
processing
by exception
handler

Event I_current

Carnegie Mellon

Exceptions

• An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)

• Kernel is the memory-resident part of the OS
• Examples of events: Divide by 0, arithmetic overflow, page fault, I/O

request completes, typing Ctrl-C

!19

User code Kernel code

Exception
Exception
processing
by exception
handler

• Return to I_current
• Return to I_next
• Abort

Event I_current

Carnegie Mellon

Exceptions

• An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)

• Kernel is the memory-resident part of the OS
• Examples of events: Divide by 0, arithmetic overflow, page fault, I/O

request completes, typing Ctrl-C

!19

User code Kernel code

Exception
Exception
processing
by exception
handler

• Return to I_current
• Return to I_next
• Abort

Event I_current
I_next

Carnegie Mellon

Asynchronous Exceptions (Interrupts)
• Caused by events external to the processor

• Events that can happen at any time. Computers have little control.
• Indicated by setting the processor’s interrupt pin
• Handler returns to “next” instruction

!20

Carnegie Mellon

Asynchronous Exceptions (Interrupts)
• Caused by events external to the processor

• Events that can happen at any time. Computers have little control.
• Indicated by setting the processor’s interrupt pin
• Handler returns to “next” instruction

• Examples:
• Timer interrupt

• Every few ms, an external timer chip triggers an interrupt

!20

Carnegie Mellon

Asynchronous Exceptions (Interrupts)
• Caused by events external to the processor

• Events that can happen at any time. Computers have little control.
• Indicated by setting the processor’s interrupt pin
• Handler returns to “next” instruction

• Examples:
• Timer interrupt

• Every few ms, an external timer chip triggers an interrupt
• Used by the kernel to take back control from user programs

• I/O interrupt from external device
• Hitting Ctrl-C at the keyboard
• Arrival of a packet from a network
• Arrival of data from a disk

!20

Carnegie Mellon

Synchronous Exceptions
• Caused by events that occur as a result of executing an instruction:

!21

Carnegie Mellon

Synchronous Exceptions
• Caused by events that occur as a result of executing an instruction:

• Traps
• Intentional
• Examples: system calls, breakpoint traps, special instructions
• Returns control to “next” instruction

!21

Carnegie Mellon

Synchronous Exceptions
• Caused by events that occur as a result of executing an instruction:

• Traps
• Intentional
• Examples: system calls, breakpoint traps, special instructions
• Returns control to “next” instruction

• Faults
• Unintentional but possibly recoverable
• Examples: page faults (recoverable), protection faults (the

infamous Segmentation Fault!) (unrecoverable in Linux), floating
point exceptions (unrecoverable in Linux)

• Either re-executes faulting (“current”) instruction or aborts

!21

Carnegie Mellon

Synchronous Exceptions
• Caused by events that occur as a result of executing an instruction:

• Traps
• Intentional
• Examples: system calls, breakpoint traps, special instructions
• Returns control to “next” instruction

• Faults
• Unintentional but possibly recoverable
• Examples: page faults (recoverable), protection faults (the

infamous Segmentation Fault!) (unrecoverable in Linux), floating
point exceptions (unrecoverable in Linux)

• Either re-executes faulting (“current”) instruction or aborts
• Aborts

• Unintentional and unrecoverable
• Examples: illegal instruction, parity error, machine check
• Aborts current program

!21

Carnegie Mellon

Fault Example: Page Fault
• User writes to memory location
• That memory location is not found in memory  

because it is currently on disk
• Trigger a Page Fault (recoverable), the exception handler loads the

data from disk to memory (will discuss in detail later in the class)

!22

 80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

Carnegie Mellon

Fault Example: Page Fault
• User writes to memory location
• That memory location is not found in memory  

because it is currently on disk
• Trigger a Page Fault (recoverable), the exception handler loads the

data from disk to memory (will discuss in detail later in the class)

!22

 80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User code

movl

Carnegie Mellon

Fault Example: Page Fault
• User writes to memory location
• That memory location is not found in memory  

because it is currently on disk
• Trigger a Page Fault (recoverable), the exception handler loads the

data from disk to memory (will discuss in detail later in the class)

!22

 80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User code Kernel code

Exception: page fault
Copy page from
disk to memory

movl

Carnegie Mellon

Fault Example: Page Fault
• User writes to memory location
• That memory location is not found in memory  

because it is currently on disk
• Trigger a Page Fault (recoverable), the exception handler loads the

data from disk to memory (will discuss in detail later in the class)

!22

 80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User code Kernel code

Exception: page fault
Copy page from
disk to memoryReturn and

reexecute movl

movl

Carnegie Mellon

Fault Example: Page Fault
• User writes to memory location
• That memory location is not found in memory  

because it is currently on disk
• Trigger a Page Fault (recoverable), the exception handler loads the

data from disk to memory (will discuss in detail later in the class)

!22

 80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User code Kernel code

Exception: page fault
Copy page from
disk to memoryReturn and

reexecute movl

movl

Carnegie Mellon

Fault Example: Protection Fault

!23

 80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

Carnegie Mellon

Fault Example: Protection Fault

!23

 80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User code

movl

Carnegie Mellon

Fault Example: Protection Fault

!23

 80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User code Kernel code

Exception: page fault
movl

Carnegie Mellon

Fault Example: Protection Fault

!23

 80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User code Kernel code

Exception: page fault
Detect invalid
address

movl

Carnegie Mellon

Fault Example: Protection Fault

!23

 80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User code Kernel code

Exception: page fault
Detect invalid
address

movl

Signal process
and abort

Carnegie Mellon

Fault Example: Protection Fault
• Access illegal memory location (e.g., dereferencing a null pointer)

!23

 80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User code Kernel code

Exception: page fault
Detect invalid
address

movl

Signal process
and abort

Carnegie Mellon

Fault Example: Protection Fault
• Access illegal memory location (e.g., dereferencing a null pointer)
• First trigger a Page Fault, the exception handler decides that this is

unrecoverable, so simply aborts

!23

 80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User code Kernel code

Exception: page fault
Detect invalid
address

movl

Signal process
and abort

Carnegie Mellon

Fault Example: Protection Fault
• Access illegal memory location (e.g., dereferencing a null pointer)
• First trigger a Page Fault, the exception handler decides that this is

unrecoverable, so simply aborts
• User process exits with “segmentation fault”

!23

 80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User code Kernel code

Exception: page fault
Detect invalid
address

movl

Signal process
and abort

Carnegie Mellon

Fault Example: Protection Fault
• Access illegal memory location (e.g., dereferencing a null pointer)
• First trigger a Page Fault, the exception handler decides that this is

unrecoverable, so simply aborts
• User process exits with “segmentation fault”
• Again, later in the class…

!23

 80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User code Kernel code

Exception: page fault
Detect invalid
address

movl

Signal process
and abort

Carnegie Mellon

Others’ Definitions
• The textbook’s definitions are not universally accepted

• Intel (http://www.intel.com/cd/ids/developer/asmo-na/eng/microprocessors/ia32/xeon/19250.htm?page=2)

• Interrupt: An exception that comes from outside of the processor. There are two
kinds of exceptions: local and external. A local exception is generated from a
program. External exceptions are usually generated by external I/O devices and
received at exception pins.

• PowerPC Architecture

• Interrupts “allow the processor to change state as a result of external signals, errors, or

unusual conditions arising in the execution of instructions”
• PowerPC 604

• Everything is an exception
• Motorola 68K

• Everything is an exception
• VAX

• Interrupts: device, software, urgent
• Exceptions: faults, traps, aborts

!24

Carnegie Mellon

When Do You Call the Handler?
• Interrupts: when convenient. Typically wait until the current

instructions in the pipeline are finished

• Exceptions: typically immediately as programs can’t continue

without resolving the exception (think of page fault)

•Maskable verses Unmaskable

• Interrupts can be individually masked (i.e., ignored by CPU)
• Synchronous exceptions are usually unmaskable

• Some interrupts are intentionally unmaskable

• Called non-maskable interrupts (NMI)
• Indicating a critical error has occurred, and that the system is

probably about to crash

!25

Carnegie Mellon

Where Do You Restart?
• Interrupts/Traps

• Handler returns to the following instruction

!26

Carnegie Mellon

Where Do You Restart?
• Interrupts/Traps

• Handler returns to the following instruction
• Faults

• Exception handler returns to the instruction that caused the
exception, i.e., re-execute it!

!26

Carnegie Mellon

Where Do You Restart?
• Interrupts/Traps

• Handler returns to the following instruction
• Faults

• Exception handler returns to the instruction that caused the
exception, i.e., re-execute it!

• Aborts

• Never returns to the program

!26

Carnegie Mellon

Where to Find Exception Handlers?
• Each type of event has a  

unique exception number k

• k = index into exception
table

• Exception table lives in
memory. Its start address is
stored in a special register

• Handler k is called each
time exception k occurs

!27

0
1
2 ...

n-1

Exception
Table

Code for
exception handler 0

Code for
exception handler 1

Code for
exception handler 2

Code for
exception handler n-1

...

Exception
numbers

Carnegie Mellon

Nested Exceptions
• One interrupt/exception occurs when another is already active

• Can fundamentally do it

• Subroutine calls within subroutine calls
• Handlers need to save appropriate state

!28

Carnegie Mellon

Concurrent Interrupts
•More than one interrupts happen at the same time

• Pre-defined priority

• The chipset arbitrates which one to respond to first

!29

Carnegie Mellon

Today
• Exceptions/Interrupts

• Processes and Signals: Special kinds of exception

• Processes
• Process Control
• Signals

!30

Carnegie Mellon

Processes
• Definition: A process is an instance of a running program.

• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

!31

Carnegie Mellon

Processes
• Definition: A process is an instance of a running program.

• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

• Process provides each program with two key
abstractions:

!31

Carnegie Mellon

Processes
• Definition: A process is an instance of a running program.

• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

• Process provides each program with two key
abstractions:
• “Owns” the CPU

!31

CPU
Registers

Carnegie Mellon

Processes
• Definition: A process is an instance of a running program.

• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

• Process provides each program with two key
abstractions:
• “Owns” the CPU

• Each program seems to have exclusive use of the CPU

!31

CPU
Registers

Carnegie Mellon

Processes
• Definition: A process is an instance of a running program.

• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

• Process provides each program with two key
abstractions:
• “Owns” the CPU

• Each program seems to have exclusive use of the CPU
• Provided by kernel mechanism called context switching

!31

CPU
Registers

Carnegie Mellon

Processes
• Definition: A process is an instance of a running program.

• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

• Process provides each program with two key
abstractions:
• “Owns” the CPU

• Each program seems to have exclusive use of the CPU
• Provided by kernel mechanism called context switching

• Private address space

!31

CPU
Registers

Carnegie Mellon

Processes
• Definition: A process is an instance of a running program.

• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

• Process provides each program with two key
abstractions:
• “Owns” the CPU

• Each program seems to have exclusive use of the CPU
• Provided by kernel mechanism called context switching

• Private address space

!31

CPU
Registers

Memory
Stack
Heap

Code
Data

Carnegie Mellon

Processes
• Definition: A process is an instance of a running program.

• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

• Process provides each program with two key
abstractions:
• “Owns” the CPU

• Each program seems to have exclusive use of the CPU
• Provided by kernel mechanism called context switching

• Private address space
• Each program seems to have exclusive use of main

memory.

!31

CPU
Registers

Memory
Stack
Heap

Code
Data

Carnegie Mellon

Processes
• Definition: A process is an instance of a running program.

• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

• Process provides each program with two key
abstractions:
• “Owns” the CPU

• Each program seems to have exclusive use of the CPU
• Provided by kernel mechanism called context switching

• Private address space
• Each program seems to have exclusive use of main

memory.
• Provided by kernel mechanism called virtual memory

!31

CPU
Registers

Memory
Stack
Heap

Code
Data

Carnegie Mellon

Multiprocessing: The Illusion

• Computer runs many processes simultaneously

• Applications for one or more users

• Web browsers, email clients, editors, …
• Background tasks

• Monitoring network & I/O devices

!32

CPU
Registers

Memory
Stack
Heap

Code
Data

CPU
Registers

Memory
Stack
Heap

Code
Data …

CPU
Registers

Memory
Stack
Heap

Code
Data

Carnegie Mellon

Multiprocessing Example

• Running program “top” on Mac

• System has 123 processes, 5 of which are active
• Identified by Process ID (PID)

!33

Carnegie Mellon

Multiprocessing: The (Traditional) Reality

• Single processor executes multiple processes concurrently

• Process executions interleaved (multitasking)
• Address spaces managed by virtual memory system (later in course)
• Register values for nonexecuting processes saved in memory

!34

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

Carnegie Mellon

Multiprocessing: The (Traditional) Reality

• Save current registers in memory

!35

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

Carnegie Mellon

Multiprocessing: The (Traditional) Reality

• Schedule next process for execution

!36

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

Carnegie Mellon

Multiprocessing: The (Traditional) Reality

• Load saved registers and switch address space (context switch)

!37

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

Carnegie Mellon

Multiprocessing: The (Modern) Reality

• Multicore processors

• Multiple CPUs on single chip
• Share main memory (and some of the

caches)
• Each can execute a separate process

• Scheduling of processors onto
cores done by kernel

!38

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

CPU
Registers

Carnegie Mellon

Concurrent Processes
• Each process is a logical control flow.
• Two processes run concurrently (are concurrent) if their flows

overlap in time
• Otherwise, they are sequential

!39

Carnegie Mellon

Concurrent Processes
• Each process is a logical control flow.
• Two processes run concurrently (are concurrent) if their flows

overlap in time
• Otherwise, they are sequential
• Examples (running on single core):

!39

Process A Process B Process C

Time

Carnegie Mellon

Concurrent Processes
• Each process is a logical control flow.
• Two processes run concurrently (are concurrent) if their flows

overlap in time
• Otherwise, they are sequential
• Examples (running on single core):

• Concurrent: A & B, A & C

!39

Process A Process B Process C

Time

Carnegie Mellon

Concurrent Processes
• Each process is a logical control flow.
• Two processes run concurrently (are concurrent) if their flows

overlap in time
• Otherwise, they are sequential
• Examples (running on single core):

• Concurrent: A & B, A & C
• Sequential: B & C

!39

Process A Process B Process C

Time

Carnegie Mellon

User View of Concurrent Processes
• Control flows for concurrent processes are physically disjoint in

time

• However, we can think of concurrent processes as running in
parallel with each other

!40

Time

Process A Process B Process C

Carnegie Mellon

Context Switching
• Processes are managed by a shared chunk of memory-resident

OS code called the kernel
• Important: the kernel is not a separate process, but rather runs as

part of some existing process.

• Control flow passes from one process to another via a context
switch

!41

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

Carnegie Mellon

Today
• Exceptions/Interrupts

• Processes and Signals: Special kinds of exception

• Processes
• Process Control
• Signals

!42

Carnegie Mellon

Obtaining Process IDs
•pid_t getpid(void)

• Returns PID of current process

•pid_t getppid(void)
• Returns PID of parent process

!43

Carnegie Mellon

Creating and Terminating Processes
From a programmer’s perspective, we can think of a process as
being in one of three states

• Running	

• Process is either executing, or waiting to be executed and will

eventually be scheduled (i.e., chosen to execute) by the kernel

• Stopped

• Process execution is suspended and will not be scheduled until

further notice (through something call signals)

• Terminated

• Process is stopped permanently

!44

Carnegie Mellon

Terminating Processes
• Process becomes terminated for one of three reasons:

• Receiving a signal whose default action is to terminate
• Returning from the main routine
• Calling the exit function

•void exit(int status)
• Terminates with an exit status of status
• Convention: normal return status is 0, nonzero on error
• Another way to explicitly set the exit status is to return an integer

value from the main routine

•exit is called once but never returns.

!45

