
CSC 252: Computer Organization 
 Spring 2020: Lecture 24 

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Carnegie Mellon

Announcements
• Lab 5: https://www.cs.rochester.edu/courses/252/spring2020/

labs/assignment5.html

!2

Due

Today

Final

Last
Lecture

https://www.cs.rochester.edu/courses/252/spring2020/labs/assignment5.html
https://www.cs.rochester.edu/courses/252/spring2020/labs/assignment5.html
https://www.cs.rochester.edu/courses/252/spring2020/labs/assignment5.html

Carnegie Mellon

Announcements
• Virtual memory problem set and solution: https://

www.cs.rochester.edu/courses/252/spring2020/handouts.html

• Final exam: May 6, 19:15 EST — 22:15 EST

• Let me know if you can’t make this time.

• Exam will be electronic on blackboard, but we will send you an

PDF version so that you can work offline in case

• 1) you don’t have Internet access at the exam time or
• 2) you lose Internet access.
• Write down the answers on a scratch paper, take pictures, and send

us the pictures
• Same rule as before: anything on paper is fine, nothing

electronic other than using the computer to take the exam

•Will do a dry run on Apr. 28 during the class

!3

https://www.cs.rochester.edu/courses/252/spring2020/handouts.html
https://www.cs.rochester.edu/courses/252/spring2020/handouts.html

Carnegie Mellon

Keeping Track of Free Blocks

!4

5 4 26

5 4 26

• Method 1: Implicit list using length—links all blocks

• Method 2: Explicit list among the free blocks using pointers

• Method 3: Segregated free list
• Different free lists for different size classes

Carnegie Mellon

Implicit List
• For each block we need both size and allocation status

• Could store this information in two words: wasteful!

!5

5 4 26

Carnegie Mellon

Implicit List
• For each block we need both size and allocation status

• Could store this information in two words: wasteful!

!5

Size

1 word

Payload

a = 1: Allocated block
a = 0: Free block

Size: block size

Payload: application data
(allocated blocks only)

a

Optional
padding

5 4 26

Carnegie Mellon

Implicit List
• For each block we need both size and allocation status

• Could store this information in two words: wasteful!

• Standard trick

• If blocks are aligned, some low-order address bits are always 0
• Instead of storing an always-0 bit, use it as a allocated/free flag
• When reading size word, must mask out this bit

!6

Carnegie Mellon

Implicit List
• For each block we need both size and allocation status

• Could store this information in two words: wasteful!

• Standard trick

• If blocks are aligned, some low-order address bits are always 0
• Instead of storing an always-0 bit, use it as a allocated/free flag
• When reading size word, must mask out this bit

!6

Size

1 word

Format of
allocated and
free blocks

Payload

a = 1: Allocated block
a = 0: Free block

Size: block size

Payload: application data
(allocated blocks only)

a

Optional
padding

Carnegie Mellon

Detailed Implicit Free List Example

!7

Start
of

heap

Double-word
aligned

8/0 16/1 16/132/0

Unused

0/1

Allocated blocks: shaded
Free blocks: unshaded
Headers: labeled with size in bytes/allocated bit

Carnegie Mellon

Finding a Free Block
• First fit:

• Search list from beginning, choose first free block that fits
• Can take linear time in total number of blocks (allocated and free)
• In practice it can cause “splinters” at beginning of list

!8

Carnegie Mellon

Finding a Free Block
• First fit:

• Search list from beginning, choose first free block that fits
• Can take linear time in total number of blocks (allocated and free)
• In practice it can cause “splinters” at beginning of list

• Next fit:

• Like first fit, but search list starting where previous search finished
• Should often be faster than first fit: avoids re-scanning unhelpful blocks
• Some research suggests that fragmentation is worse

!8

Carnegie Mellon

Finding a Free Block
• First fit:

• Search list from beginning, choose first free block that fits
• Can take linear time in total number of blocks (allocated and free)
• In practice it can cause “splinters” at beginning of list

• Next fit:

• Like first fit, but search list starting where previous search finished
• Should often be faster than first fit: avoids re-scanning unhelpful blocks
• Some research suggests that fragmentation is worse

• Best fit:

• Search the list, choose the best free block: fits, with fewest bytes left over
• Keeps fragments small—usually improves memory utilization
• Will typically run slower than first fit

!8

Carnegie Mellon

Allocating in Free Block
• Allocated space might be smaller than free space

• We could simply leave the extra space there. Simple to implement but

causes internal fragmentation

• Or we could split the block

!9

void addblock(ptr p, int len) {
 int newsize = ((len + 1) >> 1) << 1; // round up to even
 int oldsize = *p & -2; // mask out low bit
 *p = newsize | 1; // set new length
 if (newsize < oldsize)
 *(p+newsize) = oldsize - newsize; // set length in remaining
} // part of block

4 4 26

4 24

p

24

Carnegie Mellon

Freeing a Block
• Simplest implementation:

• Need only clear the “allocated” flag
 void free_block(ptr p) { *p = *p & -2 }

• But can lead to “false fragmentation”

!10

4 24 24

Carnegie Mellon

Freeing a Block
• Simplest implementation:

• Need only clear the “allocated” flag
 void free_block(ptr p) { *p = *p & -2 }

• But can lead to “false fragmentation”

!10

4 24 24

free(p) p

4 4 24 2

Carnegie Mellon

Freeing a Block
• Simplest implementation:

• Need only clear the “allocated” flag
 void free_block(ptr p) { *p = *p & -2 }

• But can lead to “false fragmentation”

!10

4 24 24

free(p) p

4 4 24 2

malloc(5) Oops!

Carnegie Mellon

Freeing a Block
• Simplest implementation:

• Need only clear the “allocated” flag
 void free_block(ptr p) { *p = *p & -2 }

• But can lead to “false fragmentation”

!10

4 24 24

free(p) p

4 4 24 2

malloc(5) Oops!

There is enough free space, but the allocator won’t be able to find it

Carnegie Mellon

Coalescing
• Join (coalesce) with next/previous blocks, if they are free

• Coalescing with next block

!11

void free_block(ptr p) {  
 *p = *p & -2; // clear allocated flag  
 next = p + *p; // find next block  
 if ((*next & 1) == 0)  
 *p = *p + *next; // add to this block if  
} // not allocated

4 24 2

free(p) p

4 4 2

4

6 2

logically
gone

Carnegie Mellon

Coalescing
• How about now?

!12

4 24 2

free(p) p

4

4 24 28

Carnegie Mellon

Coalescing
• How about now?

• How do we coalesce with previous block?

!12

4 24 2

free(p) p

4

4 24 28

Carnegie Mellon

Coalescing
• How about now?

• How do we coalesce with previous block?
• Linear time solution: scans from beginning

!12

4 24 2

free(p) p

4

4 24 28

Carnegie Mellon

Bidirectional Coalescing (Constant Time)
• Boundary tags [Knuth73]

• Replicate size/allocated word at “bottom” (end) of free blocks

• Allows us to traverse the “list” backwards, but requires extra space

• Important and general technique!

!13

4 4 4 4 6 46 4

Carnegie Mellon

Bidirectional Coalescing (Constant Time)
• Boundary tags [Knuth73]

• Replicate size/allocated word at “bottom” (end) of free blocks

• Allows us to traverse the “list” backwards, but requires extra space

• Important and general technique!

!13

Size

Format of
allocated and
free blocks

Payload and
padding

a = 1: Allocated block
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

a

SizeBoundary tag
(footer)

4 4 4 4 6 46 4

Header

Carnegie Mellon

Bidirectional Coalescing (Constant Time)
• Boundary tags [Knuth73]

• Replicate size/allocated word at “bottom” (end) of free blocks

• Allows us to traverse the “list” backwards, but requires extra space

• Important and general technique!

!13

Size

Format of
allocated and
free blocks

Payload and
padding

a = 1: Allocated block
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

a

Size aBoundary tag
(footer)

4 4 4 4 6 46 4

Header

Carnegie Mellon

Bidirectional Coalescing (Constant Time)
• Boundary tags [Knuth73]

• Replicate size/allocated word at “bottom” (end) of free blocks

• Allows us to traverse the “list” backwards, but requires extra space

• Important and general technique!

• Disadvantages? (Think of small blocks…)

!13

Size

Format of
allocated and
free blocks

Payload and
padding

a = 1: Allocated block
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

a

Size aBoundary tag
(footer)

4 4 4 4 6 46 4

Header

Carnegie Mellon

Summary of Key Allocator Policies
• Placement policy:

• First-fit, next-fit, best-fit, etc.
• Trades off lower throughput for less fragmentation	

!14

Carnegie Mellon

Summary of Key Allocator Policies
• Placement policy:

• First-fit, next-fit, best-fit, etc.
• Trades off lower throughput for less fragmentation	

• Splitting policy:

• When do we split free blocks?
• How much internal fragmentation are we willing to tolerate?

!14

Carnegie Mellon

Summary of Key Allocator Policies
• Placement policy:

• First-fit, next-fit, best-fit, etc.
• Trades off lower throughput for less fragmentation	

• Splitting policy:

• When do we split free blocks?
• How much internal fragmentation are we willing to tolerate?

• Coalescing policy:

• Immediate coalescing: coalesce each time free is called
• Deferred coalescing: try to improve performance of free by deferring

coalescing until needed. Examples:
• Coalesce as you scan the free list for malloc
• Coalesce when the amount of external fragmentation reaches

some threshold

!14

Carnegie Mellon

Implicit Lists: Summary
• Implementation: very simple

!15

Carnegie Mellon

Implicit Lists: Summary
• Implementation: very simple
• Allocate cost:

• linear time worst case
• Identify free blocks requires scanning all the blocks!

!15

Carnegie Mellon

Implicit Lists: Summary
• Implementation: very simple
• Allocate cost:

• linear time worst case
• Identify free blocks requires scanning all the blocks!

• Free cost:

• constant time worst case

!15

Carnegie Mellon

Implicit Lists: Summary
• Implementation: very simple
• Allocate cost:

• linear time worst case
• Identify free blocks requires scanning all the blocks!

• Free cost:

• constant time worst case

•Memory usage:

• Will depend on placement policy
• First-fit, next-fit, or best-fit

!15

Carnegie Mellon

Implicit Lists: Summary
• Implementation: very simple
• Allocate cost:

• linear time worst case
• Identify free blocks requires scanning all the blocks!

• Free cost:

• constant time worst case

•Memory usage:

• Will depend on placement policy
• First-fit, next-fit, or best-fit

• Not used in practice because of linear-time allocation

• used in many special purpose applications

!15

Carnegie Mellon

Implicit Lists: Summary
• Implementation: very simple
• Allocate cost:

• linear time worst case
• Identify free blocks requires scanning all the blocks!

• Free cost:

• constant time worst case

•Memory usage:

• Will depend on placement policy
• First-fit, next-fit, or best-fit

• Not used in practice because of linear-time allocation

• used in many special purpose applications

• However, the concepts of splitting and boundary tag coalescing
are general to all allocators

!15

Carnegie Mellon

Keeping Track of Free Blocks

!16

5 4 26

5 4 26

• Method 1: Implicit list using length—links all blocks

• Method 2: Explicit list among the free blocks using pointers

• Method 3: Segregated free list
• Different free lists for different size classes

Carnegie Mellon

Explicit Free Lists

•Maintain list(s) of free blocks, not all blocks

• The “next” free block could be anywhere

• So we need to store forward/back pointers, not just sizes
• Still need boundary tags for coalescing
• Luckily we track only free blocks, so we can use payload area

!17

Size

Payload and
padding

a

Size a

Size a

Size a

Next

Prev

Allocated (as before) Free

Carnegie Mellon

Explicit Free Lists
• Logically:

• Physically: blocks can be in any order

!18

A B C

4 4 4 4 66 44 4 4

Forward (next) links

Back (prev) links

A B

C

Carnegie Mellon

Allocating From Explicit Free Lists

!19

Before

After

= malloc(…)

(with splitting)

conceptual graphic

Carnegie Mellon

Freeing With Explicit Free Lists
• Insertion policy: Where in the free list do you put a newly freed

block?
• LIFO (last-in-first-out) policy

• Insert freed block at the beginning of the free list
• Pro: simple and constant time
• Con: studies suggest fragmentation is worse than address ordered

• Address-ordered policy

• Insert freed blocks so that free list blocks are always in address

order:  
 addr(prev) < addr(curr) < addr(next)

• Con: requires search
• Pro: studies suggest fragmentation is lower than LIFO

!20

Carnegie Mellon

Freeing With a LIFO Policy (Case 1)
• Insert the freed block at the root of the list

!21

free()

Root

Before conceptual graphic

Carnegie Mellon

Freeing With a LIFO Policy (Case 1)
• Insert the freed block at the root of the list

!21

free()

Root

Root

Before

After

conceptual graphic

Carnegie Mellon

Freeing With a LIFO Policy (Case 2)
• Splice out successor block, coalesce both memory blocks and

insert the new block at the root of the list

!22

free()

Root

Before conceptual graphic

Carnegie Mellon

Freeing With a LIFO Policy (Case 2)
• Splice out successor block, coalesce both memory blocks and

insert the new block at the root of the list

!22

free()

Root

Before

Root

After

conceptual graphic

Carnegie Mellon

Freeing With a LIFO Policy (Case 3)
• Splice out predecessor block, coalesce both memory blocks,

and insert the new block at the root of the list

!23

free()

Root

Before conceptual graphic

Carnegie Mellon

Freeing With a LIFO Policy (Case 3)
• Splice out predecessor block, coalesce both memory blocks,

and insert the new block at the root of the list

!23

free()

Root

Root

Before

After

conceptual graphic

Carnegie Mellon

Freeing With a LIFO Policy (Case 4)
• Splice out predecessor and successor blocks, coalesce all 3

memory blocks and insert the new block at the root of the list

!24

free()

Root

Before conceptual graphic

Carnegie Mellon

Freeing With a LIFO Policy (Case 4)
• Splice out predecessor and successor blocks, coalesce all 3

memory blocks and insert the new block at the root of the list

!24

free()

Root

Before

Root

After

conceptual graphic

Carnegie Mellon

Explicit List Summary
• Comparison to implicit list:

• Allocate is linear time in number of free blocks instead of all blocks.
Much faster when most of the memory is full.

• Slightly more complicated allocate and free since needs to splice
blocks in and out of the list

• Some extra space for the links (2 extra words needed for each
block). Increase internal fragmentation.

!25

Carnegie Mellon

Keeping Track of Free Blocks

!26

5 4 26

5 4 26

• Method 1: Implicit list using length—links all blocks

• Method 2: Explicit list among the free blocks using pointers

• Method 3: Segregated free list
• Different free lists for different size classes

Carnegie Mellon

Segregated List (Seglist) Allocators
• Each size class of blocks has its own free list

• Often have separate classes for each small size

• For larger sizes: One class for each two-power size

!27

1-2

3

4

5-8

9-inf

Carnegie Mellon

Seglist Allocator
• Given an array of free lists, each one for some size class

!28

Carnegie Mellon

Seglist Allocator
• Given an array of free lists, each one for some size class
• To allocate a block of size n:

• Search appropriate free list for block of size m > n
• If an appropriate block is found:

• Split block and place fragment on appropriate list (optional)
• If no block is found, try next larger class
• Repeat until block is found

!28

Carnegie Mellon

Seglist Allocator
• Given an array of free lists, each one for some size class
• To allocate a block of size n:

• Search appropriate free list for block of size m > n
• If an appropriate block is found:

• Split block and place fragment on appropriate list (optional)
• If no block is found, try next larger class
• Repeat until block is found

• If no block is found:

• Request additional heap memory from OS (using sbrk())
• Remember heap is in VM, so request heap memory in pages
• Allocate block of n bytes from this new memory
• Place remainder as a single free block in largest size class.

!28

Carnegie Mellon

Seglist Allocator
• Given an array of free lists, each one for some size class
• To allocate a block of size n:

• Search appropriate free list for block of size m > n
• If an appropriate block is found:

• Split block and place fragment on appropriate list (optional)
• If no block is found, try next larger class
• Repeat until block is found

• If no block is found:

• Request additional heap memory from OS (using sbrk())
• Remember heap is in VM, so request heap memory in pages
• Allocate block of n bytes from this new memory
• Place remainder as a single free block in largest size class.

• To free a block:

• Coalesce and place on appropriate list

!28

Carnegie Mellon

Advantages of Seglist allocators
• Higher throughput

• Constant time allocation and free in most cases
• log time for power-of-two size classes

• Better memory utilization

• First-fit search of segregated free list approximates a best-fit search

of entire heap.
• Extreme case: Giving each block its own size class is equivalent to

best-fit.

!29

Carnegie Mellon

Explicit/Implicit Memory Management

!30

Carnegie Mellon

Explicit/Implicit Memory Management
• So far we have been talking about explicitly memory

management: programmers explicitly calling malloc/free (C/C++)

!30

Carnegie Mellon

Explicit/Implicit Memory Management
• So far we have been talking about explicitly memory

management: programmers explicitly calling malloc/free (C/C++)
• Downside: potential memory leaks

!30

Carnegie Mellon

Explicit/Implicit Memory Management
• So far we have been talking about explicitly memory

management: programmers explicitly calling malloc/free (C/C++)
• Downside: potential memory leaks

!30

void foo() {
 int *p = malloc(128);
 p = malloc(32);
 return; /* both blocks are now garbage */
}

Carnegie Mellon

Explicit/Implicit Memory Management
• So far we have been talking about explicitly memory

management: programmers explicitly calling malloc/free (C/C++)
• Downside: potential memory leaks

!30

void foo() {
 int *p = malloc(128);
 p = malloc(32);
 return; /* both blocks are now garbage */
}

• Alternative: implicit memory management; the programmers never
explicitly request/free memory

Carnegie Mellon

Explicit/Implicit Memory Management
• So far we have been talking about explicitly memory

management: programmers explicitly calling malloc/free (C/C++)
• Downside: potential memory leaks

!30

void foo() {
 int *p = malloc(128);
 p = malloc(32);
 return; /* both blocks are now garbage */
}

• Alternative: implicit memory management; the programmers never
explicitly request/free memory

• Common in many dynamic languages:

• Python, Ruby, Java, JavaScript, Perl, ML, Lisp, Mathematica

Carnegie Mellon

Explicit/Implicit Memory Management
• So far we have been talking about explicitly memory

management: programmers explicitly calling malloc/free (C/C++)
• Downside: potential memory leaks

!30

void foo() {
 int *p = malloc(128);
 p = malloc(32);
 return; /* both blocks are now garbage */
}

• Alternative: implicit memory management; the programmers never
explicitly request/free memory

• Common in many dynamic languages:

• Python, Ruby, Java, JavaScript, Perl, ML, Lisp, Mathematica

• The key: Garbage collection

• Automatic reclamation of heap-allocated storage—application

never has to free

Carnegie Mellon

Garbage Collection
• How does the memory manager know when certain memory

blocks can be freed?

• In general we cannot know what is going to be used in the future

since it depends on program’s future behaviors
• But we can tell that certain blocks cannot possibly be used if

there are no pointers to them
• Garbage collection is essentially to obtain all reachable blocks

and discard unreachable blocks.

!31

Carnegie Mellon

Memory as a Graph
• We view memory as a directed graph

• Each block is a node in the graph
• Each pointer is an edge in the graph
• Locations not in the heap that contain pointers into the heap are called

root nodes (e.g. registers, locations on the stack, global variables)

!32

Root nodes

Heap nodes

Not-reachable  
(garbage)

Reachable

A node (block) is reachable if there is a path from any root to that node.
Non-reachable nodes are garbage (cannot be needed by the application)

Carnegie Mellon

Mark and Sweep Collecting
• Idea:

• Use extra mark bit in the head to indicate if a block is reachable
• Mark: Start at roots and set mark bit on each reachable block
• Sweep: Scan all blocks and free blocks that are not marked

!33

Mark bit set

root

Note: arrows here
denote memory refs,

not free list ptrs.

Carnegie Mellon

Mark and Sweep Collecting
• Idea:

• Use extra mark bit in the head to indicate if a block is reachable
• Mark: Start at roots and set mark bit on each reachable block
• Sweep: Scan all blocks and free blocks that are not marked

!33

Mark bit set

root

Note: arrows here
denote memory refs,

not free list ptrs.

Carnegie Mellon

Mark and Sweep Collecting
• Idea:

• Use extra mark bit in the head to indicate if a block is reachable
• Mark: Start at roots and set mark bit on each reachable block
• Sweep: Scan all blocks and free blocks that are not marked

!33

Mark bit set

root

Note: arrows here
denote memory refs,

not free list ptrs.

Carnegie Mellon

Mark and Sweep Collecting
• Idea:

• Use extra mark bit in the head to indicate if a block is reachable
• Mark: Start at roots and set mark bit on each reachable block
• Sweep: Scan all blocks and free blocks that are not marked

!33

Mark bit set

root

Note: arrows here
denote memory refs,

not free list ptrs.

Carnegie Mellon

Mark and Sweep Collecting
• Idea:

• Use extra mark bit in the head to indicate if a block is reachable
• Mark: Start at roots and set mark bit on each reachable block
• Sweep: Scan all blocks and free blocks that are not marked

!33

Mark bit set

root

Note: arrows here
denote memory refs,

not free list ptrs.

Carnegie Mellon

Mark and Sweep Collecting
• Idea:

• Use extra mark bit in the head to indicate if a block is reachable
• Mark: Start at roots and set mark bit on each reachable block
• Sweep: Scan all blocks and free blocks that are not marked

!33

Mark bit set
freefree

root

Note: arrows here
denote memory refs,

not free list ptrs.

Carnegie Mellon

Conservative Mark & Sweep in C
• Garbage Collection in C is tricky.

!34

Carnegie Mellon

Conservative Mark & Sweep in C
• Garbage Collection in C is tricky.
• How do you know a pointer is a pointer? After all, a pointer is just

a 8-byte value. Any consecutive 8 bytes could be disguised as a
pointer.

!34

Carnegie Mellon

Conservative Mark & Sweep in C
• Garbage Collection in C is tricky.
• How do you know a pointer is a pointer? After all, a pointer is just

a 8-byte value. Any consecutive 8 bytes could be disguised as a
pointer.

• Must be conservative. Any 8 bytes that happen to have the value
of some address in the heap must be treated as a pointer.

!34

Carnegie Mellon

Conservative Mark & Sweep in C
• Garbage Collection in C is tricky.
• How do you know a pointer is a pointer? After all, a pointer is just

a 8-byte value. Any consecutive 8 bytes could be disguised as a
pointer.

• Must be conservative. Any 8 bytes that happen to have the value
of some address in the heap must be treated as a pointer.

• C pointers can point to the middle of a block. How do you find the
header of a block?

!34

Carnegie Mellon

Conservative Mark & Sweep in C
• Garbage Collection in C is tricky.
• How do you know a pointer is a pointer? After all, a pointer is just

a 8-byte value. Any consecutive 8 bytes could be disguised as a
pointer.

• Must be conservative. Any 8 bytes that happen to have the value
of some address in the heap must be treated as a pointer.

• C pointers can point to the middle of a block. How do you find the
header of a block?

!34

ptr

Header Data
Size

Carnegie Mellon

Conservative Mark & Sweep in C
• Garbage Collection in C is tricky.
• How do you know a pointer is a pointer? After all, a pointer is just

a 8-byte value. Any consecutive 8 bytes could be disguised as a
pointer.

• Must be conservative. Any 8 bytes that happen to have the value
of some address in the heap must be treated as a pointer.

• C pointers can point to the middle of a block. How do you find the
header of a block?
• Can use a balanced binary tree to keep track of all allocated blocks (key

is start-of-block)

!34

ptr

Header Data
Size

Carnegie Mellon

Conservative Mark & Sweep in C
• Garbage Collection in C is tricky.
• How do you know a pointer is a pointer? After all, a pointer is just

a 8-byte value. Any consecutive 8 bytes could be disguised as a
pointer.

• Must be conservative. Any 8 bytes that happen to have the value
of some address in the heap must be treated as a pointer.

• C pointers can point to the middle of a block. How do you find the
header of a block?
• Can use a balanced binary tree to keep track of all allocated blocks (key

is start-of-block)

!34

ptr

Header Data

Left Right

Size Left: smaller addresses
Right: larger addresses

Carnegie Mellon

Potential GC Implementations (in C)
• Can build on top of malloc/free function

• Call malloc until you run out of space. Then malloc will call GC.
• Stop-the-world GC. When performing GC, the entire program stops.

Some calls to malloc will take considerably longer than others.

!35

Program malloc Garbage

Collection

free

Hidden From Programmers

Carnegie Mellon

Potential GC Implementations (in C)
• Can build on top of malloc/free function

• Call malloc until you run out of space. Then malloc will call GC.
• Stop-the-world GC. When performing GC, the entire program stops.

Some calls to malloc will take considerably longer than others.

!35

Program malloc Garbage

Collection

free

Hidden From Programmers

• To minimize main application (called mutator) pause time:

Carnegie Mellon

Potential GC Implementations (in C)
• Can build on top of malloc/free function

• Call malloc until you run out of space. Then malloc will call GC.
• Stop-the-world GC. When performing GC, the entire program stops.

Some calls to malloc will take considerably longer than others.

!35

Program malloc Garbage

Collection

free

Hidden From Programmers

• To minimize main application (called mutator) pause time:
• Incremental GC: Examine a small portion of heap every GC run

Carnegie Mellon

Potential GC Implementations (in C)
• Can build on top of malloc/free function

• Call malloc until you run out of space. Then malloc will call GC.
• Stop-the-world GC. When performing GC, the entire program stops.

Some calls to malloc will take considerably longer than others.

!35

Program malloc Garbage

Collection

free

Hidden From Programmers

• To minimize main application (called mutator) pause time:
• Incremental GC: Examine a small portion of heap every GC run
• Concurrent GC: Run GC service in a separate process/thread

Carnegie Mellon

Garbage Collection Implications
• GC is a great source of performance non-determinisms

• Generally can’t predict when GC will happen

!36

Carnegie Mellon

Garbage Collection Implications
• GC is a great source of performance non-determinisms

• Generally can’t predict when GC will happen
• Stop-the-world GC makes program periodically unresponsive

!36

Carnegie Mellon

Garbage Collection Implications
• GC is a great source of performance non-determinisms

• Generally can’t predict when GC will happen
• Stop-the-world GC makes program periodically unresponsive
• Concurrent/Incremental GC helps, but still has performance impacts

!36

Carnegie Mellon

Garbage Collection Implications
• GC is a great source of performance non-determinisms

• Generally can’t predict when GC will happen
• Stop-the-world GC makes program periodically unresponsive
• Concurrent/Incremental GC helps, but still has performance impacts
• Bad for real-time systems: think of a self-driving car that needs to

decide whether to avoid a pedestrian but a GC kicks in…

!36

Carnegie Mellon

Garbage Collection Implications
• GC is a great source of performance non-determinisms

• Generally can’t predict when GC will happen
• Stop-the-world GC makes program periodically unresponsive
• Concurrent/Incremental GC helps, but still has performance impacts
• Bad for real-time systems: think of a self-driving car that needs to

decide whether to avoid a pedestrian but a GC kicks in…
• Bad for server/cloud systems: GC is a great source of tail latency

!36

Carnegie Mellon

Classical GC Algorithms
•Mark-and-sweep collection (McCarthy, 1960)

!37

Carnegie Mellon

Classical GC Algorithms
•Mark-and-sweep collection (McCarthy, 1960)
•Mark-sweep-compact collection (Styger, 1967)

• After M&S, compact allocated blocks to consecutive memory region.
• Reduce external fragmentation. Allocation is also easier.

!37

Carnegie Mellon

Classical GC Algorithms
•Mark-and-sweep collection (McCarthy, 1960)
•Mark-sweep-compact collection (Styger, 1967)

• After M&S, compact allocated blocks to consecutive memory region.
• Reduce external fragmentation. Allocation is also easier.

!37

root

Before mark

Carnegie Mellon

Classical GC Algorithms
•Mark-and-sweep collection (McCarthy, 1960)
•Mark-sweep-compact collection (Styger, 1967)

• After M&S, compact allocated blocks to consecutive memory region.
• Reduce external fragmentation. Allocation is also easier.

!37

After mark Mark bit set

root

Before mark

Carnegie Mellon

Classical GC Algorithms
•Mark-and-sweep collection (McCarthy, 1960)
•Mark-sweep-compact collection (Styger, 1967)

• After M&S, compact allocated blocks to consecutive memory region.
• Reduce external fragmentation. Allocation is also easier.

!37

After mark Mark bit set

After sweep freefree

root

Before mark

Carnegie Mellon

Classical GC Algorithms
•Mark-and-sweep collection (McCarthy, 1960)
•Mark-sweep-compact collection (Styger, 1967)

• After M&S, compact allocated blocks to consecutive memory region.
• Reduce external fragmentation. Allocation is also easier.

!37

After mark Mark bit set

After sweep freefree

root

Before mark

After compact freefree

Carnegie Mellon

Classical GC Algorithms
•Mark-and-sweep collection (McCarthy, 1960)
•Mark-sweep-compact collection (Styger, 1967)

!38

Jones and Lin, “Garbage Collection: Algorithms for Automatic Dynamic Memory”, 1996.

Carnegie Mellon

Classical GC Algorithms
•Mark-and-sweep collection (McCarthy, 1960)
•Mark-sweep-compact collection (Styger, 1967)
• Mark-copy collection (Minsky, 1963)

• After mark, copy reachable objects to another region of memory as
they are being traversed. Can be done without auxiliary storage.

!38

Jones and Lin, “Garbage Collection: Algorithms for Automatic Dynamic Memory”, 1996.

Carnegie Mellon

Classical GC Algorithms
•Mark-and-sweep collection (McCarthy, 1960)
•Mark-sweep-compact collection (Styger, 1967)
• Mark-copy collection (Minsky, 1963)

• After mark, copy reachable objects to another region of memory as
they are being traversed. Can be done without auxiliary storage.

• Generational Collectors (Lieberman and Hewitt, 1983)

• Observation: most allocations become garbage very soon (infant

mortality); those survive will always survive.
• Wasteful to scan long-lived objects every collection time
• Idea: divide heap into two generations, young and old. Allocate into

young gen., and promote to old gen. if lived long enough. Collect
young gen. more often than old gen.

!38

Jones and Lin, “Garbage Collection: Algorithms for Automatic Dynamic Memory”, 1996.

Carnegie Mellon

Classical GC Algorithms
•Mark-and-sweep collection (McCarthy, 1960)
•Mark-sweep-compact collection (Styger, 1967)
• Mark-copy collection (Minsky, 1963)

• After mark, copy reachable objects to another region of memory as
they are being traversed. Can be done without auxiliary storage.

• Generational Collectors (Lieberman and Hewitt, 1983)

• Observation: most allocations become garbage very soon (infant

mortality); those survive will always survive.
• Wasteful to scan long-lived objects every collection time
• Idea: divide heap into two generations, young and old. Allocate into

young gen., and promote to old gen. if lived long enough. Collect
young gen. more often than old gen.

• Question: Can all these algorithms be used for GC in C?

!38

Jones and Lin, “Garbage Collection: Algorithms for Automatic Dynamic Memory”, 1996.

Carnegie Mellon

Classical GC Algorithms
• All the GC algorithms described so far are tracing-based

• Start from the root pointers, trace all the reachable objects
• Need graph traversal. Different to implement.

!39

Carnegie Mellon

Classical GC Algorithms
• All the GC algorithms described so far are tracing-based

• Start from the root pointers, trace all the reachable objects
• Need graph traversal. Different to implement.

• Reference counting (Collins, 1960)

• Keep a counter for each object
• Increment the counter if there is a new pointer pointing to the object
• Decrement the counter if a pointer is taken off the object
• When the counter reaches zero, collect the object

!39

Carnegie Mellon

Classical GC Algorithms
• All the GC algorithms described so far are tracing-based

• Start from the root pointers, trace all the reachable objects
• Need graph traversal. Different to implement.

• Reference counting (Collins, 1960)

• Keep a counter for each object
• Increment the counter if there is a new pointer pointing to the object
• Decrement the counter if a pointer is taken off the object
• When the counter reaches zero, collect the object

• Advantages of Reference Counting

• Simpler to implement
• Collect garbage objects immediately; generally less long pauses

!39

Carnegie Mellon

Classical GC Algorithms
• All the GC algorithms described so far are tracing-based

• Start from the root pointers, trace all the reachable objects
• Need graph traversal. Different to implement.

• Reference counting (Collins, 1960)

• Keep a counter for each object
• Increment the counter if there is a new pointer pointing to the object
• Decrement the counter if a pointer is taken off the object
• When the counter reaches zero, collect the object

• Advantages of Reference Counting

• Simpler to implement
• Collect garbage objects immediately; generally less long pauses

• Disadvantages of Reference Counting

• A naive implementation can’t deal with self-referencing

!39

Carnegie Mellon

Classical GC Algorithms
• All the GC algorithms described so far are tracing-based

• Start from the root pointers, trace all the reachable objects
• Need graph traversal. Different to implement.

• Reference counting (Collins, 1960)

• Keep a counter for each object
• Increment the counter if there is a new pointer pointing to the object
• Decrement the counter if a pointer is taken off the object
• When the counter reaches zero, collect the object

• Advantages of Reference Counting

• Simpler to implement
• Collect garbage objects immediately; generally less long pauses

• Disadvantages of Reference Counting

• A naive implementation can’t deal with self-referencing

!39

Carnegie Mellon

Classical GC Algorithms
• All the GC algorithms described so far are tracing-based

• Start from the root pointers, trace all the reachable objects
• Need graph traversal. Different to implement.

• Reference counting (Collins, 1960)

• Keep a counter for each object
• Increment the counter if there is a new pointer pointing to the object
• Decrement the counter if a pointer is taken off the object
• When the counter reaches zero, collect the object

• Advantages of Reference Counting

• Simpler to implement
• Collect garbage objects immediately; generally less long pauses

• Disadvantages of Reference Counting

• A naive implementation can’t deal with self-referencing

• A heterogeneous approach (RC + tracing) is often used
!39

