CSC 252: Computer Organization Spring 2020: Lecture 3

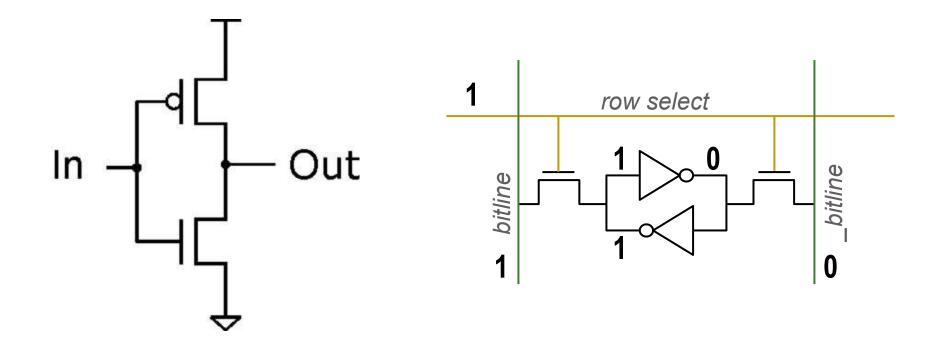
Instructor: Yuhao Zhu

Department of Computer Science University of Rochester

Announcement

- Programming Assignment 1 is out
 - Details: <u>https://www.cs.rochester.edu/courses/252/</u> <u>spring2020/labs/assignment1.html</u>
 - Due on Jan. 31, 11:59 PM
 - You have 3 slip days

19	20	21	22	23	24	25
				Today		
26	27	28	29	30	31	Feb 1
					Due	

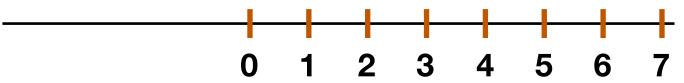

Announcement

- Programming assignment 1 is in C language. Seek help from TAs.
- TAs are best positioned to answer your questions about programming assignments!!!
- Programming assignments do NOT repeat the lecture materials. They ask you to synthesize what you have learned from the lectures and work out something new.

Previously in 252...

- Computers are built to understand bits: 0 and 1
 - 0: low (no) voltage; 1: high voltage
- Integer representations (Fixed-point really)

Transistors



Computation

Store/Access Data

• Two's Complement

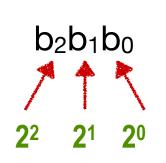
• Two's Complement

Unsigned	Binary
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

• Two's Complement

-4 -3 -2 -1 0 1 2 3

Unsigned	Binary
0	000
1	001
2	010
3	011
4 5	100
	101
6	110
7	111


• Two's Complement

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
3	3	011
-4	4	100
-4 -3 -2	5	101
-2	6	110
-1	7	111

• Two's Complement

-4 -3 -2 -1 0 1 2 3

Weights in Unsigned

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
3	3	011
-4 -3 -2	4	100
-3	5	101
-2	6	110
-1	7	111

• Two's Complement

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
3	3	011
-4	4	100
-3	5	101
-2	6	110
-1	7	111

• Two's Complement

-4 -3 -2 -1 0 1 2 3 $b_2b_1b_0$ $/ \uparrow \uparrow$ Weights in 22 21 20 Unsigned Weights in -22 21 20 Signed

 $101_2 = 1^*2^0 + 0^*2^1 + (-1^*2^2) = -3_{10}$

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
3	3	011
-4	4	100
-3	5	101
-2	6	110
-1	7	111

• Two's Complement

------4 -3 -2 -1 0 1 2 3 $b_2b_1b_0$ 2² 2¹ 2⁰ Weights in Unsigned Weights in -22 21 20 Signed $101_2 = 1^*2^0 + 0^*2^1 + (-1^*2^2) = -3_{10}$

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
3	3	011
-4	4	100
-4 -3	5	101
-2	6	110
-1	7	111

• Two's Complement

+ + + + +-4 -3 -2 -1 0 1 2 3 $b_2b_1b_0$ 2² 2¹ 2⁰ Weights in Unsigned Weights in -22 21 20 Signed $101_2 = 1^*2^0 + 0^*2^1 + (-1^*2^2) = -3_{10}$

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
3	3	011
-4	4	100
-3	5	101
-2	6	110
-1	7	111

• Two's Complement

-4 -3 -2 -1 0 1 2 3 $b_2b_1b_0$ 2² 2¹ 2⁰ Weights in Unsigned Weights in -22 21 20 Signed $101_2 = 1^*2^0 + 0^*2^1 + (-1^*2^2) = -3_{10}$

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
3	3	011
-4 -3	4	100
-3	5	101
-2	6	110
-1	7	111

- Only 1 zero
- There is (still) a bit that represents sign!
- Unsigned arithmetic still works

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3 -2	101
-2	110
-1	111

- Only 1 zero
- There is (still) a bit that represents sign!
- Unsigned arithmetic still works

+) 101 111

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

- Only 1 zero
- There is (still) a bit that represents sign!
- Unsigned arithmetic still works

$$\begin{array}{ccc}
010 & 2 \\
+) & 101 & +) & -3 \\
\hline
111 & -1 \\
\end{array}$$

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

Only 1 zero	Signed	Binary	
5	0	000	
 There is (still) a bit 1 	1	001	
 Unsigned arithmeti 	2	010	
0	3	011	
		-4	100
010	2	-3	101
+) 101	+) -3	-2	110
111	-1	-1	111

• 3 + 1 becomes -4 (called overflow. More on it later.)

 Suppose you want to define a variable that represents a person's age. What assumptions can you make about this variable's numerical value?

- Suppose you want to define a variable that represents a person's age. What assumptions can you make about this variable's numerical value?
 - Integer

- Suppose you want to define a variable that represents a person's age. What assumptions can you make about this variable's numerical value?
 - Integer
 - Non-negative

- Suppose you want to define a variable that represents a person's age. What assumptions can you make about this variable's numerical value?
 - Integer
 - Non-negative
 - Between 0 and 255 (8 bits)

- Suppose you want to define a variable that represents a person's age. What assumptions can you make about this variable's numerical value?
 - Integer
 - Non-negative
 - Between 0 and 255 (8 bits)
- Define a data type that captures all these attributes: unsigned char in C

- Suppose you want to define a variable that represents a person's age. What assumptions can you make about this variable's numerical value?
 - Integer
 - Non-negative
 - Between 0 and 255 (8 bits)
- Define a data type that captures all these attributes: unsigned char in C
 - Internally, an **unsigned char** variable is represented as a 8-bit, non-negative, binary number

• What if you want to define a variable that could take negative values?

- What if you want to define a variable that could take negative values?
 - That's what signed data types (e.g., int, short, etc.) are for

- What if you want to define a variable that could take negative values?
 - That's what signed data types (e.g., int, short, etc.) are for
- How are int values internally represented?

- What if you want to define a variable that could take negative values?
 - That's what signed data types (e.g., **int**, **short**, etc.) are for
- How are int values internally represented?
 - Theoretically could be either signed-magnitude or two's complement

- What if you want to define a variable that could take negative values?
 - That's what signed data types (e.g., **int**, **short**, etc.) are for
- How are int values internally represented?
 - Theoretically could be either signed-magnitude or two's complement
 - The C language designers chose two's complement

- What if you want to define a variable that could take negative values?
 - That's what signed data types (e.g., int, short, etc.) are for
- How are int values internally represented?
 - Theoretically could be either signed-magnitude or two's complement
 - The C language designers chose two's complement

```
int x = -5, y = 4;
int z = x + y;
fprintf(stdout, ``%d\n", z);
fprintf(stdout, ``%u\n", z);
```

C Data Type		32-bit	64-bit
(unsigned)	char	1	1
(unsigned)	short	2	2
(unsigned)	int	4	4
(unsigned)	long	4	8

	W			
	8	16	32	64
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808

C Data Type		32-bit	64-bit
(unsigned)	char	1	1
(unsigned)	short	2	2
(unsigned)	int	4	4
(unsigned)	long	4	8

	W			
	8	16	32	64
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808

C Data Type		32-bit	64-bit
(unsigned)	char	1	1
(unsigned)	short	2	2
(unsigned)	int	4	4
(unsigned)	long	4	8

- C Language
 - •#include <limits.h>
 - •Declares constants, e.g.,

•ULONG_MAX

•LONG_MAX

•LONG_MIN

•Values platform specific

Today: Representing Information in Binary

- Why Binary (bits)?
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

One Bit Sequence, Two Interpretations

• A sequence of bits can be interpreted as either a signed integer or an unsigned integer

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
3	3	011
-4 -3 -2	4	100
-3	5	101
-2	6	110
-1	7	111

Signed vs. Unsigned Conversion in C

- What happens when we convert between signed and unsigned numbers?
- Casting (In C terminology)
 - Explicit casting between signed & unsigned

```
int tx, ty = -4;
unsigned ux = 7, uy;
tx = (int) ux; // U2T
uy = (unsigned) ty; // T2U
```

- Implicit casting
 - e.g., assignments, function calls

tx = ux; uy = ty;

Mapping Between Signed & Unsigned

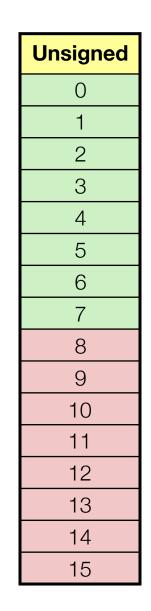
• Mappings between unsigned and two's complement numbers: Keep bit representations and reinterpret

Mapping Between Signed & Unsigned

• Mappings between unsigned and two's complement numbers: Keep bit representations and reinterpret

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
3	3	011
-4	4	100
-4 -3 -2	5	101
-2	6	110
-1	7	111

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

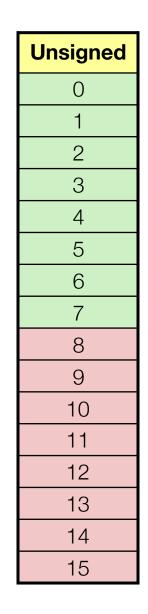

Signed
0
1
2
3
4
5
6 7
7
-8
-7
-6
-5
-4
-3
-2
-1

Unsigned
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Bits	
0000	
0001	
0010	
0011	
0100	
0101	
0110	
0111	
1000	
1001	
1010	
1011	
1100	
1101	
1110	
1111	

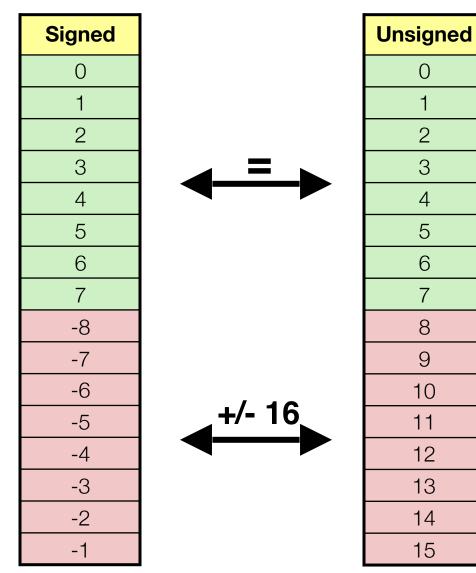
Signed
0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

1<u>T2U</u>



Bits	
0000	
0001	
0010	
0011	
0100	
0101	
0110	
0111	
1000	
1001	
1010	
1011	
1100	
1101	
1110	
1111	

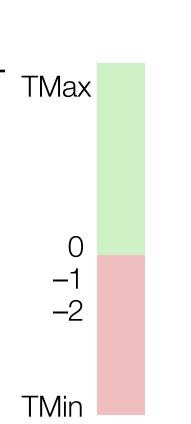
Signed
0
1
2
1 2 3
4
5
6 7
7
-8
-7
-6
-5
-4
-3
-2
-1

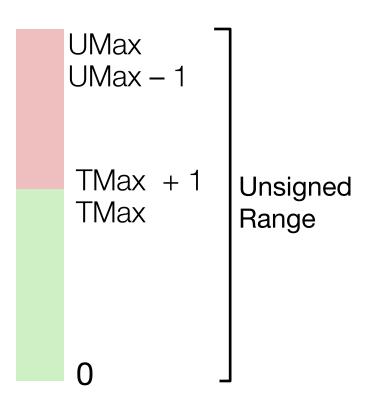

T2U

<u>U2</u>T

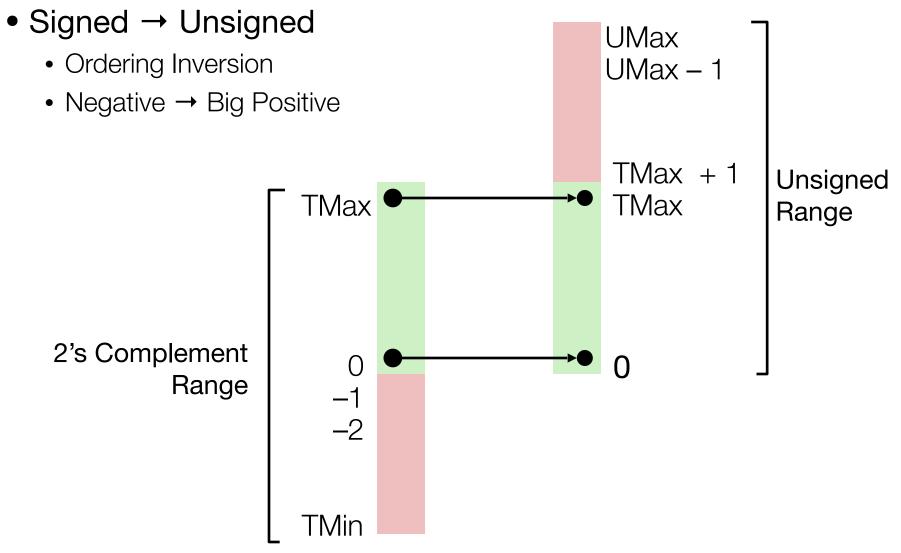
	-		
Bits		Signed	Unsigned
0000		0	0
0001		1	1
0010		2	2
0011		3	3
0100		4	4
0101		5	5
0110		6	6
0111		7	7
1000		-8	8
1001		-7	9
1010		-6	10
1011		-5	11
1100		-4	12
1101		-3	13
1110		-2	14
1111		-1	15

Bits	
0000	
0001	
0010	
0011	
0100	
0101	
0110	
0111	
1000	
1001	
1010	
1011	
1100	
1101	
1110	
1111	

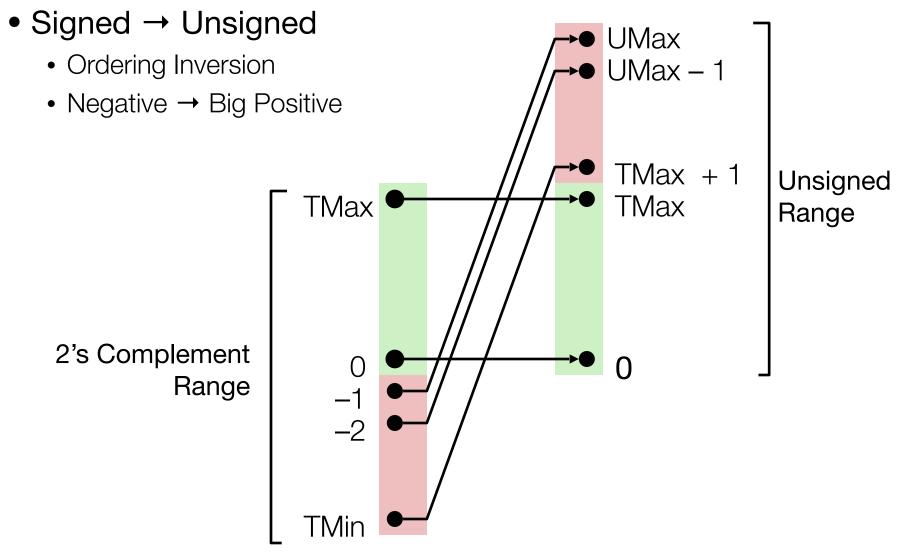



Conversion Visualized

• Signed \rightarrow Unsigned


- Ordering Inversion
- Negative → Big Positive

2's Complement Range



Conversion Visualized

Conversion Visualized

Today: Representing Information in Binary

- Why Binary (bits)?
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

The Problem

short int x = 15213; int ix = (int) x; short int y = -15213; int iy = (int) y;

C Data Type	64-bit
char	1
short	2
int	4
long	8

The Problem

short int x = 15213; int ix = (int) x; short int y = -15213; int iy = (int) y;

- Converting from smaller to larger integer data type
- Should we preserve the value?
- Can we preserve the value?
- How?

C Data Type	64-bit
char	1
short	2
int	4
long	8

The Problem

short int x = 15213; int ix = (int) x; short int y = -15213; int iy = (int) y;

C Data Type	64-bit
char	1
short	2
int	4
long	8

- Converting from smaller to larger integer data type
- Should we preserve the value?
- Can we preserve the value?
- How?

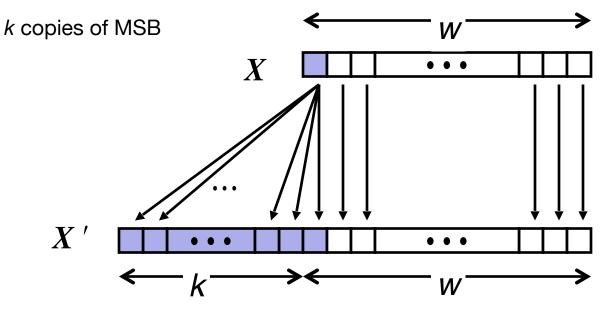
	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101
У	-15213	C4 93	11000100 10010011
iy	-15213	FF FF C4 93	11111111 1111111 11000100 10010011

Signed Extension

- Task:
 - Given *w*-bit signed integer *x*
 - Convert it to (w+k)-bit integer with same value

Signed Extension

- Task:
 - Given *w*-bit signed integer *x*
 - Convert it to (w+k)-bit integer with same value
- Rule:
 - Make *k* copies of sign bit:


•
$$X' = X_{w-1}, \dots, X_{w-1}, X_{w-1}, X_{w-2}, \dots, X_0$$

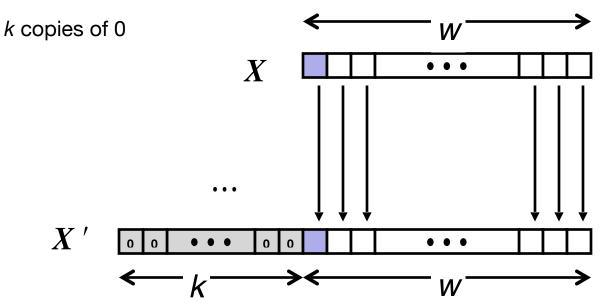
k copies of MSB

Signed Extension

- Task:
 - Given *w*-bit signed integer *x*
 - Convert it to (w+k)-bit integer with same value
- Rule:
 - Make k copies of sign bit:

•
$$X' = X_{W-1}, \dots, X_{W-1}, X_{W-1}, X_{W-2}, \dots, X_0$$

Another Problem


unsigned short x = 47981; unsigned int ux = x;

	Decimal	Hex	Binary
x	47981	BB 6D	10111011 01101101
ux	47981	00 00 BB 6D	0000000 0000000 10111011 01101101

Unsigned (Zero) Extension

- Task:
 - Given *w*-bit unsigned integer *x*
 - Convert it to (w+k)-bit integer with same value
- Rule:
 - Simply pad zeros:

•
$$X' = 0, ..., 0, x_{w-1}, x_{w-2}, ..., x_0$$

Yet Another Problem

int x = 53191; short sx = (short) x;

	Decimal	Hex	Binary
x	53191	00 00 CF C7	0000000 0000000 11001111 11000111
sx	-12345	CF C7	11001111 11000111

Yet Another Problem

int	х	=	53191;	
short	sx	=	(short)	x;

	Decimal	Hex	Binary
x	53191	00 00 CF C7	0000000 0000000 11001111 11000111
sx	-12345	CF C7	11001111 11000111

• Truncating (e.g., int to short)

- Can't always preserve the numerical value
- C's implementation: leading bits are truncated, results reinterpreted

Today: Representing Information in Binary

- Why Binary (bits)?
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Unsigned	Binary
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

• Similar to Decimal Addition

Unsigned	Binary
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

- Similar to Decimal Addition
- Suppose we have a new data type that is 3-bit wide (c.f., **short** has 16 bits)

	010		2	
Normal	+) 101	+)	5	
Case	111		7	

Unsigned	Binary
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

- Similar to Decimal Addition
- Suppose we have a new data type that is 3-bit wide (c.f., **short** has 16 bits)
- Might overflow: result can't be represented within the size of the data type

Normal	010 +) 101	2 +) 5
Case	111	7
Overflow	110 +) 101	6 +) 5
Case	1011	11

Unsigned	Binary
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

- Similar to Decimal Addition
- Suppose we have a new data type that is 3-bit wide (c.f., **short** has 16 bits)
- Might overflow: result can't be represented within the size of the data type

Normal	010 +) 101	2 +) 5	6 7
Case	111	7	
Overflow	110 +) 101	6 +) 5	
Case	1011	11	True Sum

Unsigned	Binary
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

- Similar to Decimal Addition
- Suppose we have a new data type that is 3-bit wide (c.f., **short** has 16 bits)
- Might overflow: result can't be represented within the size of the data type

Normal	010 +) 101	2 +) 5	6 7
Case	111	7	
Overflow	110 +) 101	6 +) 5	
Case	1011 011	11 3	True SumSum with

Unsigned	Binary
0	000
1	001
2	010
3	011
4	100
5 6	101
6	110
7	111

same bits

Unsigned Addition in C

Operands: w bitsuTrue Sum: w+1 bits+ vDiscard Carry: w bitsUAdd_w(u, v)

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

 Has identical bit-level behavior as unsigned addition (a big advantage over sign-magnitude)

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

 Has identical bit-level behavior as unsigned addition (a big advantage over sign-magnitude)

	010	2
Normal	+) 101	+) -3
Case	111	-1

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

- Has identical bit-level behavior as unsigned addition (a big advantage over sign-magnitude)
- Overflow can also occur

Normal	010 +) 101	2 +) -3
Case	111	-1
Overflow	110 +) 101	-2 +) -3
Case	1011	-5

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

- Has identical bit-level behavior as unsigned addition (a big advantage over sign-magnitude)
- Overflow can also occur

Normal	010 +) 101	2 +) -3
Case	111	-1
Overflow	110 +) 101	-2 +) -3
Case	1011	-5
	011	3

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

- Has identical bit-level behavior as unsigned addition (a big advantage over sign-magnitude)
- Overflow can also occur

Normal	010 +) 101	2 +) -3
Case	111	-1
Overflow Case	110 +) 101	-2 +) -3
	1011	-5
	011	3

Signed	Binary
0	000
1	001
2	010
3	011
 -4	100
-3	101
-2	110
-1	111

Min

Negative Overflow

Two's Complement Addition

- Has identical bit-level behavior as unsigned addition (a big advantage over sign-magnitude)
- Overflow can also occur

Normal	010	2	Min4 -3	100 101
Normal	+) 101	+) -3	-2	110
Case	111		-1	111
Overflow	110	-2	011	3
	+) 101	+) -3	+) 001	+) 1
Case	1011 011	-5 3	0100	4

Signed

0

2

З

Binary

000

001

010

011

Negative Overflow

Two's Complement Addition

- Has identical bit-level behavior as unsigned addition (a big advantage over sign-magnitude)
- Overflow can also occur

			Min4	100
	010	2	-3	101
Normal	+) 101	+) -3	-2	110
Case	111	-1	-1	111
		_		
	110	-2	011	3
Overflow	+) 101	+) -3	+) 001	+) 1
Case	1011	-5	0100	4
	011	3	100	-4
			± • • •	•

Signed

0

2

3

Binary

000

001

010

011

Negative Overflow

Two's Complement Addition

- Has identical bit-level behavior as unsigned addition (a big advantage over sign-magnitude)
- Overflow can also occur

Normal	010	2	-3	101
	+) 101	+) -3	-2	110
Case	111	-1	-1	111
Overflow	110	-2	011	3
	+) 101	+) -3	+) 001	+) 1
Case	1011	-5	0100	4
	011	3	100	-4

Negative Overflow

Positive Overflow

Signed

0

2

3

-4

Max

Min

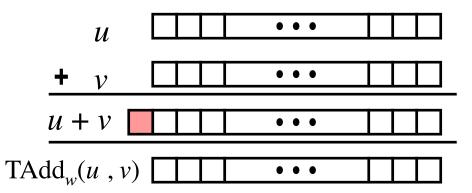
Binary

000

001

010

011

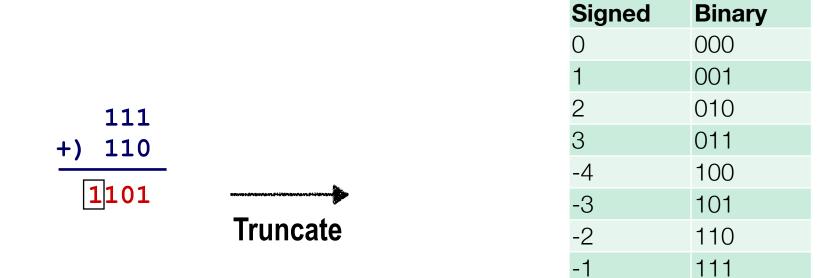

100

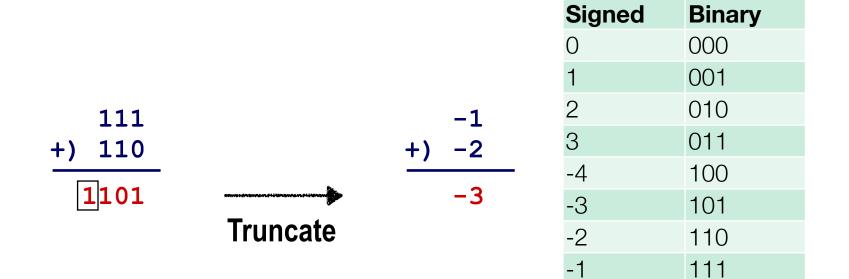
Two's Complement Addition in C

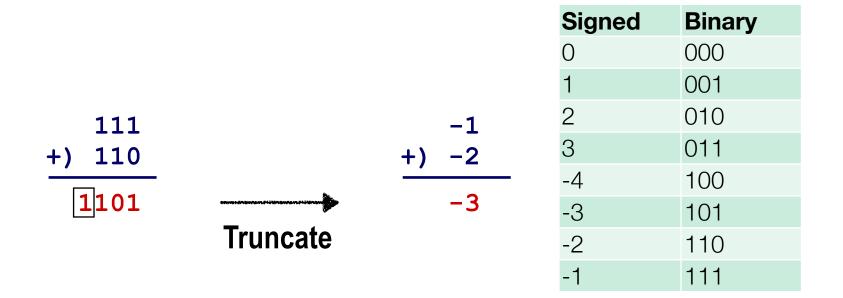
Operands: w bits

True Sum: w+1 bits

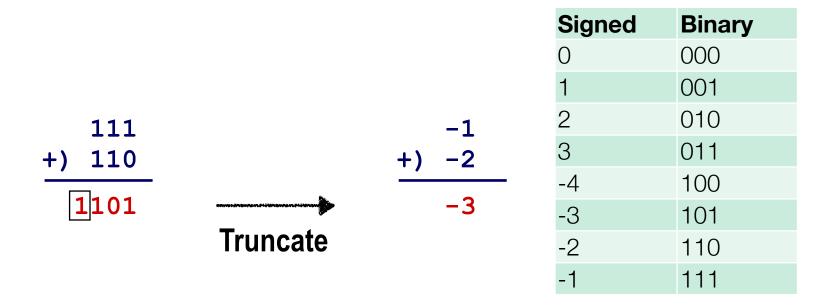
Discard Carry: *w* bits

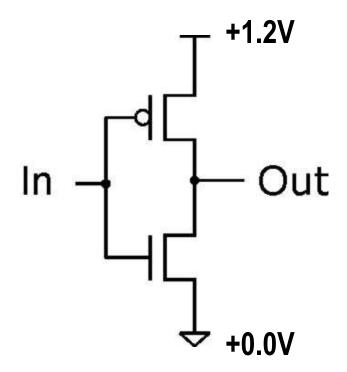


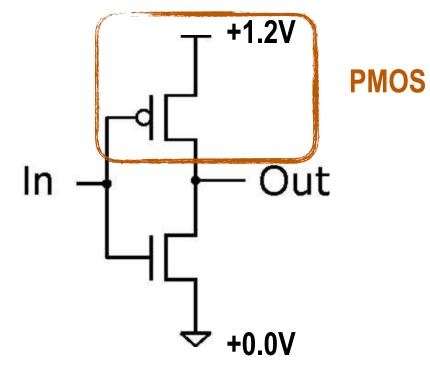

Signed	Binary
0	000
1	001
2	010
3	011
-4 -3	100
-3	101
-2	110
-1	111

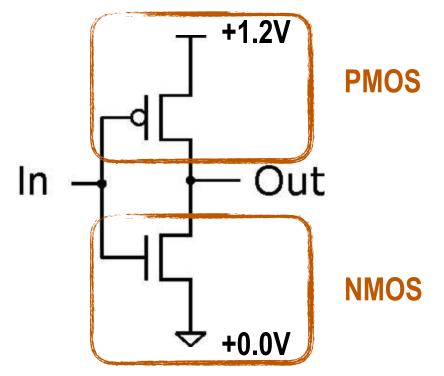

+) 111 +) 110 1101

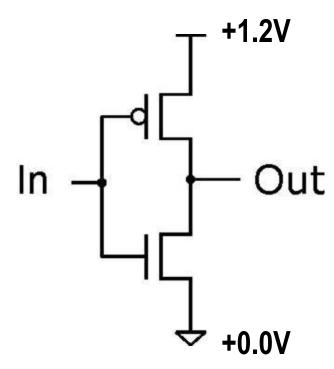
+)	111 110			
1101				

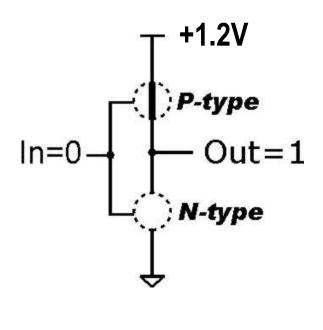

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

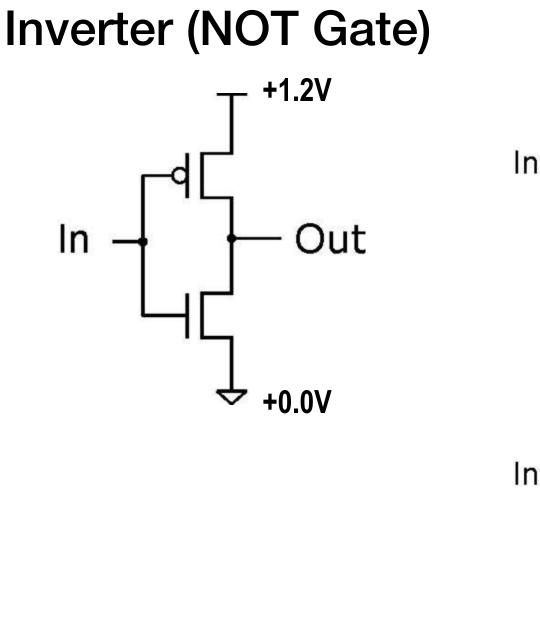


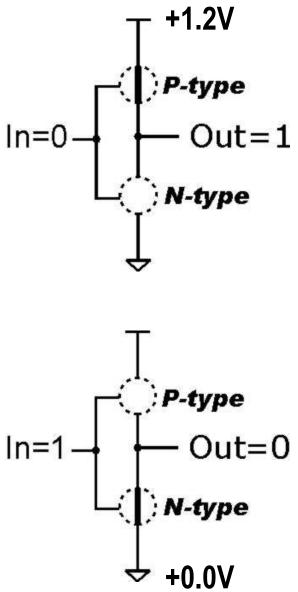


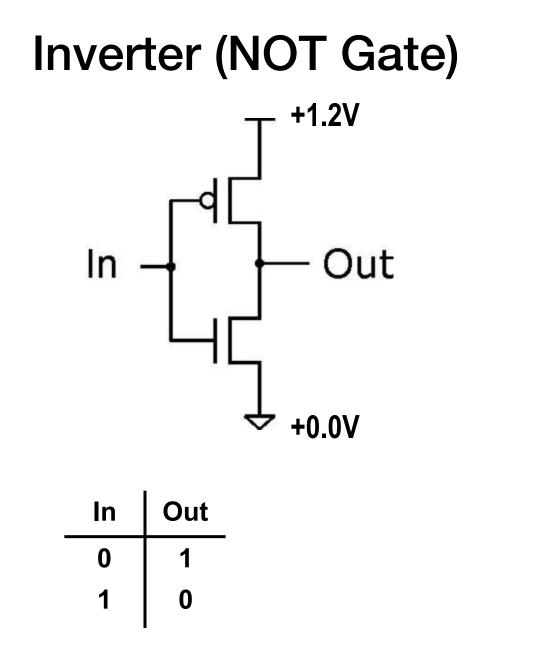

• This is not an overflow by definition

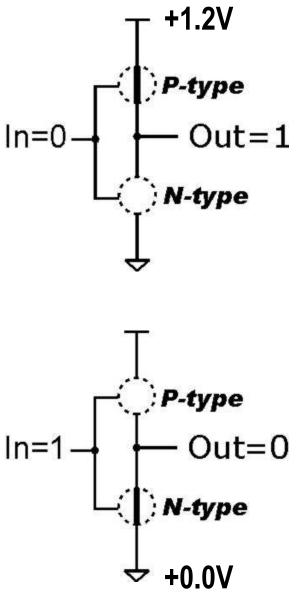


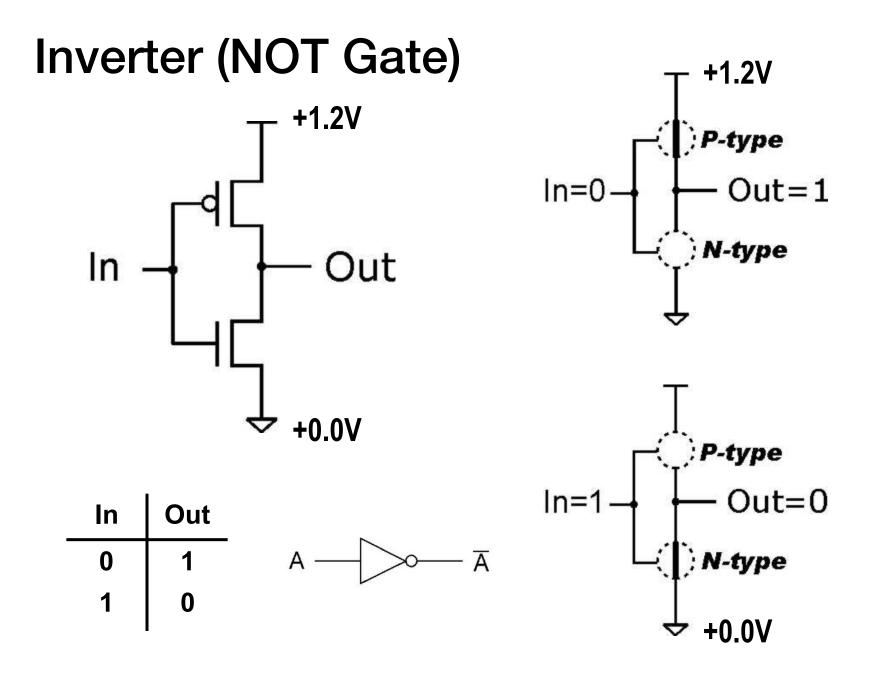

- This is not an overflow by definition
- Because the actual result can be represented by the bit width of the datatype (3 bits here)

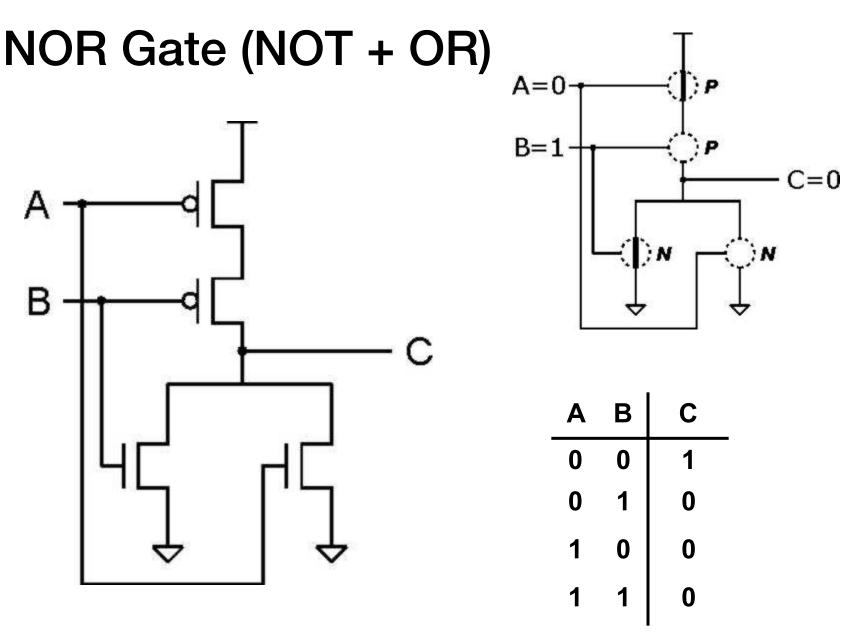


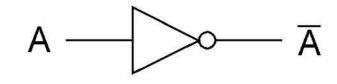


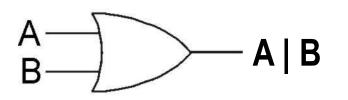


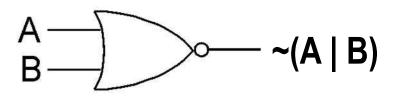






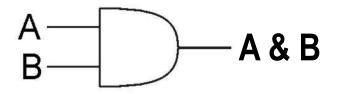


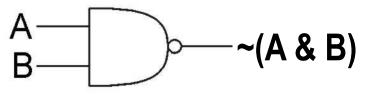


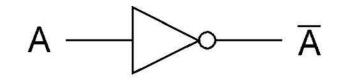

Note: Serial structure on top, parallel on bottom.

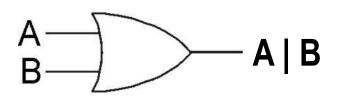
Basic Logic Gates

NOT

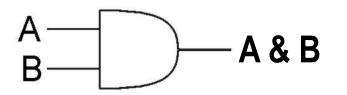


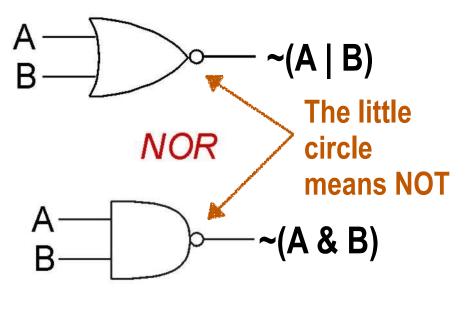






NAND


Basic Logic Gates


NOT

AND

NAND

A	В	C _{in}	S	\mathbf{C}_{ou}
				t
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

A	В	C _{in}	S	C _{ou}
				t
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S = (~A \& ~B \& C_{in})$$

Truth Table

	Α	В	C _{in}	S	C _{ou}
					t
ţ.	0	0	0	0	0
	0	0	1	1	0
	0	1	0	1	0
	0	1	1	0	1
	1	0	0	1	0
	1	0	1	0	1
	1	1	0	0	1
	1	1	1	1	1

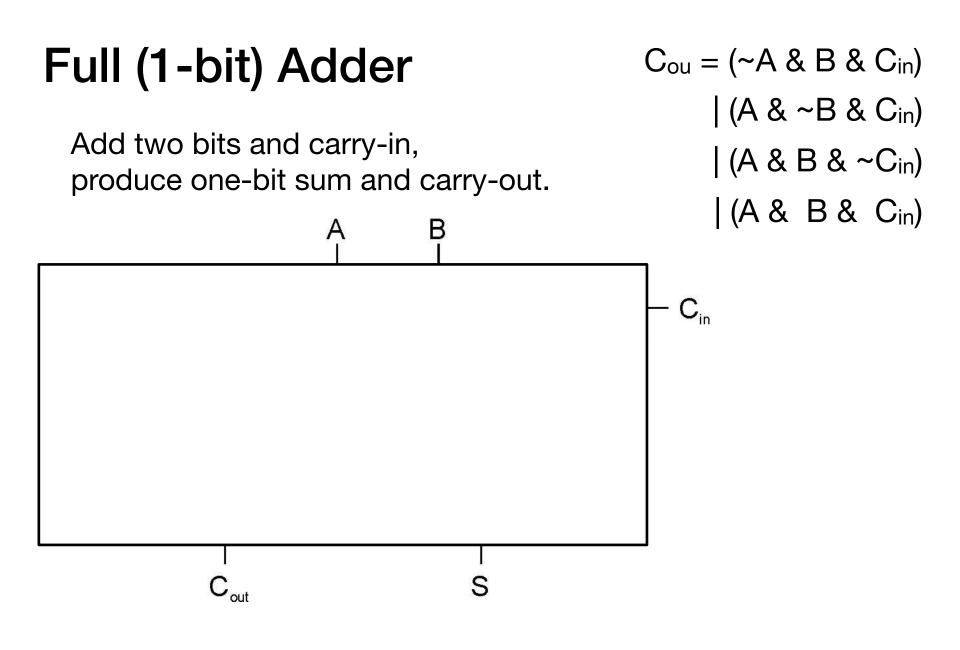
Truth Table

	Α	В	C _{in}	S	\mathbf{C}_{ou}
					t
	0	0	0	0	0
.=	0	0	1	1	0
	0	1	0	1	0
	0	1	1	0	1
	1	0	0	1	0
	1	0	1	0	1
	1	1	0	0	1
	1	1	1	1	1

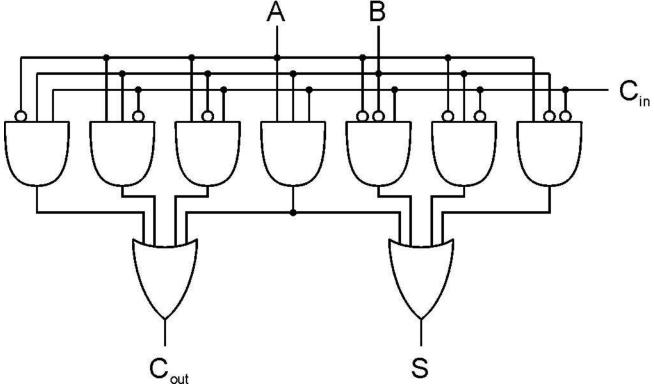
Truth Table

Α	В	C _{in}	S	C _{ou}
				t
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
 0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Truth Table


Α	В	C _{in}	S	C _{ou}
				t
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
 1	1	0	0	1
1	1	1	1	1
ana an		and a second second second second		

Α	В	C _{in}	S	\mathbf{C}_{ou}
				t
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1


Add two bits and carry-in, produce one-bit sum and carry-out.

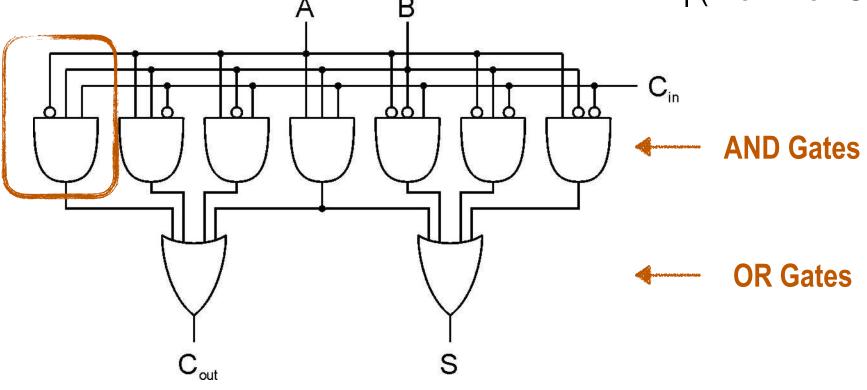
C_{ou} = (~A & B & C_{in}) | (A & ~B & C_{in}) | (A & B & ~C_{in}) | (A & B & C_{in})

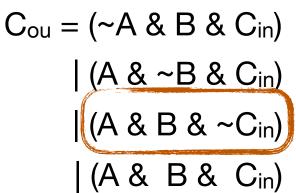
Add two bits and carry-in, produce one-bit sum and carry-out.

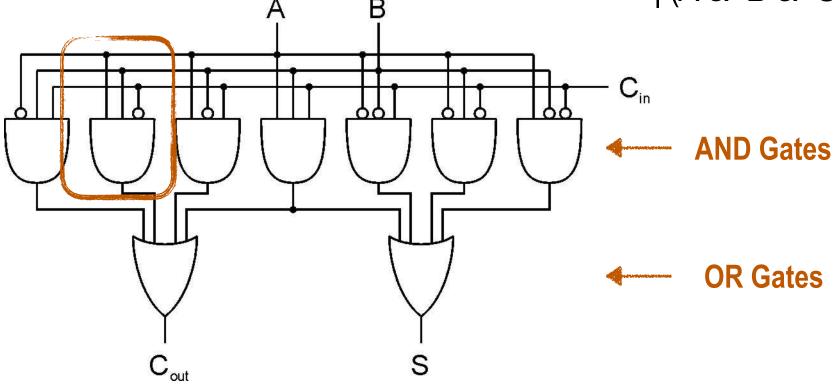

C_{ou} = (~A & B & C_{in}) | (A & ~B & C_{in}) | (A & B & ~C_{in}) | (A & B & C_{in})

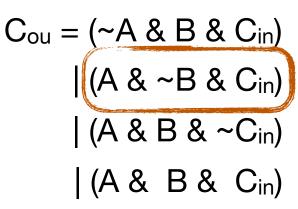
Add two bits and carry-in, produce one-bit sum and carry-out.

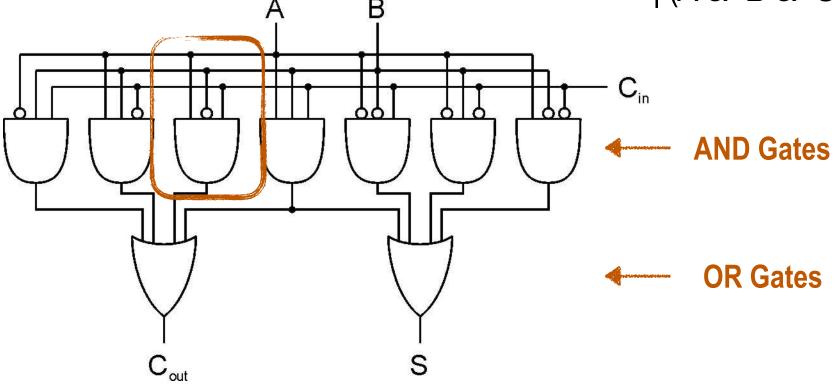
A

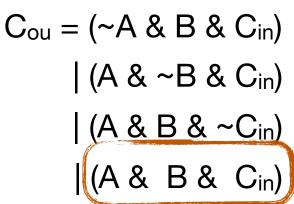

Cou = (~A & B & Cin) | (A & ~B & Cin) | (A & B & ~Cin) | (A & B & Cin)

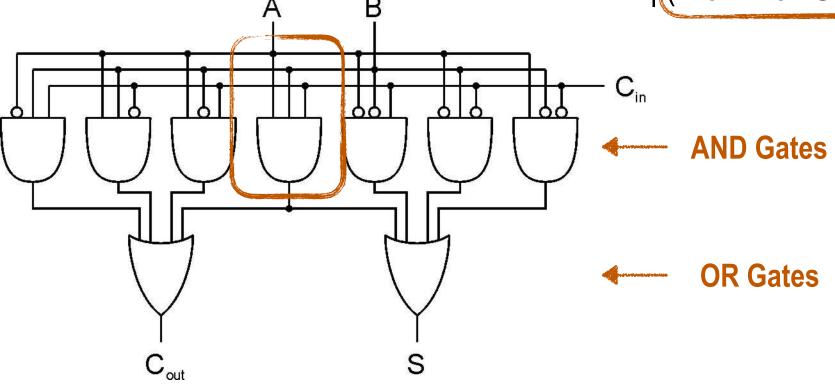


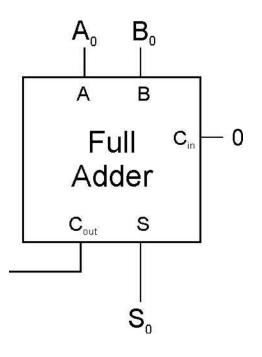

В

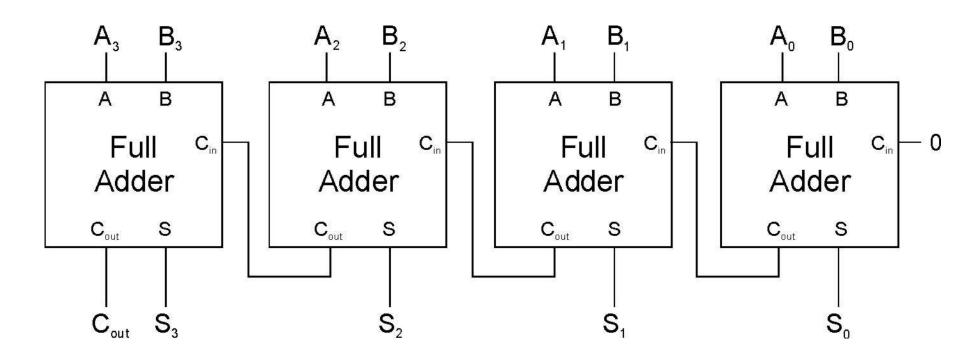

Add two bits and carry-in, produce one-bit sum and carry-out.


Cou = (~A & B & Cin) | (A & ~B & Cin) | (A & B & ~Cin) | (A & B & Cin)

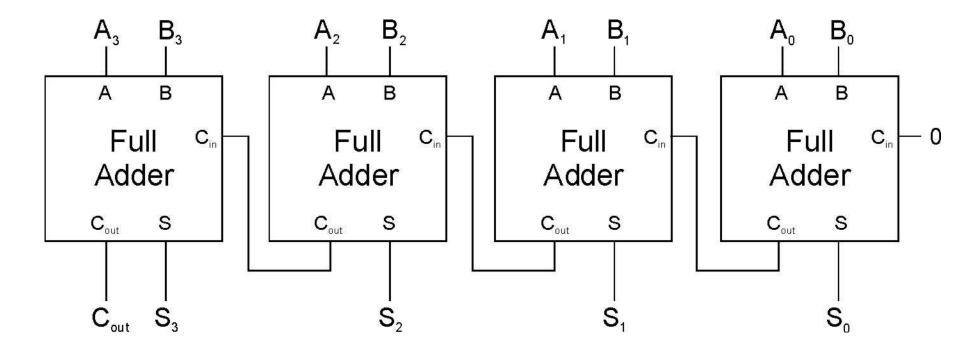




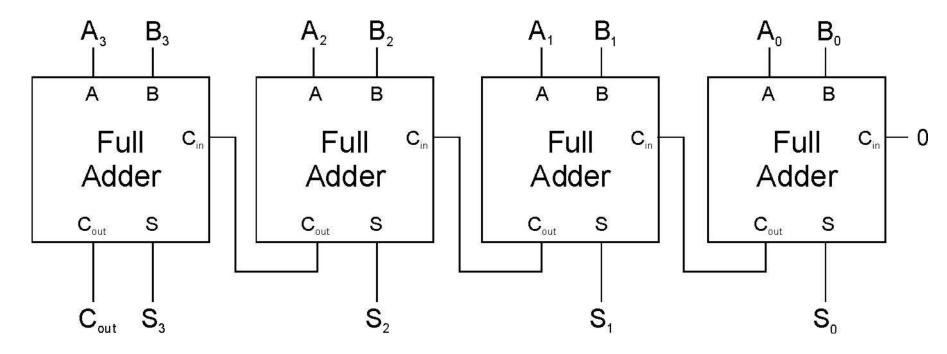




Four-bit Adder



Four-bit Adder


Four-bit Adder

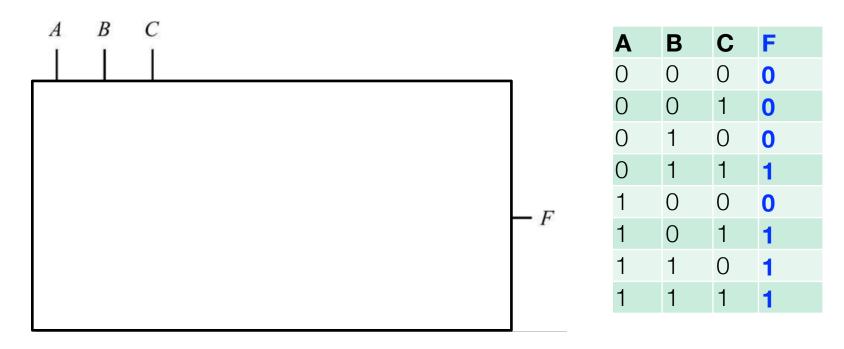
- Ripple-carry Adder
 - Simple, but performance linear to bit width

Four-bit Adder

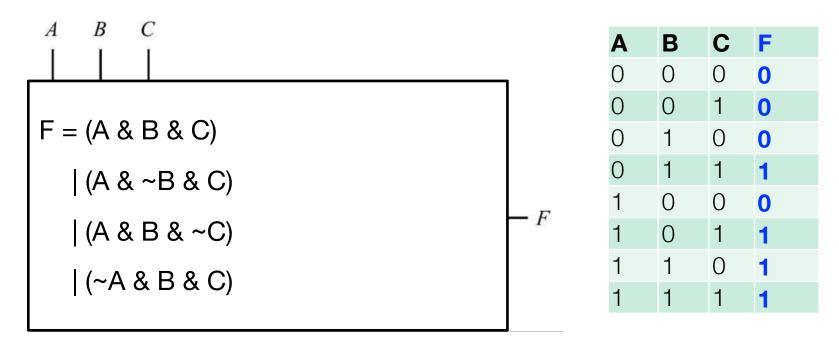
- Ripple-carry Adder
 - Simple, but performance linear to bit width
- Carry look-ahead adder (CLA)
 - Generate all carriers simultaneously

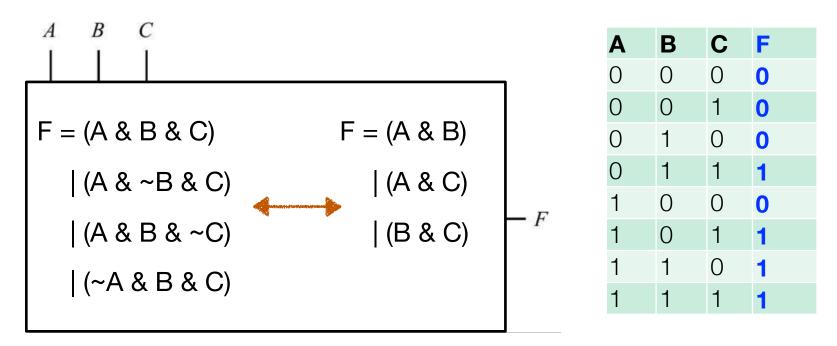


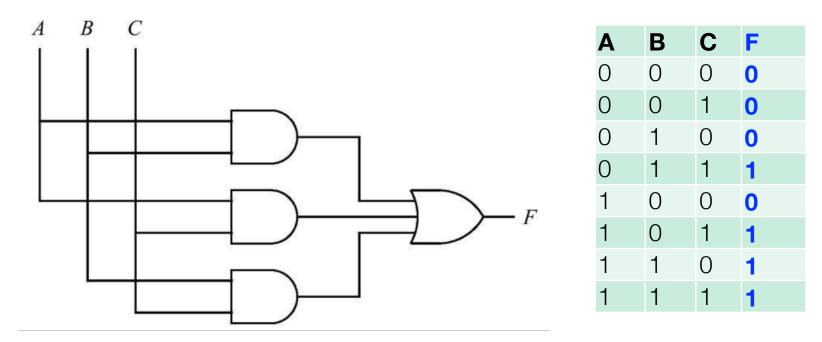
• Design digital components from basic logic gates


- Design digital components from basic logic gates
- Key idea: use the truth table!

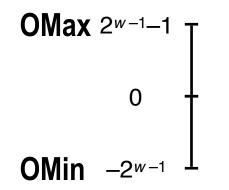
- Design digital components from basic logic gates
- Key idea: use the truth table!
- Example: how to design a piece of circuit that does majority vote?

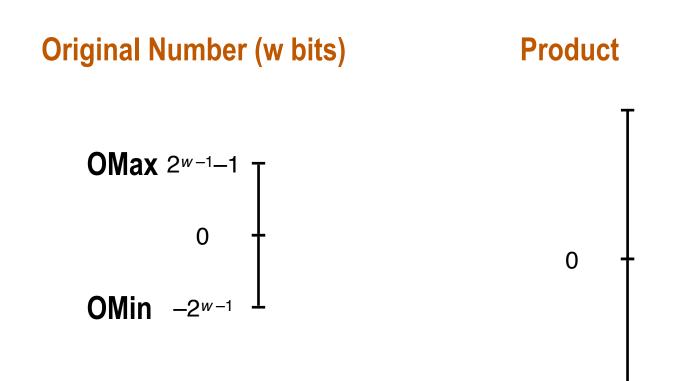

- Design digital components from basic logic gates
- Key idea: use the truth table!
- Example: how to design a piece of circuit that does majority vote?

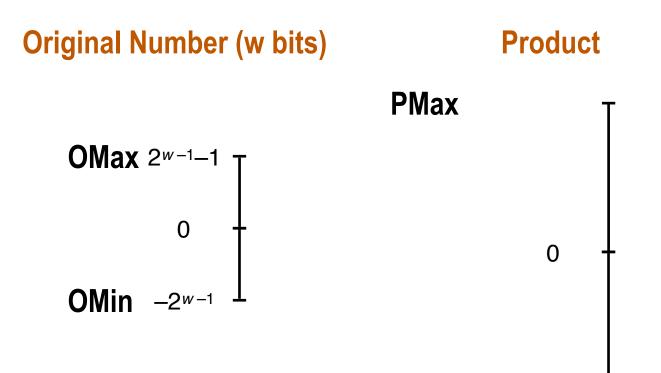

- Design digital components from basic logic gates
- Key idea: use the truth table!
- Example: how to design a piece of circuit that does majority vote?

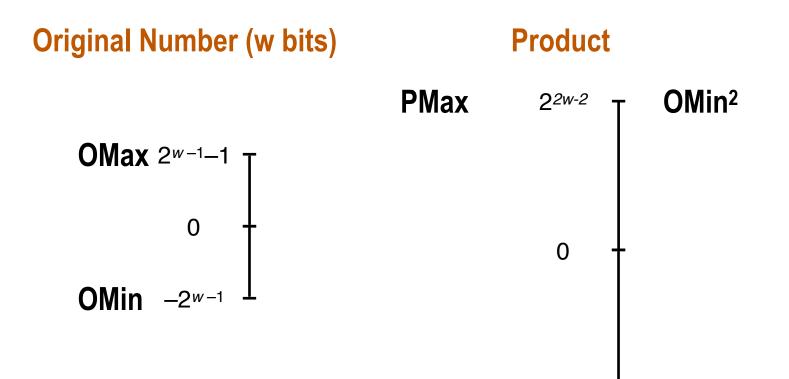

- Design digital components from basic logic gates
- Key idea: use the truth table!
- Example: how to design a piece of circuit that does majority vote?

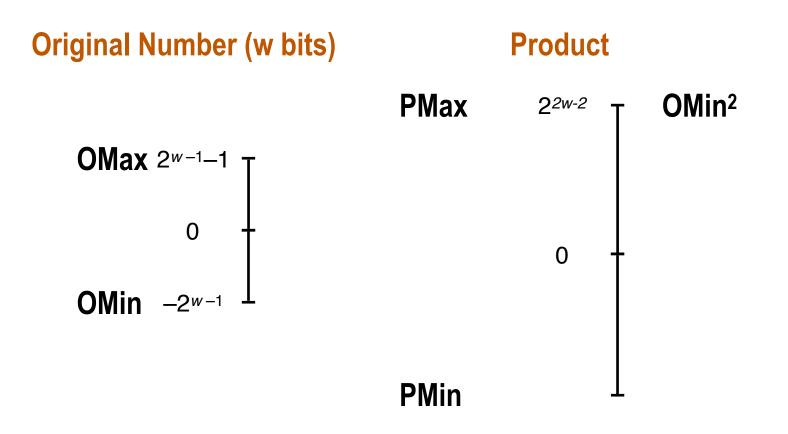
- Design digital components from basic logic gates
- Key idea: use the truth table!
- Example: how to design a piece of circuit that does majority vote?

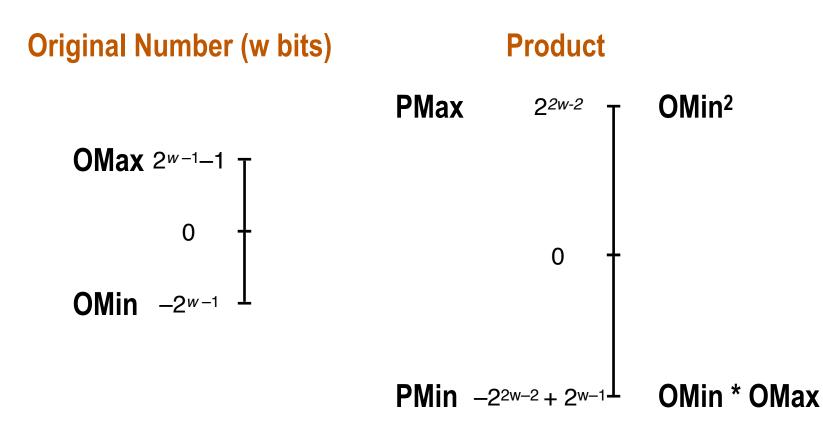


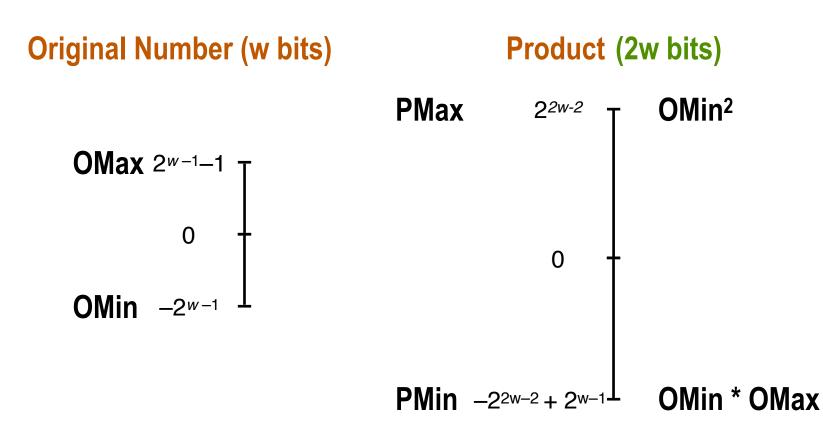

- Design digital components from basic logic gates
- Key idea: use the truth table!
- Example: how to design a piece of circuit that does majority vote?

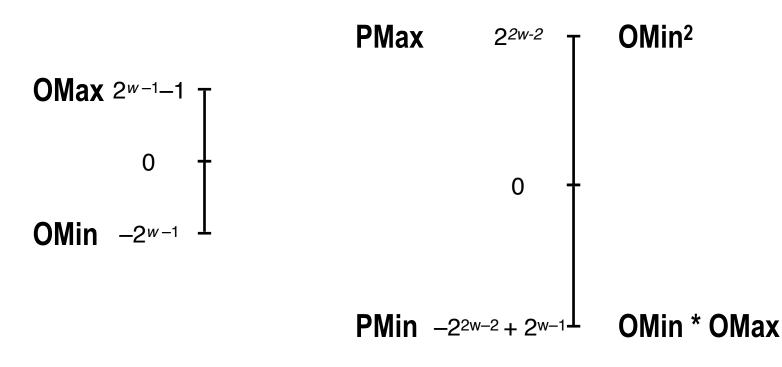



• Goal: Computing Product of *w*-bit numbers *x*, *y*


Original Number (w bits)







- Goal: Computing Product of *w*-bit numbers *x*, *y*
- Exact results can be bigger than w bits
 - Up to 2w bits (both signed and unsigned)

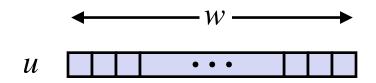
Original Number (w bits)

Product (2w bits)

Unsigned Multiplication in C

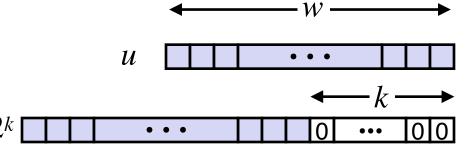
Operands: <i>w</i> bits		U		• • •	
	*	v		•••	
True Product: 2^*w bits $u \cdot v$	• • •			• • •	
Discard <i>w</i> bits: <i>w</i> bits				• • •	

- Standard Multiplication Function
 - Ignores high order w bits
- Effectively Implements the following: $UMult_w(u, v) = u \cdot v \mod 2^w$


Signed Multiplication in C

Operands: <i>w</i> bits		*	U V			•••	
True Product: 2^*w bits $u \cdot v$	•••				•	• •	
Discard <i>w</i> bits: <i>w</i> bits					•	••	

- Standard Multiplication Function
 - Ignores high order w bits
 - Some of which are different for signed vs. unsigned multiplication
 - Lower bits are the same


- Operation
 - u << k gives u * 2^k
 - 001₂ << 2 = 100₂ (1 * 2² = 4)
 - Both signed and unsigned

- Operation
 - u << k gives u * 2^k
 - 001₂ << 2 = 100₂ (1 * 2² = 4)
 - Both signed and unsigned

- Operation
 - u << k gives u * 2^k
 - 001₂ << 2 = 100₂ (1 * 2² = 4)
 - Both signed and unsigned

True Product: w+k bits $u \cdot 2^k$

- Operation
 - u << k gives u * 2^k
 - 001₂ << 2 = 100₂ (1 * 2² = 4)
 - Both signed and unsigned

True Product: w+k bits $u \cdot 2^k$

Discard *k* bits (if overflow)

			-	-k		→
•	• •		0	•••	0	0
	•••		0	•••	0	0

U

- W -

. . .

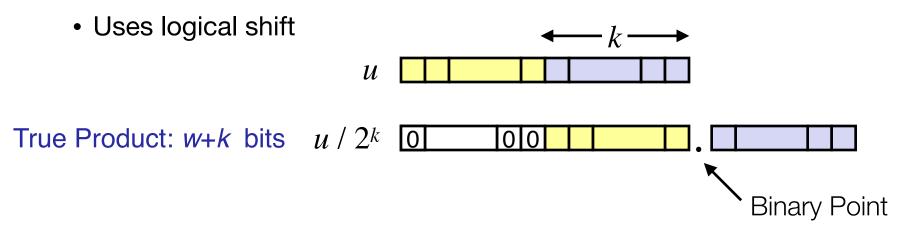
- Operation
 - u << k gives u * 2^k
 - 001₂ << 2 = 100₂ (1 * 2² = 4)
 - Both signed and unsigned

True Product: w+k bits $u \cdot 2^k$

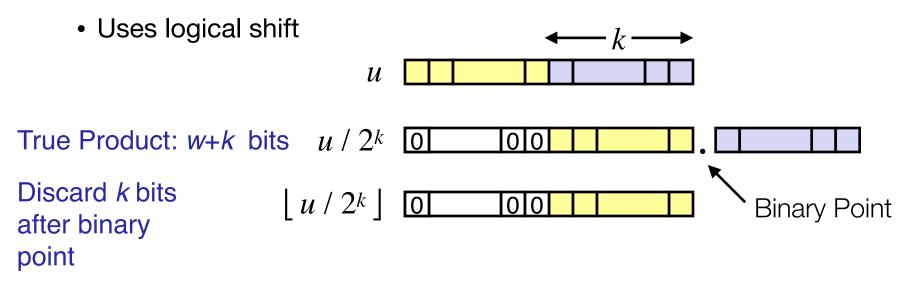
Discard *k* bits (if overflow)

U

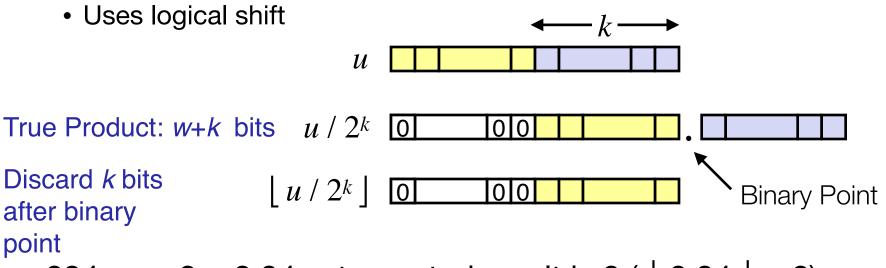
-*w* —


. . .

- Most machines shift and add faster than multiply
 - Compiler generates this code automatically
 - u << 3 == u * 8
 - (u << 5) (u << 3) == u * 24

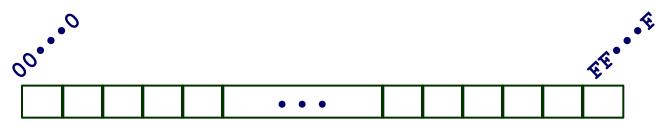

- Implement power-of-2 divide with shift
 - u >> k gives $\lfloor u / 2^k \rfloor$ ($\lfloor 2.34 \rfloor = 2$)
 - Uses logical shift

- Implement power-of-2 divide with shift
 - u >> k gives $\lfloor u / 2^k \rfloor$ ($\lfloor 2.34 \rfloor = 2$)
 - Uses logical shift $\qquad \qquad \bullet k \rightarrow \qquad u$


- Implement power-of-2 divide with shift
 - u >> k gives $\lfloor u / 2^k \rfloor$ ($\lfloor 2.34 \rfloor = 2$)

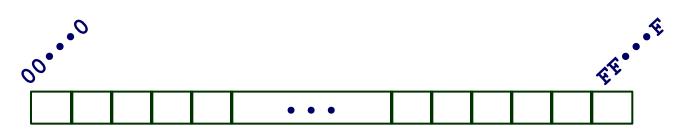
- Implement power-of-2 divide with shift
 - u >> k gives $\lfloor u / 2^k \rfloor$ ($\lfloor 2.34 \rfloor = 2$)

- Implement power-of-2 divide with shift
 - u >> k gives $\lfloor u / 2^k \rfloor$ ($\lfloor 2.34 \rfloor = 2$)

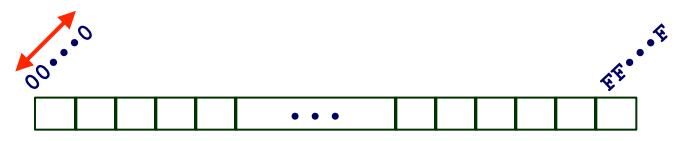


- $234_{10} >> 2 = 2.34_{10}$, truncated result is 2 ($\lfloor 2.34 \rfloor = 2$)
- $1101_2 >> 2 = 0011_2$ (true result: 11.01_2 . $\lfloor 13 / 4 \rfloor = 3$)

Today: Representing Information in Binary


- Why Binary (bits)?
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Byte-Oriented Memory Organization


- Programs refer to data by address
 - Conceptually, envision it as a very large array of bytes: byte-addressable
 - An address is like an index into that array
 - and, a pointer variable stores an address

Machine Words

- Any given computer has a "Word Size"
 - Nominal size of a memory address
 - Until recently, most machines used 32 bits (4 bytes) as word size
 - Limits addresses to 4GB (2³² bytes)
 - Increasingly, machines have 64-bit word size
 - Potentially, could have 18 EB (exabytes) of addressable memory
 - That's 18.4 X 1018

Machine Words

- Any given computer has a "Word Size"
 - Nominal size of a memory address
 - Until recently, most machines used 32 bits (4 bytes) as word size
 - Limits addresses to 4GB (2³² bytes)
 - Increasingly, machines have 64-bit word size
 - Potentially, could have 18 EB (exabytes) of addressable memory
 - That's 18.4 X 1018