
CSC 252: Computer Organization 
 Spring 2020: Lecture 3 

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Carnegie Mellon

!2

Announcement
• Programming Assignment 1 is out

• Details: https://www.cs.rochester.edu/courses/252/
spring2020/labs/assignment1.html

• Due on Jan. 31, 11:59 PM
• You have 3 slip days

Today

Due

https://www.cs.rochester.edu/courses/252/spring2020/labs/assignment1.html
https://www.cs.rochester.edu/courses/252/spring2020/labs/assignment1.html
https://www.cs.rochester.edu/courses/252/spring2020/labs/assignment1.html

Carnegie Mellon

!3

Announcement
• Programming assignment 1 is in C language. Seek help

from TAs.

• TAs are best positioned to answer your questions about

programming assignments!!!

• Programming assignments do NOT repeat the lecture

materials. They ask you to synthesize what you have
learned from the lectures and work out something new.

Carnegie Mellon

!4

Previously in 252…
• Computers are built to understand bits: 0 and 1

• 0: low (no) voltage; 1: high voltage
• Integer representations (Fixed-point really)

Carnegie Mellon

Transistors

!5

row select

bi
tli

ne

_b
itl

in
e1 0

1

1

1 0

Computation Store/Access Data

Carnegie Mellon

!6

Encoding Negative Numbers
• Two’s Complement

Carnegie Mellon

!6

Encoding Negative Numbers
• Two’s Complement

0 1 2 3 4 5 6 7

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Carnegie Mellon

!6

Encoding Negative Numbers
• Two’s Complement

0 1 2 3-1-2-3-4

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Carnegie Mellon

!6

Encoding Negative Numbers
• Two’s Complement

0 1 2 3-1-2-3-4

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Signed
0
1
2
3
-4
-3
-2
-1

Carnegie Mellon

!6

Encoding Negative Numbers
• Two’s Complement

0 1 2 3-1-2-3-4

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Signed
0
1
2
3
-4
-3
-2
-1

b2b1b0

Weights in
Unsigned 202122

Carnegie Mellon

!6

Encoding Negative Numbers
• Two’s Complement

0 1 2 3-1-2-3-4

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Signed
0
1
2
3
-4
-3
-2
-1

b2b1b0

Weights in
Unsigned 202122

Weights in
Signed 2021-22

Carnegie Mellon

!6

Encoding Negative Numbers
• Two’s Complement

0 1 2 3-1-2-3-4

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Signed
0
1
2
3
-4
-3
-2
-11012 = 1*20 + 0*21 + (-1*22) = -310

b2b1b0

Weights in
Unsigned 202122

Weights in
Signed 2021-22

Carnegie Mellon

!6

Encoding Negative Numbers
• Two’s Complement

0 1 2 3-1-2-3-4

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Signed
0
1
2
3
-4
-3
-2
-11012 = 1*20 + 0*21 + (-1*22) = -310

b2b1b0

Weights in
Unsigned 202122

Weights in
Signed 2021-22

Carnegie Mellon

!6

Encoding Negative Numbers
• Two’s Complement

0 1 2 3-1-2-3-4

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Signed
0
1
2
3
-4
-3
-2
-11012 = 1*20 + 0*21 + (-1*22) = -310

b2b1b0

Weights in
Unsigned 202122

Weights in
Signed 2021-22

Carnegie Mellon

!6

Encoding Negative Numbers
• Two’s Complement

0 1 2 3-1-2-3-4

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Signed
0
1
2
3
-4
-3
-2
-11012 = 1*20 + 0*21 + (-1*22) = -310

b2b1b0

Weights in
Unsigned 202122

Weights in
Signed 2021-22

Carnegie Mellon

!7

Two-Complement Implications
• Only 1 zero

• There is (still) a bit that represents sign!

• Unsigned arithmetic still works

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Carnegie Mellon

!7

Two-Complement Implications
• Only 1 zero

• There is (still) a bit that represents sign!

• Unsigned arithmetic still works

 010
+) 101

 111

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Carnegie Mellon

!7

Two-Complement Implications
• Only 1 zero

• There is (still) a bit that represents sign!

• Unsigned arithmetic still works

 010
+) 101

 111

 2
+) -3

 -1

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Carnegie Mellon

!7

Two-Complement Implications
• Only 1 zero

• There is (still) a bit that represents sign!

• Unsigned arithmetic still works

 010
+) 101

 111

 2
+) -3

 -1

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

• 3 + 1 becomes -4 (called overflow. More on it later.)

Carnegie Mellon

!8

Data Types (in C)
• Suppose you want to define a variable that represents a

person’s age. What assumptions can you make about this
variable’s numerical value?

Carnegie Mellon

!8

Data Types (in C)
• Suppose you want to define a variable that represents a

person’s age. What assumptions can you make about this
variable’s numerical value?

• Integer

Carnegie Mellon

!8

Data Types (in C)
• Suppose you want to define a variable that represents a

person’s age. What assumptions can you make about this
variable’s numerical value?

• Integer
• Non-negative

Carnegie Mellon

!8

Data Types (in C)
• Suppose you want to define a variable that represents a

person’s age. What assumptions can you make about this
variable’s numerical value?

• Integer
• Non-negative
• Between 0 and 255 (8 bits)

Carnegie Mellon

!8

Data Types (in C)
• Suppose you want to define a variable that represents a

person’s age. What assumptions can you make about this
variable’s numerical value?

• Integer
• Non-negative
• Between 0 and 255 (8 bits)

• Define a data type that captures all these attributes:
unsigned char in C

Carnegie Mellon

!8

Data Types (in C)
• Suppose you want to define a variable that represents a

person’s age. What assumptions can you make about this
variable’s numerical value?

• Integer
• Non-negative
• Between 0 and 255 (8 bits)

• Define a data type that captures all these attributes:
unsigned char in C

• Internally, an unsigned char variable is represented as a 8-bit,
non-negative, binary number

Carnegie Mellon

!9

Data Types (in C)
• What if you want to define a variable that could take

negative values?

Carnegie Mellon

!9

Data Types (in C)
• What if you want to define a variable that could take

negative values?
• That’s what signed data types (e.g., int, short, etc.) are for

Carnegie Mellon

!9

Data Types (in C)
• What if you want to define a variable that could take

negative values?
• That’s what signed data types (e.g., int, short, etc.) are for

• How are int values internally represented?

Carnegie Mellon

!9

Data Types (in C)
• What if you want to define a variable that could take

negative values?
• That’s what signed data types (e.g., int, short, etc.) are for

• How are int values internally represented?
• Theoretically could be either signed-magnitude or two’s complement

Carnegie Mellon

!9

Data Types (in C)
• What if you want to define a variable that could take

negative values?
• That’s what signed data types (e.g., int, short, etc.) are for

• How are int values internally represented?
• Theoretically could be either signed-magnitude or two’s complement
• The C language designers chose two’s complement

Carnegie Mellon

!9

Data Types (in C)
• What if you want to define a variable that could take

negative values?
• That’s what signed data types (e.g., int, short, etc.) are for

• How are int values internally represented?
• Theoretically could be either signed-magnitude or two’s complement
• The C language designers chose two’s complement

int x = -5, y = 4;
int z = x + y;
fprintf(stdout, “%d\n”, z);
fprintf(stdout, “%u\n”, z);

Carnegie Mellon

!10

Data Types (in C)

C Data Type 32-bit 64-bit

(unsigned) char 1 1

(unsigned) short 2 2

(unsigned) int 4 4

(unsigned) long 4 8

Carnegie Mellon

!10

Data Types (in C)

C Data Type 32-bit 64-bit

(unsigned) char 1 1

(unsigned) short 2 2

(unsigned) int 4 4

(unsigned) long 4 8

! W"
! 8" 16" 32" 64"

UMax" 255! 65,535! 4,294,967,295! 18,446,744,073,709,551,615!
TMax" 127! 32,767! 2,147,483,647! 9,223,372,036,854,775,807!
TMin" -128! -32,768! -2,147,483,648! -9,223,372,036,854,775,808!

!
!

Carnegie Mellon

!10

Data Types (in C)

C Data Type 32-bit 64-bit

(unsigned) char 1 1

(unsigned) short 2 2

(unsigned) int 4 4

(unsigned) long 4 8

! W"
! 8" 16" 32" 64"

UMax" 255! 65,535! 4,294,967,295! 18,446,744,073,709,551,615!
TMax" 127! 32,767! 2,147,483,647! 9,223,372,036,854,775,807!
TMin" -128! -32,768! -2,147,483,648! -9,223,372,036,854,775,808!

!
!

• C Language

•#include <limits.h>
•Declares constants, e.g.,

•ULONG_MAX
•LONG_MAX
•LONG_MIN

•Values platform specific

Carnegie Mellon

!11

Today: Representing Information in Binary

• Why Binary (bits)?

• Bit-level manipulations

• Integers

• Representation: unsigned and signed

• Conversion, casting

• Expanding, truncating

• Addition, negation, multiplication, shifting

• Summary

• Representations in memory, pointers, strings

Carnegie Mellon

!12

One Bit Sequence, Two Interpretations
• A sequence of bits can be interpreted as either a signed

integer or an unsigned integer

Signed
0
1
2
3
-4
-3
-2
-1

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Carnegie Mellon

!13

Signed vs. Unsigned Conversion in C
• What happens when we convert

between signed and unsigned numbers?

• Casting (In C terminology)

• Explicit casting between signed & unsigned

• Implicit casting

• e.g., assignments, function calls

tx = ux;
uy = ty;

int tx, ty = -4;
unsigned ux = 7, uy;
tx = (int) ux; // U2T
uy = (unsigned) ty; // T2U

Carnegie Mellon

• Mappings between unsigned and two’s complement
numbers: Keep bit representations and reinterpret

!14

Mapping Between Signed & Unsigned

Carnegie Mellon

• Mappings between unsigned and two’s complement
numbers: Keep bit representations and reinterpret

!14

Mapping Between Signed & Unsigned

Signed
0
1
2
3
-4
-3
-2
-1

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Carnegie Mellon

!15

Mapping Signed ↔ Unsigned
Signed

0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

Unsigned
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Carnegie Mellon

!15

Mapping Signed ↔ Unsigned
Signed

0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

Unsigned
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

T2U

Carnegie Mellon

!15

Mapping Signed ↔ Unsigned
Signed

0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

Unsigned
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

U2T

T2U

Carnegie Mellon

!15

Mapping Signed ↔ Unsigned
Signed

0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

Unsigned
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

=

Carnegie Mellon

!15

Mapping Signed ↔ Unsigned
Signed

0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

Unsigned
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

=

+/- 16

Carnegie Mellon

!16

0

TMax

TMin

–1
–2

0

UMax
UMax – 1

TMax
TMax + 1

2’s Complement
Range

Unsigned

Range

Conversion Visualized
• Signed → Unsigned

• Ordering Inversion
• Negative → Big Positive

Carnegie Mellon

!16

0

TMax

TMin

–1
–2

0

UMax
UMax – 1

TMax
TMax + 1

2’s Complement
Range

Unsigned

Range

Conversion Visualized
• Signed → Unsigned

• Ordering Inversion
• Negative → Big Positive

Carnegie Mellon

!16

0

TMax

TMin

–1
–2

0

UMax
UMax – 1

TMax
TMax + 1

2’s Complement
Range

Unsigned

Range

Conversion Visualized
• Signed → Unsigned

• Ordering Inversion
• Negative → Big Positive

Carnegie Mellon

!17

Today: Representing Information in Binary

• Why Binary (bits)?

• Bit-level manipulations

• Integers

• Representation: unsigned and signed

• Conversion, casting

• Expanding, truncating

• Addition, negation, multiplication, shifting

• Summary

• Representations in memory, pointers, strings

Carnegie Mellon

!18

The Problem
 short int x = 15213;
 int ix = (int) x;
 short int y = -15213;
 int iy = (int) y;

C Data
Type 64-bit

char 1

short 2

int 4

long 8

Carnegie Mellon

!18

The Problem
 short int x = 15213;
 int ix = (int) x;
 short int y = -15213;
 int iy = (int) y;

C Data
Type 64-bit

char 1

short 2

int 4

long 8
• Converting from smaller to larger integer data type

• Should we preserve the value?

• Can we preserve the value?

• How?

Carnegie Mellon

!18

The Problem
 short int x = 15213;
 int ix = (int) x;
 short int y = -15213;
 int iy = (int) y;

C Data
Type 64-bit

char 1

short 2

int 4

long 8

Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011

• Converting from smaller to larger integer data type

• Should we preserve the value?

• Can we preserve the value?

• How?

Carnegie Mellon

!19

Signed Extension
• Task:

• Given w-bit signed integer x
• Convert it to (w+k)-bit integer with same value

Carnegie Mellon

!19

Signed Extension
• Task:

• Given w-bit signed integer x
• Convert it to (w+k)-bit integer with same value

• Rule:

• Make k copies of sign bit:
• X ′ = xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB

Carnegie Mellon

!19

Signed Extension
• Task:

• Given w-bit signed integer x
• Convert it to (w+k)-bit integer with same value

• Rule:

• Make k copies of sign bit:
• X ′ = xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB

• • •X

X ʹ • • • • • •

• • •

w

wk

Carnegie Mellon

!20

Another Problem

Decimal Hex Binary
x 47981 BB 6D 10111011 01101101
ux 47981 00 00 BB 6D 00000000 00000000 10111011 01101101

 unsigned short x = 47981;
 unsigned int ux = x;

Carnegie Mellon

!21

Unsigned (Zero) Extension
• Task:

• Given w-bit unsigned integer x
• Convert it to (w+k)-bit integer with same value

• Rule:

• Simply pad zeros:
• X ′ = 0 ,…, 0 , xw–1 , xw–2 ,…, x0

k copies of 0

• • •X

X ʹ • • • 0000 • • •

• • •

w

wk

Carnegie Mellon

!22

Yet Another Problem

 int x = 53191;
 short sx = (short) x;

Decimal Hex Binary
x 53191 00 00 CF C7 00000000 00000000 11001111 11000111
sx -12345 CF C7 11001111 11000111

Carnegie Mellon

!22

Yet Another Problem

 int x = 53191;
 short sx = (short) x;

Decimal Hex Binary
x 53191 00 00 CF C7 00000000 00000000 11001111 11000111
sx -12345 CF C7 11001111 11000111

• Truncating (e.g., int to short)

• Can’t always preserve the numerical value
• C’s implementation: leading bits are truncated, results reinterpreted

Carnegie Mellon

!23

Today: Representing Information in Binary

• Why Binary (bits)?

• Bit-level manipulations

• Integers

• Representation: unsigned and signed

• Conversion, casting

• Expanding, truncating

• Addition, negation, multiplication, shifting

• Summary

• Representations in memory, pointers, strings

Carnegie Mellon

!24

Unsigned Addition
Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Carnegie Mellon

!24

Unsigned Addition
• Similar to Decimal Addition Unsigned Binary

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Carnegie Mellon

!24

Unsigned Addition
• Similar to Decimal Addition
• Suppose we have a new data type that is

3-bit wide (c.f., short has 16 bits)

 010
+) 101

 111

 2
+) 5

 7

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111Normal

Case

Carnegie Mellon

!24

Unsigned Addition
• Similar to Decimal Addition
• Suppose we have a new data type that is

3-bit wide (c.f., short has 16 bits)
•Might overflow: result can’t be

represented within the size of the data type

 010
+) 101

 111

 2
+) 5

 7

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111Normal

Case

Overflow
Case

 110
+) 101

 1011

 6
+) 5

 11

Carnegie Mellon

!24

Unsigned Addition
• Similar to Decimal Addition
• Suppose we have a new data type that is

3-bit wide (c.f., short has 16 bits)
•Might overflow: result can’t be

represented within the size of the data type

 010
+) 101

 111

 2
+) 5

 7

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111Normal

Case

Overflow
Case

 110
+) 101

 1011

 6
+) 5

 11 True Sum

Carnegie Mellon

!24

Unsigned Addition
• Similar to Decimal Addition
• Suppose we have a new data type that is

3-bit wide (c.f., short has 16 bits)
•Might overflow: result can’t be

represented within the size of the data type

 010
+) 101

 111

 2
+) 5

 7

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111Normal

Case

Overflow
Case

 110
+) 101

 1011

 6
+) 5

 11 True Sum
 011 3 Sum with same bits

Carnegie Mellon

!25

Unsigned Addition in C
• • •
• • •

u
v+

• • •u + v
• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits UAddw(u , v)

Carnegie Mellon

!26

Two’s Complement Addition
Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Carnegie Mellon

!26

Two’s Complement Addition
• Has identical bit-level behavior as

unsigned addition (a big advantage
over sign-magnitude)

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Carnegie Mellon

!26

Two’s Complement Addition
• Has identical bit-level behavior as

unsigned addition (a big advantage
over sign-magnitude)

 010
+) 101

 111

 2
+) -3

 -1

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Normal
Case

Carnegie Mellon

!26

Two’s Complement Addition
• Has identical bit-level behavior as

unsigned addition (a big advantage
over sign-magnitude)

• Overflow can also occur

 010
+) 101

 111

 2
+) -3

 -1

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Normal
Case

Overflow
Case

 110
+) 101

 1011

 -2
+) -3

 -5

Carnegie Mellon

!26

Two’s Complement Addition
• Has identical bit-level behavior as

unsigned addition (a big advantage
over sign-magnitude)

• Overflow can also occur

 010
+) 101

 111

 2
+) -3

 -1

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Normal
Case

Overflow
Case

 110
+) 101

 1011

 -2
+) -3

 -5
 011 3

Carnegie Mellon

!26

Two’s Complement Addition
• Has identical bit-level behavior as

unsigned addition (a big advantage
over sign-magnitude)

• Overflow can also occur

 010
+) 101

 111

 2
+) -3

 -1

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Normal
Case

Overflow
Case

 110
+) 101

 1011

 -2
+) -3

 -5
 011 3

Negative Overflow

Min

Carnegie Mellon

!26

Two’s Complement Addition
• Has identical bit-level behavior as

unsigned addition (a big advantage
over sign-magnitude)

• Overflow can also occur

 010
+) 101

 111

 2
+) -3

 -1

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Normal
Case

Overflow
Case

 110
+) 101

 1011

 -2
+) -3

 -5
 011 3

 011
+) 001

 0100

 3
+) 1

 4

Negative Overflow

Min

Carnegie Mellon

!26

Two’s Complement Addition
• Has identical bit-level behavior as

unsigned addition (a big advantage
over sign-magnitude)

• Overflow can also occur

 010
+) 101

 111

 2
+) -3

 -1

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Normal
Case

Overflow
Case

 110
+) 101

 1011

 -2
+) -3

 -5
 011 3

 011
+) 001

 0100

 3
+) 1

 4
 100 -4

Negative Overflow

Min

Carnegie Mellon

!26

Two’s Complement Addition
• Has identical bit-level behavior as

unsigned addition (a big advantage
over sign-magnitude)

• Overflow can also occur

 010
+) 101

 111

 2
+) -3

 -1

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Normal
Case

Overflow
Case

 110
+) 101

 1011

 -2
+) -3

 -5

Max

 011 3

 011
+) 001

 0100

 3
+) 1

 4
 100 -4

Negative Overflow Positive Overflow

Min

Carnegie Mellon

!27

Two’s Complement Addition in C
• • •
• • •

u
v+

• • •u + v
• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits TAddw(u , v)

Carnegie Mellon

!28

Is This Signed Addition an Overflow?

 111
+) 110

 1101

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Carnegie Mellon

!28

Is This Signed Addition an Overflow?

 111
+) 110

 1101

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Carnegie Mellon

!28

Is This Signed Addition an Overflow?

 111
+) 110

 1101

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Truncate

Carnegie Mellon

!28

Is This Signed Addition an Overflow?

 111
+) 110

 1101

 -1
+) -2

 -3

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Truncate

Carnegie Mellon

!28

Is This Signed Addition an Overflow?

 111
+) 110

 1101

 -1
+) -2

 -3

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

• This is not an overflow by definition

Truncate

Carnegie Mellon

!28

Is This Signed Addition an Overflow?

 111
+) 110

 1101

 -1
+) -2

 -3

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

• This is not an overflow by definition
• Because the actual result can be represented by

the bit width of the datatype (3 bits here)

Truncate

Carnegie Mellon

!29

Inverter (NOT Gate)
+1.2V

+0.0V

Carnegie Mellon

!29

Inverter (NOT Gate)
+1.2V

+0.0V

PMOS

Carnegie Mellon

!29

Inverter (NOT Gate)
+1.2V

+0.0V

PMOS

NMOS

Carnegie Mellon

!29

Inverter (NOT Gate)
+1.2V

+0.0V

+1.2V

Carnegie Mellon

!29

Inverter (NOT Gate)
+1.2V

+0.0V

+1.2V

+0.0V

Carnegie Mellon

!29

Inverter (NOT Gate)

In Out

0 1
1 0

+1.2V

+0.0V

+1.2V

+0.0V

Carnegie Mellon

!29

Inverter (NOT Gate)

In Out

0 1
1 0

+1.2V

+0.0V

+1.2V

+0.0V

Carnegie Mellon

!30

NOR Gate (NOT + OR)

A B C

0 0 1
0 1 0

1 0 0

1 1 0
Note: Serial structure on top, parallel on bottom.

Carnegie Mellon

!31

Basic Logic Gates

A | B ~(A | B)

A & B ~(A & B)

Carnegie Mellon

!31

Basic Logic Gates

A | B ~(A | B)

A & B ~(A & B)

The little
circle
means NOT

Carnegie Mellon

!32

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out. A B Cin S Cou

t

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Carnegie Mellon

!32

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out. A B Cin S Cou

t

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Truth Table

Carnegie Mellon

!32

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out. A B Cin S Cou

t

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

S = (~A & ~B & Cin)

Truth Table

Carnegie Mellon

!32

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out. A B Cin S Cou

t

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

S = (~A & ~B & Cin)
 | (~A & B & ~Cin)

Truth Table

Carnegie Mellon

!32

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out. A B Cin S Cou

t

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

S = (~A & ~B & Cin)
 | (~A & B & ~Cin)
 | (A & ~B & ~Cin)

Truth Table

Carnegie Mellon

!32

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out. A B Cin S Cou

t

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

S = (~A & ~B & Cin)
 | (~A & B & ~Cin)
 | (A & ~B & ~Cin)

 | (A & B & Cin)

Truth Table

Carnegie Mellon

!32

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out. A B Cin S Cou

t

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

S = (~A & ~B & Cin)
 | (~A & B & ~Cin)
 | (A & ~B & ~Cin)

 | (A & B & Cin)

Cou = (~A & B & Cin)
 | (A & ~B & Cin)
 | (A & B & ~Cin)
 | (A & B & Cin)

Truth Table

Carnegie Mellon

!33

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out.

Cou = (~A & B & Cin)
 | (A & ~B & Cin)
 | (A & B & ~Cin)
 | (A & B & Cin)

Carnegie Mellon

!33

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out.

Cou = (~A & B & Cin)
 | (A & ~B & Cin)
 | (A & B & ~Cin)
 | (A & B & Cin)

Carnegie Mellon

!33

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out.

Cou = (~A & B & Cin)
 | (A & ~B & Cin)
 | (A & B & ~Cin)
 | (A & B & Cin)

Carnegie Mellon

!33

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out.

Cou = (~A & B & Cin)
 | (A & ~B & Cin)
 | (A & B & ~Cin)
 | (A & B & Cin)

AND Gates

OR Gates

Carnegie Mellon

!33

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out.

Cou = (~A & B & Cin)
 | (A & ~B & Cin)
 | (A & B & ~Cin)
 | (A & B & Cin)

AND Gates

OR Gates

Carnegie Mellon

!33

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out.

Cou = (~A & B & Cin)
 | (A & ~B & Cin)
 | (A & B & ~Cin)
 | (A & B & Cin)

AND Gates

OR Gates

Carnegie Mellon

!33

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out.

Cou = (~A & B & Cin)
 | (A & ~B & Cin)
 | (A & B & ~Cin)
 | (A & B & Cin)

AND Gates

OR Gates

Carnegie Mellon

!33

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out.

Cou = (~A & B & Cin)
 | (A & ~B & Cin)
 | (A & B & ~Cin)
 | (A & B & Cin)

AND Gates

OR Gates

Carnegie Mellon

!34

Four-bit Adder

Carnegie Mellon

!34

Four-bit Adder

Carnegie Mellon

!34

Four-bit Adder
• Ripple-carry Adder

• Simple, but performance linear to bit width

Carnegie Mellon

!34

Four-bit Adder
• Ripple-carry Adder

• Simple, but performance linear to bit width
• Carry look-ahead adder (CLA)

• Generate all carriers simultaneously

Carnegie Mellon

!35

Logic Design
• Design digital components from basic logic gates

Carnegie Mellon

!35

Logic Design
• Design digital components from basic logic gates
• Key idea: use the truth table!

Carnegie Mellon

!35

Logic Design
• Design digital components from basic logic gates
• Key idea: use the truth table!
• Example: how to design a piece of circuit that does

majority vote?

Carnegie Mellon

!35

Logic Design
• Design digital components from basic logic gates
• Key idea: use the truth table!
• Example: how to design a piece of circuit that does

majority vote?

Carnegie Mellon

!35

Logic Design
• Design digital components from basic logic gates
• Key idea: use the truth table!
• Example: how to design a piece of circuit that does

majority vote?

A B C F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Carnegie Mellon

!35

Logic Design
• Design digital components from basic logic gates
• Key idea: use the truth table!
• Example: how to design a piece of circuit that does

majority vote?

A B C F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

F = (A & B & C)

 | (A & ~B & C)

 | (A & B & ~C)

 | (~A & B & C)

Carnegie Mellon

!35

Logic Design
• Design digital components from basic logic gates
• Key idea: use the truth table!
• Example: how to design a piece of circuit that does

majority vote?

A B C F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

F = (A & B & C)

 | (A & ~B & C)

 | (A & B & ~C)

 | (~A & B & C)

F = (A & B)

 | (A & C)

 | (B & C)

Carnegie Mellon

!35

Logic Design
• Design digital components from basic logic gates
• Key idea: use the truth table!
• Example: how to design a piece of circuit that does

majority vote?

A B C F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Carnegie Mellon

!36

Multiplication

Carnegie Mellon

!36

Multiplication
• Goal: Computing Product of w-bit numbers x, y

Carnegie Mellon

!36

Multiplication
• Goal: Computing Product of w-bit numbers x, y

–2w –1

0

2w –1–1OMax

OMin

Original Number (w bits)

Carnegie Mellon

!36

Multiplication
• Goal: Computing Product of w-bit numbers x, y

–2w –1

0

2w –1–1OMax

OMin

Original Number (w bits) Product

0

Carnegie Mellon

!36

Multiplication
• Goal: Computing Product of w-bit numbers x, y

–2w –1

0

2w –1–1OMax

OMin

Original Number (w bits) Product

0

PMax

Carnegie Mellon

!36

Multiplication
• Goal: Computing Product of w-bit numbers x, y

–2w –1

0

2w –1–1OMax

OMin

Original Number (w bits) Product

22w-2

0

OMin2PMax

Carnegie Mellon

!36

Multiplication
• Goal: Computing Product of w-bit numbers x, y

–2w –1

0

2w –1–1OMax

OMin

Original Number (w bits) Product

22w-2

0

OMin2PMax

PMin

Carnegie Mellon

!36

Multiplication
• Goal: Computing Product of w-bit numbers x, y

–2w –1

0

2w –1–1OMax

OMin

Original Number (w bits) Product

–22w–2 + 2w–1

22w-2

0

OMin2

OMin * OMax

PMax

PMin

Carnegie Mellon

!36

Multiplication
• Goal: Computing Product of w-bit numbers x, y

–2w –1

0

2w –1–1OMax

OMin

Original Number (w bits) Product

–22w–2 + 2w–1

22w-2

0

OMin2

OMin * OMax

PMax

PMin

(2w bits)

Carnegie Mellon

!36

Multiplication
• Goal: Computing Product of w-bit numbers x, y
• Exact results can be bigger than w bits

• Up to 2w bits (both signed and unsigned)

–2w –1

0

2w –1–1OMax

OMin

Original Number (w bits) Product

–22w–2 + 2w–1

22w-2

0

OMin2

OMin * OMax

PMax

PMin

(2w bits)

Carnegie Mellon

!37

Unsigned Multiplication in C

• Standard Multiplication Function

• Ignores high order w bits

• Effectively Implements the following:

UMultw(u , v)= u · v mod 2w

• • •
• • •

u
v*

• • •u · v
• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w
bits

• • •

Carnegie Mellon

!38

Signed Multiplication in C

• Standard Multiplication Function

• Ignores high order w bits
• Some of which are different for signed vs. unsigned multiplication
• Lower bits are the same

• • •
• • •

u
v*

• • •u · v
• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w
bits

• • •

Carnegie Mellon

!39

Power-of-2 Multiply with Shift
• Operation

• u << k gives u * 2k

• 0012 << 2 = 1002 (1 * 22 = 4)

• Both signed and unsigned

Carnegie Mellon

!39

Power-of-2 Multiply with Shift
• Operation

• u << k gives u * 2k

• 0012 << 2 = 1002 (1 * 22 = 4)

• Both signed and unsigned • • •u

w

Carnegie Mellon

!39

Power-of-2 Multiply with Shift
• Operation

• u << k gives u * 2k

• 0012 << 2 = 1002 (1 * 22 = 4)

• Both signed and unsigned

True Product: w+k bits u · 2k
k

• • • 0 0 0•••

• • •u
w

Carnegie Mellon

!39

Power-of-2 Multiply with Shift
• Operation

• u << k gives u * 2k

• 0012 << 2 = 1002 (1 * 22 = 4)

• Both signed and unsigned

True Product: w+k bits

Discard k bits (if
overflow)

u · 2k
k

• • • 0 0 0•••

0 0 0••••••

• • •u
w

Carnegie Mellon

!39

Power-of-2 Multiply with Shift
• Operation

• u << k gives u * 2k

• 0012 << 2 = 1002 (1 * 22 = 4)

• Both signed and unsigned

True Product: w+k bits

Discard k bits (if
overflow)

u · 2k
k

• • • 0 0 0•••

0 0 0••••••

• • •u
w

•Most machines shift and add faster than multiply

• Compiler generates this code automatically
• u << 3 == u * 8
• (u << 5) – (u << 3) == u * 24

Carnegie Mellon

!40

Unsigned Power-of-2 Divide with Shift
• Implement power-of-2 divide with shift

• u >> k gives ⎣u / 2k⎦(⎣2.34⎦= 2)

• Uses logical shift

Carnegie Mellon

!40

Unsigned Power-of-2 Divide with Shift
• Implement power-of-2 divide with shift

• u >> k gives ⎣u / 2k⎦(⎣2.34⎦= 2)

• Uses logical shift
u

k

Carnegie Mellon

!40

Unsigned Power-of-2 Divide with Shift
• Implement power-of-2 divide with shift

• u >> k gives ⎣u / 2k⎦(⎣2.34⎦= 2)

• Uses logical shift
u

k

u / 2k 0 0 00True Product: w+k bits

Binary Point

•

Carnegie Mellon

!40

Unsigned Power-of-2 Divide with Shift
• Implement power-of-2 divide with shift

• u >> k gives ⎣u / 2k⎦(⎣2.34⎦= 2)

• Uses logical shift
u

k

u / 2k 0 0 00

⎣ u / 2k ⎦ 0 0 00

True Product: w+k bits

Discard k bits
after binary
point

Binary Point

•

Carnegie Mellon

!40

Unsigned Power-of-2 Divide with Shift
• Implement power-of-2 divide with shift

• u >> k gives ⎣u / 2k⎦(⎣2.34⎦= 2)

• Uses logical shift
u

k

u / 2k 0 0 00

⎣ u / 2k ⎦ 0 0 00

True Product: w+k bits

Discard k bits
after binary
point

Binary Point

•

• 23410 >> 2 = 2.3410, truncated result is 2 (⎣2.34⎦= 2)

• 11012 >> 2 = 00112 (true result: 11.012.⎣13 / 4⎦= 3)

Carnegie Mellon

!41

Today: Representing Information in Binary

• Why Binary (bits)?

• Bit-level manipulations

• Integers

• Representation: unsigned and signed

• Conversion, casting

• Expanding, truncating

• Addition, negation, multiplication, shifting

• Summary

• Representations in memory, pointers, strings

Carnegie Mellon

!42

Byte-Oriented Memory Organization

• Programs refer to data by address

• Conceptually, envision it as a very large array of bytes: byte-addressable
• An address is like an index into that array

• and, a pointer variable stores an address

• • •
00
••
•0

FF
••
•F

Carnegie Mellon

!43

Machine Words

• Any given computer has a “Word Size”

• Nominal size of a memory address

• Until recently, most machines used 32 bits (4 bytes) as word size
• Limits addresses to 4GB (232 bytes)

• Increasingly, machines have 64-bit word size
• Potentially, could have 18 EB (exabytes) of addressable memory
• That’s 18.4 X 1018

• • •
00
••
•0

FF
••
•F

Carnegie Mellon

!43

Machine Words

• Any given computer has a “Word Size”

• Nominal size of a memory address

• Until recently, most machines used 32 bits (4 bytes) as word size
• Limits addresses to 4GB (232 bytes)

• Increasingly, machines have 64-bit word size
• Potentially, could have 18 EB (exabytes) of addressable memory
• That’s 18.4 X 1018

• • •
00
••
•0

FF
••
•F

