
Midterm Exam

CSC 252

5 March 2020

Computer Science Department

University of Rochester

Instructor​: Yuhao Zhu

TAs​: Daniel Busaba, Sudhanshu Gupta, Mandar Juvekar, Max Kimmelman, Weituo Kong,

Jiahao Lu, Vladimir Maksimovski, Nathan Reed, Yawo Alphonse Siatitse, Yudi Yang, Shuang

Zhai, Prikshet Sharma

 ​Name​: ____________________________________

Problem 0 (2 points):

Problem 1 (13 points):

Problem 2 (14 points):

Problem 3 (11 points):

Problem 4 (24 points):

Problem 5 (11 points):

Total (75 points):

Extra Credit (20 points)

Remember “​I don’t know​” is given 15% partial credit, but you must erase everything else. This

does not apply to extra credit questions.

Your answers to all questions must be contained in the given boxes. Use spare space to show all

supporting work to earn partial credit.

You have 75 minutes to work.

Please sign the following. I have not given nor received any unauthorized help on this exam.

Signature:___

GOOD LUCK!!!

1

Problem 0: Warm-up (2 Points)​ What’s your favourite instruction?

Any instruction here works.

Problem 1: Fixed-Point Arithmetics (13 points)

Part a) (3 points)​ Represent the decimal number 683 in hexadecimal.

2AB

Part b) (3 points)​ Represent the binary value 10000111 in the base-6 number system.

343

Part c) (3 points)​ Represent the binary value 1101.101 in decimal.

13.625

Part d) (4 points)​ Is it possible to add two registers and set Carry Flag to 1, Zero Flag to 0,

Signed Flag to 1, and Overflow Flag to 1? If yes, show an example; otherwise, explain.

It is not possible. If both overflow and signed flags are set, it means we added two positive

numbers and got a negative result. Adding two positive numbers cannot generate a carry,

so carry flag can’t be set.

2

Problem 2: Floating-Point Arithmetics (14 points + 4 points extra credit)

Part a) (4 points)​ Put in the binary normalized form.7 64
19

1.11010011 x (2^2)

Part b) (4 points)​ According to the IEEE754 single-precision format, which of the following is

NaN?

A. 0111 1111 1100 1010 0100 1001 0001 0010

B. 1111 1111 0100 1010 0100 1001 0001 0010

C. 0000 0000 0000 0000 0000 0000 0000 0000

D. 0111 1111 1000 0000 0000 0000 0000 0000

A

Part c) (6 points + 4 points extra credits) ​IEEE decided to add a new 12-bit

representation, with its main characteristics consistent with the other IEEE standards.

Under this 12-bit representation, the value is represented exactly as ​010000111001 ​.3 32
25

(3 points)​ How many bits are needed for fraction?

6

(3 points)​ What is the bias?

15

(4 points extra credit)​ In this 12-bit representation, what is the result of the following

operation?

1110 1011 0010 ​x​ 0111 0100 1001

-inf

3

Problem 3: Logic Design (11 points + 5 points extra credit)

The functionality of a two-input NOR gate is specified by the following truth table:

A B A NOR B

0 0 1

0 1 0

1 0 0

1 1 0

Part a) (9 points) ​Construct the binary NOT, OR and AND gates using only NOR gates.

(3 points) ​NOT Gate:

A NOR A

(3 points)​ OR Gate:

(A NOR B) NOR (A NOR B)

(3 points) ​AND Gate:

((A NOR A) NOR (B NOR B))

4

Part b) (2 points) ​A binary (2-input-1-output) logic gate is said to be “complete” if every other

binary logic gate can be made using one or more copies of it. For instance, the NAND gate is

known to be complete. Explain very briefly why the NOR gate is complete.

Since we can construct NOT and AND gates, we can construct NAND gates by just inverting the

output of the AND gate using a NOT gate. Since NAND is complete, NOR must be complete as

well.

Part c) (5 points extra credit) ​The U.S. government wants to reconstruct a supercomputer

developed by one of its enemies. For this they have asked their top spy, Jonathan, to go

undercover looking for information. While snooping around, Jonathan recovered the following

schematic. But to his dismay, part of the circuit was removed from the diagram. He knows,

however, that the circuit takes two 1-bit inputs (​A​ and ​B​) and gives a single 1-bit output (​Out​).

Furthermore, he knows that the circuit outputs TRUE for every input.

Help Jonathan recover the logic by expressing logic X using only NOT, OR, and AND operations.

You don’t have to draw the schematic; just show the logic expression.

X = (A AND B) OR ((NOT A) AND (NOT B))

5

Problem 4: Assembly Programming (24 points + 6 points extra credit)

For the following parts, the assembly shown uses the syntax ​opcode src, dst​ for

instructions with two arguments where ​src​ is the source argument and ​dst​ is the destination

argument. For example, this means that ​mov a, b​ moves the value ​a​ into ​b​ and ​sub a, b

computes the value (​b​ - ​a​) and stores it in ​b​.

Also, for functions that take two arguments, the first argument is stored in ​%rdi​ and the second

is stored in ​%rsi​ at the time the function is called. The return value of this function is stored in

%eax​ at the time the function returns.

Part a) (18 points)​ Below is the assembly code for a mystery function in C.

0x0000000000401170 <+0>: mov (%rdi),%eax

0x0000000000401172 <+2>: mov (%rsi),%edx

0x0000000000401174 <+4>: mov %edx,(%rdi)

0x0000000000401176 <+6>: mov %eax,(%rsi)

0x0000000000401178 <+8>: add (%rdi),%eax

0x000000000040117a <+10>: retq

(3 points)​ What is one possible data type for the value in %rdi?

int*, long*, short*, ...

(3 points)​ What is one possible data type for the value in %eax when func returns?

int, long, short, ...

(8 points)​ Suppose that the state of the memory before this function is called is as shown

below, and that the registers ​%rdi​ = 0x48c and ​%rsi​ = 0x484.

State of memory before: (addresses on the left, values on the right)

0x480 0x5

0x484 0x2

0x488 0x20

0x48c 0x9

6

Fill in the state of the memory after the function is called as well as its return value below.

State of memory after: (addresses on the left, values on the right)

0x480 0x5

0x484 0x9

0x488 0x20

0x48c 0x2

(4 points)​ Return value is:

0xb

7

Part b) (6 points)​ Below is the definition of a struct called ​student​ in C. Below the definition

are three C functions that access certain fields or parts of fields from this struct as well as their

disassembled assembly in random order. Refer to the struct definition to match these functions

with their assembly counterparts in the table below. Assuming that this is a 64-bit machine.

typedef struct student{

short year;

char major [4];

int *id;

struct location {

char country [3];

int areacode;

} home;

struct student *nextstudent;

} student;

A B C

mov

0x18(%rdi),%rax

mov 0x8(%rax),%rax

mov (%rax),%eax

retq

movsbl

0x11(%rdi),%eax

retq

lea

0x14(%rdi),%eax

retq

C function Assembly (either A/B/C for each)

int* field1(student* s){

return &((s -> home).areacode);

}

C

char field2(student* s){

return (s -> home).country[1];

}

B

int field3(student* s){

return *(s -> nextstudent -> id);

}

A

8

Part c) (6 points extra credit) ​ Below is the assembly code for another mystery function in C

called ​loop​. Refer to this code when answering questions below.

0x000000000040119f <+0>: push %rbp

0x00000000004011a0 <+1>: mov %rsp,%rbp

0x00000000004011a3 <+4>: movl $0x0,-0x4(%rbp)

0x00000000004011aa <+11>: movl $0x5,-0x8(%rbp)

0x00000000004011b1 <+18>: jmp 0x4011bc <loop+29>

0x00000000004011b3 <+20>: mov -0x8(%rbp),%eax

0x00000000004011b6 <+23>: imul %eax,%eax

0x00000000004011b9 <+26>: add %eax,-0x4(%rbp)

0x00000000004011bc <+29>: subl $0x1,-0x8(%rbp)

0x00000000004011c0 <+33>: jg 0x4011b3 <loop+20>

0x00000000004011c2 <+35>: mov -0x4(%rbp),%eax

0x00000000004011c5 <+38>: nop

0x00000000004011c6 <+39>: pop %rbp

0x00000000004011c7 <+40>: retq

(3 points)​ What does ​loop()​ return?

30

(3 points)​ How many instructions are executed in the entire execution of ​loop()​ (including

nop​’s)?

31

9

Problem 5: ISA (11 points + 5 points extra credit)

The designers of a new ISA are thinking about how to encode jump instructions. Instead of

having different opcodes for all the different kinds of jumps (jle, jg, jz, etc), they want to have

one opcode for all jumps, and the kind of jump will be encoded in the instruction (see below).

In this ISA, there are 4 condition codes (C0, C1, C2, and C3), whose values can be either 0 or 1.

These are similar to the status flags on x86 in that they reflect the status of the last instruction

executed. The meanings of the condition codes for the ​add​ and ​sub​ (subtract) instructions in

this ISA are given below. The ​mov​ instruction does not change the condition codes.

Condition Code Meaning when codes are set for Add/Subtract instruction

C0 Result zero; no overflow

C1 Result less than zero; no overflow

C2 Result greater than zero; no overflow

C3 Overflow

The jump instruction encoding includes a 4 bit long mask as part of its encoding. The mask is

from bits 12-15, as shown in the table.

Condition Code Set Bit Position in

the Instruction

C0 12

C1 13

C2 14

C3 15

A 1 in a certain bit position indicates that that condition code is selected when deciding whether

to take the jump or not. To determine if the jump should be taken, the CPU computes the ​OR​ of

the values of all the condition codes selected by the mask, and takes the jump if the result of the

OR​ is 1. For example, a mask​ ​0110​ ​selects C1 and C2, and it indicates that the jump will be taken

if C1 ​OR​ C2 is 1.

The entire jump instructions is 48-bit long, and it is encoded as follows:

00000111 Padding (all 1) Mask Destination (jump target address)

0 7 8 11 12 15 16 47

Bits 0-7 for the opcode, bits 8-11 for the padding (these bits are all 1), bits 12-15 for the mask (as

described above), and bits 16-47 for the destination address (i.e., the jump target).

Finally, all the registers in this ISA are 64-bit wide.

10

Part a) (8 points) ​Consider the following code (the syntax is​ ​opcode src, dest​) for this

hypothetical ISA:

add r2, r1

sub r1, r2

sub 0x0c, r1

mov r1,r2

Suppose for this part that when this code starts executing, the value​ ​0x0e​ ​is stored in​ ​r1​ ​and

the value​ ​0x02​ ​is stored in​ ​r2​. ​What is the value of each condition code bit after executing these

instructions?

Condition Code Value

C0 0

C1 0

C2 1

C3 0

Part b) (3 points) ​Give the complete encoding (in hexadecimal) of a jump instruction, which

jumps to address​ ​0xffff3d00​ ​if the result of the previous instruction is less than or equal to 0.

Assume that the target address is placed directly in the destination field in big-endian order.

0x07fcffff3d00

Part c) (5 points extra credit) ​Now suppose that when the code in part a) starts executing,

the value​ ​0x04​ ​is stored​ in ​r1​ ​and the value​ ​0x0d​ ​is stored in​ ​r2​. ​Suppose that your jump

instruction from part b) is executed after the instructions from part a). Will the jump be taken?

Why or why not? Explain.

No. The jump is taken when the condition codes indicate the result was less than or equal to

0. In this case, with those numbers, the last result that set the condition codes was 0x5, which

is greater than 0, so the condition codes will not be set properly for the jump to happen.

11

