CSC 252: Computer Organization
Spring 2021: Lecture 15

Instructor: Yuhao Zhu

Department of Computer Science
University of Rochester

Announcements

* Programming assignment 3 is due today

e Details: https://www.cs.rochester.edu/courses/252/
spring2021/labs/assignment3.html

 Due on March 23, 11:59 PM

* | ab 2 grades are out.
o

Today

Due Mid-term

https://www.cs.rochester.edu/courses/252/spring2021/labs/assignment3.html
https://www.cs.rochester.edu/courses/252/spring2021/labs/assignment3.html
https://www.cs.rochester.edu/courses/252/spring2021/labs/assignment3.html

Announcements

e Mid-term exam: this Thursday, 12:30 PM — 1:45 PM; online.

e Past exam & Problem set: https://www.cs.rochester.edu/courses/
252/spring2021/handouts.html

e Exam will be electronic using Gradescope, but we will send you
an PDF version so that you can work offline in case

1) you don’t have stable Internet access at the exam time or

2) the time doesn’t work for you

Write down the answers on a scratch paper, take pictures, and send us the
pictures

Send me an email explaining why you need to work offline before the exam
data/time.

https://www.cs.rochester.edu/courses/252/spring2021/handouts.html
https://www.cs.rochester.edu/courses/252/spring2021/handouts.html
https://www.cs.rochester.edu/courses/252/spring2021/handouts.html

Announcements

e Exams are designed to test your ability to apply what you have
learned and not your memory (though a good memory could help).

e Open book test: any sort of paper-based product, e.g., book,
notes, magazine, old tests.

¢ Nothing electronic (including laptop, cell phone, calculator,
etc) other than the computer you use to take the exam.

® YOu can use your electronic copy of the textbook, but you must
not search in the textbook.

¢ Nothing biological, including your roommate, husband, wife,
your hamster, another professor, etc.

¢ “| don’t know” gets 15% partial credit. Must erase everything
else.

Announcements

e Mock exam now. Won't be graded.

e (GO to https://www.gradescope.com/courses/256242/
assignments/1116540.

¢ | 0g in using your NetlD.

https://www.gradescope.com/courses/256242/assignments/1116540
https://www.gradescope.com/courses/256242/assignments/1116540
https://www.gradescope.com/courses/256242/assignments/1116540

So far in 252...

C Program
Compiler l

Assembly Program

Assembler l
Instruction Set Architecture

(Mostly) Manual Process l

Processor
Microarchitecture

Logic Synthesis Tools l

Circuits

So farin 252...

Topic of CSC 255, but we will
give you some intuition here.

rhbly Program

Assembler i
Instruction Set Architecture

(Mostly) Manual Process l

Processor
Microarchitecture

Logic Synthesis Tools l

Circuits

Code Optimization Overview

e Three entities can optimize the program: programmer, compiler, and
hardware

* The best thing to speed up a program is to pick a good algorithm.
Compilers/hardware can’t do that in general.

* Quicksort: O(n log n) = K* n * log(n)
» Bubblesort: O(n"2) = K* nA2
e Algorithm choice decides overall complexity (big O), compiler/
hardware decides the constant factor in the big O notation
* Compiler and hardware implementations decide the K.

e Programmers can write code that makes it easier to compiler and
hardware to improve performance.

Optimizing Code Transformation

e Hardware/Microarchitecture Independent Optimizations
» Code motion/precomputation
« Strength reduction
« Sharing of common subexpressions

Generally Useful Optimizations

e Optimizations that you or the compiler should do regardless of

pProcessor

e Code Motion
» Reduce frequency with which computation performed

o If it will always produce same result
» Especially moving code out of loop

void set row(double *a, double *b,

long i, long n)

{ long j;
long j; . int n? - n*if .
for (j = 0; j < n; j++) for (J = 9;_3 < n;_3++)

a[ni+j] = b[]j]-

a[n*i+j] = b[]];

Compiler-Generated Code Motion (-O1)

void set_row(double *a, double *b,

long i, long n)
{
long j;
for (j = 0; j < n; j++)
a[n*i+j] = b[]j]’

N

set_row:
testqg
jle
imulg
leaq
movl
.L3:
movsd
movsd
addg
cmpgq
jne
.L1:
rep ;

ret

$rcx, %rcx
L1
$rcx, %$rdx

long j
int ni
for (j

.
4

n*i;
0; j < n; j++)

a[ni+j] = b[]j]:;

#
#
#

($rdi, %$rdx,8), %$rdx # rowp = A + ni*8

$0, %eax

(%rsi,%rax,8), %$xmmO
$xmm0, (%rdx,%rax,8)

$1, %rax
$rcx, Srax
.L3

#
#
#
#
#
#
#
#

Test n

If 0, goto done
ni = n*i

j=20

loop:

t = b[j]
M[A+ni*8 + j*8]
J++

j:n

if '=, goto loop
done:

t

Reduction in Strength

e Replace costly operation with simpler one
e Shift, add instead of multiply or divide
e 16*x --> X << 4
» Depends on cost of multiply or divide instruction

* On Intel Nehalem, integer multiply requires 3 CPU cycles. Division takes
even more cycles. Shift can generally be done in 1 cycle.

e Use the 1ea instruction

11

Reduction in Strength

e Replace costly operation with simpler one
e Shift, add instead of multiply or divide
e 16*x --> X << 4
» Depends on cost of multiply or divide instruction

* On Intel Nehalem, integer multiply requires 3 CPU cycles. Division takes
even more cycles. Shift can generally be done in 1 cycle.

e Use the 1ea instruction

long ml2 (long x)
{ leaqg (%rdi,%rdi,2), %rax # t <- x+x*2
return x*12; salg $2, %rax # return t<<2

}

11

Common Subexpression Elimination

« Reuse portions of expressions
« GCC will do this with —-O1

3 multiplications: i*n, (i-1)*n, (i+1)*n 1 multiplication: i*n

/* Sum neighbors of i,j */ long inj = i*n + j;

up = val[(i-1)*n + J 1; up = val[inj - n];

down = wval[(i+l)*n + j 1, down = wval[in]j + n];

left = wval[i*n + j-11; left = wval[inj - 1];

right = val[i*n + j+1]; right = val[inj + 1];

sum = up + down + left + right; sum = up + down + left + right;

| |

leaq 1(%rsi), %rax # i+l
leaq -1(%rsi), %r8 # i-1

imulqg %rcx, %rsi # i*n imulq Srcx, %rsi # i*n

imulqg %rcx, %rax # (i+1)*n addgq srdx, %rsi # i*n+j

imulg %rcx, %r8 # (i-1)*n movq srsi, %rax # i*n+j

addq $rdx, $rsi # i*n+j subq $rcx, Srax # i*n+j—n

addq $rdx, %rax # (i+1) *n+j leaq ($rsi,%rcx), %rcx # i*n+j+n
addg %rdx, %r8 # (i-1)*n+j

Today: Optimizing Code Transformation

e Optimization Blockers
« Procedure calls
« Memory aliasing

13

Optimization Blocker #1: Procedure Calls

e Procedure to Convert String to Lower Case

void lower (char *s)
{
size t i;
for (1 = 0; i < strlen(s); i++)
if (s[i] >= 'A' && s[i] <= 'Z")
S[l] —_— (IAI - vav)’.

14

Calling Strlen

size t strlen(const char *s)

{
size_t length = 0;
while (*s != '\0'") {
s++;
length++;
}
return length;
}

e Strlen performance
« Has to scan the entire length of a string, looking for null character.
« O(N) complexity
e Qverall performance
« N calls to strlen
« Overall O(N2?) performance

15

Improving Performance

« Move call to strlen outside of loop

 Since result does not change from one iteration to another
* Form of code motion

void lower (char *s)
{
size t i;
size t len = strlen(s);
for (1 = 0; i < len; i++)
if (s[i] >= 'A' && s[i] <= 'Z")
S[l] _—— (vAv - vav);

16

Optimization Blocker: Procedure Calls

void lower (char *s) Why couldn’t compiler move
L : strlen out of loop?
size_ t 1i;
for (i = 0; i < strlen(s); i++) * Procedure may have side
1t (s[1] >= "A" && s[i] <= '2%) effects, e.g., alters global
s[i] -= ('A' - 'a');

state each time called

* Function may not return

size_t total_lencount = 0; same Value for glven
1 1l h *
size t strlen(const char *s) arguments

{

}

size t length = 0;
while (*s !'= '\0') {
s++; length++;
}
total lencount += length;
return length;

17

Optimization Blocker: Procedure Calls

e Most compilers treat procedure call as a black box
» Assume the worst case, weak optimizations near them
» There are interprocedural optimizations (IPO), but they are expensive

¢ Sometimes the compiler doesn’t have access to source code of other
functions because they are object files in a library. Link-time optimizations
(LTO) comes into play, but are expensive as well.

18

Optimization Blocker: Procedure Calls

e Most compilers treat procedure call as a black box
» Assume the worst case, weak optimizations near them
» There are interprocedural optimizations (IPO), but they are expensive

¢ Sometimes the compiler doesn’t have access to source code of other
functions because they are object files in a library. Link-time optimizations
(LTO) comes into play, but are expensive as well.

e Remedies:
o Use of inline functions
« Do your own code motion

18

Optimization Blocker: Procedure Calls

e Most compilers treat procedure call as a black box
» Assume the worst case, weak optimizations near them
» There are interprocedural optimizations (IPO), but they are expensive

¢ Sometimes the compiler doesn’t have access to source code of other
functions because they are object files in a library. Link-time optimizations
(LTO) comes into play, but are expensive as well.

e Remedies:
o Use of inline functions
« Do your own code motion

inline void swap(int *m, int *n) ({
int tmp = *m;

*m = *n; void foo () {
*n = tmp; int tmp = x;
} X =y,

y = tmp;
void foo () { }

swap (&x, &y);
}

18

Optimization Blocker #2: Memory Aliasing

/* Sum rows of n X n matrix a
and store in vector b */
void sum rowsl (double *a, double *b, long n) {
long i, j:;
for (i = 0; i < n; i++) {
b[i] = 0;
for (j = 0; j < n; j++)
b[i] += a[i*n + j];

Value of a: Value of b:

init: [x, x, x]

double a[9] =
{o, 1, 2,
4, 8, 16,
32, 64, 128};

Optimization Blocker #2: Memory Aliasing

/* Sum rows of n X n matrix a
and store in vector b */
void sum rowsl (double *a, double *b, long n) {
long i, j:;
for (i = 0; i < n; i++) {
b[i] = 0;
for (j = 0; j < n; j++)
b[i] += a[i*n + j];

Value of a: Value of b:

init: [x, x, x]

double a[9] =

{ ol 1/ 2/ i=20: [3, X, X]
4, 8, 16,

32, 64, 128};

Optimization Blocker #2: Memory Aliasing

/* Sum rows of n X n matrix a
and store in vector b */
void sum rowsl (double *a, double *b, long n) {
long i, j:;
for (i = 0; i < n; i++) {
b[i] = 0;
for (j = 0; j < n; j++)
b[i] += a[i*n + j];

Value of a: Value of b:

init: [x, x, x]

double a[9] =
{o, 1, 2,
4, 8, 16,
32, 64, 128};

0: [3, x, x]

'.l.
i

i=1: [3, 28, x]

Optimization Blocker #2: Memory Aliasing

/* Sum rows of n X n matrix a
and store in vector b */
void sum rowsl (double *a, double *b, long n) {
long i, j:;
for (i = 0; i < n; i++) {
b[i] = 0;
for (j = 0; j < n; j++)
b[i] += a[i*n + j];

Value of a: Value of b:

init: [x, x, x]

double a[9] =

{ ol 1/ 2/ i=20: [3, X, X]
4, 8, 16,

32, 64, 128};

i=1: [3, 28, x]

i =2: [3, 28, 224]

A Potential Optimization

/* Sum rows of n X n matrix a
and store in vector b */
void sum rowsl (double *a, double *b, long n) {

long i, j:;

for (i =0; i < n; i++) {

}

/ b[i]
(f“

=0;
(J =0;, jJ < n; j++)
b[i] += a[i*n + j];

)

Every iteration updates
memory location Db[i].
Memory accesses are
slow, so...

20

A Potential Optimization

/* Sum rows of n X n matrix a
and store in vector b */
void sum rowsl (double *a, double *b, long n) {

long i, j:;
for (};_g’f'%;%f-i“) e Every iteration updates
1 = ; . .
Lfor (3= 0; 3 <n; j++) | memory location bJi].
b[i] += ali*n + 31; Memory accesses are

slow, so...

!

double val = 0; Every iteration updates val,

for (j = 0; j < n; j++)
val += a[i*n + j];

which could stay in register.

b[i] = val; Update memory only once.

A Potential Optimization

/* Sum rows of n X n matrix a
and store in vector b */
void sum_rowsl (double *a, double *b, long n) {

long i, j:;
for (é;_;’;;;jn:_iﬂ) { - Every iteration updates
1 = ; . .

@gor (5= 0; § <n; j++) | memory location Dbli].

\ _ bIi] 4= a[i*n + 3]/ , Memory accesses are

} slow, so...
double val = 0; Every iteration updates val,
f j = 0; jJ < n; j++ . . .
Sval ie apirm & 310 which could stay in register.

bli] = val; Update memory only once.

Why can’t a compiler perform this optimization?

20

Memory Aliasing

/* Sum rows of n X n matrix a
and store in vector b */
void sum rowsl (double *a, double *b, long n)
long i, j:;
for (i = 0; 1 < n; i++) {
b[i] = 0;
for (j = 0; j < n; j++)
b[i] += a[i*n + j];

Value of a:

double a[9] =

{ o, 1, 2,
—> 4, 8, 16,
32, 64, 128};

Value of b:

init:

[4, 8, 16]

double b[3] = a+3;

e ——

sum_rowsl(a, b, 3);

Memory Aliasing

/* Sum rows of n X n matrix a
and store in vector b */
void sum rowsl (double *a, double *b, long n) {
long i, j:;
for (i = 0; i < n; i++) {
b[i] = 0;
for (j = 0; j < n; j++)
b[i] += a[i*n + j];

}
}
double a[9] = init: [4, 8, 16]
{o, L, 2,
SE i=0: 13, 8, 161

double b[3] = a+3;

e ——

sum_rowsl(a, b, 3);

Memory Aliasing

/* Sum rows of n X n matrix a
and store in vector b */
void sum rowsl (double *a, double *b, long n) {
long i, j:;
for (i = 0; i < n; i++) {
b[i] = 0;
for (j = 0; j < n; j++)
b[i] += a[i*n + j];

}
}
double a[9] = init: [4, 8, 16]
{o, L, 2,
S i=0: 13, 8, 161

double b[3] = a+3;

e ——

sum_rowsl(a, b, 3);

Memory Aliasing

/* Sum rows of n X n matrix a
and store in vector b */
void sum rowsl (double *a, double *b, long n) {
long i, j:;
for (i = 0; i < n; i++) {
b[i] = 0;
for (j = 0; j < n; j++)
b[i] += a[i*n + j];

double a[9] = init: [4, 8, 16]
{ o0, 1, 2,
b __’332 61: 1;gi; i =0: [3, 8, 16]

double b[3] = a+3;

e ——

sum_rowsl(a, b, 3);

Memory Aliasing

/* Sum rows of n X n matrix a
and store in vector b */
void sum rowsl (double *a, double *b, long n) {
long i, j:;
for (i = 0; i < n; i++) {
b[i] = 0;
for (j = 0; j < n; j++)
b[i] += a[i*n + j];

double a[9] = init: [4, 8, 16]
{ o, 1, 2,
b __’332 6‘1: 1;gi; i=0: [3, 8, 16]

double b[3] = a+3;

e ——

sum_rowsl(a, b, 3);

Memory Aliasing

/* Sum rows of n X n matrix a
and store in vector b */
void sum rowsl (double *a, double *b, long n) {
long i, j:;
for (i = 0; i < n; i++) {
b[i] = 0;
for (j = 0; j < n; j++)
b[i] += a[i*n + j];

double a[9] = init: [4, 8, 16]
{ o, 1, 2,
b __’332 61: 1;gi; i=0: [3, 8, 16]

double b[3] = a+3;

e ——

sum_rowsl(a, b, 3);

Memory Aliasing

/* Sum rows of n X n matrix a
and store in vector b */
void sum rowsl (double *a, double *b, long n) {

long i, j;
for (i = 0; i < n; i++) {
b[i] = 0;

for (j = 0; j < n; j++)
b[i] += a[i*n + j];

}
double a[9] = init: [4, 8, 16]
{o, 1, 2,
b —— s = e STNONRC

double b[3] = a+3;

sum rowsl(a, b, 3);

Memory Aliasing

/* Sum rows of n X n matrix a
and store in vector b */
void sum rowsl (double *a, double *b, long n) {
long i, j:;
for (i = 0; i < n; i++) {
b[i] = 0;
for (j = 0; j < n; j++)
b[i] += a[i*n + j];

Value of a: Value of b:
double a[9] = init: [4, 8, 16]
b { 0, 1, 2,
| » 3, 22 16, _
32, 64, 128}; i=20: [3, 8, 16]
double b[3] = a+3; i=1: [3, 22, 16]

sum_rowsl(a, b, 3);

Memory Aliasing

/* Sum rows of n X n matrix a
and store in vector b */

{0, 1, 2,
—» 3, 22 16,

void sum rowsl (double *a, double *b, long n) {
long i, j:;
for (1 = 0; i < n; i++) {
b[i] = 0;
for (j = 0; j < n; j++)
b[i] += a[i*n + j];
}
}
double a[9] = init: [4, 8, 16]

= 0: [3, 8, 16]

32, 64, 128}; i
double b[3] = a+3; i

sum rowsl(a, b, 3);

=1: [3, 22, 16]

= 2: [3, 22, 224]

21

Optimization Blocker: Memory Aliasing

e Aliasing
» Two different memory references (array elements or pointers) specify the
same memory location

« Easyto have in C
» Since C allows address/pointer arithmetic
« Direct access to storage structures
» Get in habit of introducing local variables
« Accumulating within loops
* Your way of telling compiler not to check for aliasing

22

Today: Optimizing Code Transformation

« Exploit Hardware Microarchitecture

23

Exploiting Instruction-Level Parallelism (ILP)

e Hardware can execute multiple instructions in parallel

* Pipeline is a classic technique. Multiple instructions are being
executed at the same time

e Performance limited by control/data dependencies

e Simple transformations can yield dramatic performance improvement
« Compilers often cannot make these transformations
» Lack of associativity and distributivity in floating-point arithmetic

24

Baseline Code

for (1 = 0; 1 < length; i++) {

t =t * d[i];
*dest = t;

.L519:
imulqg (%rax,%rdx,4),
addg $1, %$rdx
cmpqg %rdx, %rbp
jg .L519

Fecx

i++

Compare length:i
If >, goto Loop

«—— Real work

«— Qverhead

25

Loop Unrolling (2x1)

long limit = length-1;
long i;
/* Combine 2 elements at a time */
for (i = 0; i < limit; i+=2) {
x = (x * d[i]) * d[i+1];
}

/* Finish any remaining elements */
for (; i < length; i++) {

Xx =x * d[1i];
}

*dest = x;

e Perform 2x more useful work per iteration
e Reduce loop overhead (comp, jmp, index dec, etc.)
 What’s the trade-off here?

26

Loop Unrolling with Separate Accumulators

long limit = length-1;

long i;

/* Combine 2 elements at a time */
for (i = 0; i < limit; i+=2) {

x0 = x0 * d[i];

x1 = x1 * d[i+1];

}

/* Finish any remaining elements */
for (; i < length; i++) {

x0 = x0 * d[i];
}

*dest = x0 * x1;

27

Data-Flow Graph (DFQ)

x0 = x0 * d[i]; * What changed:
x1 = x1 * d[i+1]; * Two independent “streams” of
operations
X0 d x1 d, * Reduce data dependgncy
B | * What was the DFG like using just one
" d " d accumulator?

28

Code Optimization Summary

* From a programmer’s perspective:

« \What you know: the functionality/intention of your code; the inputs to the
program; all the code in the program

* What you might not know: the hardware details.
e From a compiler’s perspective:

* What you know: all the code in the program; (maybe) the hardware
details.

* What you might not know: the inputs to the program; the intention of the
code

* From the hardware’s perspective:
* What you know: the hardware details; some part of the code

* \WWhat you might not know: the inputs to the program; the intention of the
code

e The different perspectives indicate that different entities have different
responsibilities, limitations, and advantages in optimizing the code

29

Aside: Profile-Guided Optimization

float foo(int x, int y)
{

return pow(x, y) * 100 / log(x) * sqrt(y):
}

30

Aside: Profile-Guided Optimization

e As a programmer, if you know what x and y will be, say 5, you could
direct return the results 23769.8 without having to the computation

float foo(int x, int y)

{
return pow(x, y) * 100 / log(x) * sqrt(y):

}

30

Aside: Profile-Guided Optimization

e As a programmer, if you know what x and y will be, say 5, you could
direct return the results 23769.8 without having to the computation

e Compiler would have no idea

float foo(int x, int y)

{
return pow(x, y) * 100 / log(x) * sqrt(y):

}

30

Aside: Profile-Guided Optimization

e As a programmer, if you know what x and y will be, say 5, you could
direct return the results 23769.8 without having to the computation

e Compiler would have no idea
e Except...Profile-guided optimizations:

float foo(int x, int y)

{
return pow(x, y) * 100 / log(x) * sqrt(y):

}

30

Aside: Profile-Guided Optimization

e As a programmer, if you know what x and y will be, say 5, you could
direct return the results 23769.8 without having to the computation

e Compiler would have no idea
e Except...Profile-guided optimizations:

* Run the code multiple times using some sample inputs, and observe
the values of x and v (statistically).

float foo(int x, int y)

{
return pow(x, y) * 100 / log(x) * sqrt(y):

}

30

Aside: Profile-Guided Optimization

e As a programmer, if you know what x and y will be, say 5, you could
direct return the results 23769.8 without having to the computation

e Compiler would have no idea
e Except...Profile-guided optimizations:

* Run the code multiple times using some sample inputs, and observe
the values of x and v (statistically).

o |f let’s say 99% of the time, x = 2 and y = 5, what could the compiler
do then?

float foo(int x, int y)

{
return pow(x, y) * 100 / log(x) * sqrt(y):

}

30

Aside: Profile-Guided Optimization

e As a programmer, if you know what x and vy will be, say 5, you could
direct return the results 23769.8 without having to the computation

e Compiler would have no idea
e Except...Profile-guided optimizations:

* Run the code multiple times using some sample inputs, and observe
the values of x and v (statistically).

o |f let’s say 99% of the time, x = 2 and y = 5, what could the compiler
do then?

float foo(int x, int y)

{
return pow(x, y) * 100 / log(x) * sqrt(y):

}

float foo(int x, int y)

{

if (x == 2 && y == 5) return 23769.8;

else return pow(x, y) * 100 / log(x) * sqrt(y):;
}

30

