
CSC 252: Computer Organization 
           Spring 2021: Lecture 19 

Instructor: Yuhao Zhu


Department of Computer Science

University of Rochester



Carnegie Mellon

Announcements

!2

• Cache problem set: https://www.cs.rochester.edu/courses/
252/spring2021/handouts.html

• Not to be turned in. Won’t be graded.
• Assignment 4 out.

Today

Due

https://www.cs.rochester.edu/courses/252/spring2021/handouts.html
https://www.cs.rochester.edu/courses/252/spring2021/handouts.html
https://www.cs.rochester.edu/courses/252/spring2021/handouts.html


Carnegie Mellon

Today
• Process Control

• Signals: The Way to Communicate with Processes

!3



Carnegie Mellon

Context Switching
• Processes are managed by a shared chunk of memory-resident 

OS code called the kernel
• Important: the kernel is not a separate process, but rather runs as 

part of some existing process.

• Control flow passes from one process to another via a context 
switch

!4

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time



Carnegie Mellon

Process Graph Example

!5

int main() 
{ 
    pid_t pid; 
    int x = 1; 

    pid = Fork();  
    if (pid == 0) {  /* Child */ 
        printf("child : x=%d\n", ++x);  
 exit(0); 
    } 

    /* Parent */ 
    printf("parent: x=%d\n", --x);  
    exit(0); 
}

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit
Parent

Child

fork.c



Carnegie Mellon

Interpreting Process Graphs
• Original graph:


• Abstracted graph:

!6

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit

a b

f

dc

e



Carnegie Mellon

Interpreting Process Graphs
• Original graph:


• Abstracted graph:

!6

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit

a b

f

dc

e

a b e c f d

Feasible execution ordering:



Carnegie Mellon

Interpreting Process Graphs
• Original graph:


• Abstracted graph:

!6

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit

a b

f

dc

e

a b e c f d

Feasible execution ordering:

a b ecf d

Infeasible execution ordering:



Carnegie Mellon

fork Example: Two consecutive forks

!7

void fork2() 
{ 
    printf("L0\n"); 
    fork(); 
    printf("L1\n"); 
    fork(); 
    printf("Bye\n"); 
} forks.c



Carnegie Mellon

fork Example: Two consecutive forks

!7

void fork2() 
{ 
    printf("L0\n"); 
    fork(); 
    printf("L1\n"); 
    fork(); 
    printf("Bye\n"); 
} printf printf fork

printf

printffork

printf fork

printf

printf

Bye

L0

Bye

L1

L1

Bye

Bye

forks.c



Carnegie Mellon

fork Example: Two consecutive forks

!7

void fork2() 
{ 
    printf("L0\n"); 
    fork(); 
    printf("L1\n"); 
    fork(); 
    printf("Bye\n"); 
} printf printf fork

printf

printffork

printf fork

printf

printf

Bye

L0

Bye

L1

L1

Bye

Bye

Feasible output:
L0
L1
Bye
Bye
L1
Bye
Bye

forks.c



Carnegie Mellon

fork Example: Two consecutive forks

!7

void fork2() 
{ 
    printf("L0\n"); 
    fork(); 
    printf("L1\n"); 
    fork(); 
    printf("Bye\n"); 
} printf printf fork

printf

printffork

printf fork

printf

printf

Bye

L0

Bye

L1

L1

Bye

Bye

Feasible output:
L0
L1
Bye
Bye
L1
Bye
Bye

Infeasible output:
L0
Bye
L1
Bye
L1
Bye
Bye

forks.c



Carnegie Mellon

fork Example: Nested forks in parent

!8

void fork4() 
{ 
    printf("L0\n"); 
    if (fork() != 0) { 
       printf("L1\n"); 
       if (fork() != 0) { 
           printf("L2\n"); 
 } 
    } 
    printf("Bye\n"); 
} forks.c



Carnegie Mellon

fork Example: Nested forks in parent

!8

void fork4() 
{ 
    printf("L0\n"); 
    if (fork() != 0) { 
       printf("L1\n"); 
       if (fork() != 0) { 
           printf("L2\n"); 
 } 
    } 
    printf("Bye\n"); 
}

printf printf fork

printf

printffork

printf

L0

Bye

L1

Bye

L2

printf

Bye

forks.c



Carnegie Mellon

fork Example: Nested forks in parent

!8

void fork4() 
{ 
    printf("L0\n"); 
    if (fork() != 0) { 
       printf("L1\n"); 
       if (fork() != 0) { 
           printf("L2\n"); 
 } 
    } 
    printf("Bye\n"); 
}

printf printf fork

printf

printffork

printf

L0

Bye

L1

Bye

L2

printf

Bye

Feasible output:
L0
L1
Bye
Bye
L2
Bye

forks.c



Carnegie Mellon

fork Example: Nested forks in parent

!8

void fork4() 
{ 
    printf("L0\n"); 
    if (fork() != 0) { 
       printf("L1\n"); 
       if (fork() != 0) { 
           printf("L2\n"); 
 } 
    } 
    printf("Bye\n"); 
}

printf printf fork

printf

printffork

printf

L0

Bye

L1

Bye

L2

printf

Bye

Feasible output:
L0
L1
Bye
Bye
L2
Bye

Infeasible output:
L0
Bye
L1
Bye
Bye
L2

forks.c



Carnegie Mellon

fork Example: Nested forks in children

!9

void fork5() 
{ 
    printf("L0\n"); 
    if (fork() == 0) { 
        printf("L1\n"); 
        if (fork() == 0) { 
            printf("L2\n"); 
        } 
    } 
    printf("Bye\n"); 
} forks.c



Carnegie Mellon

fork Example: Nested forks in children

!9

void fork5() 
{ 
    printf("L0\n"); 
    if (fork() == 0) { 
        printf("L1\n"); 
        if (fork() == 0) { 
            printf("L2\n"); 
        } 
    } 
    printf("Bye\n"); 
}

printf printf

fork

printf

printf

fork

printf

L0

L2

Bye

L1 Bye

printf
Bye

forks.c



Carnegie Mellon

fork Example: Nested forks in children

!9

void fork5() 
{ 
    printf("L0\n"); 
    if (fork() == 0) { 
        printf("L1\n"); 
        if (fork() == 0) { 
            printf("L2\n"); 
        } 
    } 
    printf("Bye\n"); 
}

printf printf

fork

printf

printf

fork

printf

L0

L2

Bye

L1 Bye

printf
Bye

Feasible output:
L0
Bye
L1
L2
Bye
Bye

forks.c



Carnegie Mellon

fork Example: Nested forks in children

!9

void fork5() 
{ 
    printf("L0\n"); 
    if (fork() == 0) { 
        printf("L1\n"); 
        if (fork() == 0) { 
            printf("L2\n"); 
        } 
    } 
    printf("Bye\n"); 
}

printf printf

fork

printf

printf

fork

printf

L0

L2

Bye

L1 Bye

printf
Bye

Feasible output:
L0
Bye
L1
L2
Bye
Bye

Infeasible output:
L0
Bye
L1
Bye
Bye
L2

forks.c



Carnegie Mellon

Reaping Child Processes
• When process terminates, it still consumes system resources

• Examples: Exit status, various OS tables
• Called a “zombie”: Living corpse, half alive and half dead

• Reaping
• Performed by parent on terminated child (using wait or waitpid)

!10



Carnegie Mellon

Reaping Child Processes
• When process terminates, it still consumes system resources

• Examples: Exit status, various OS tables
• Called a “zombie”: Living corpse, half alive and half dead

• Reaping
• Performed by parent on terminated child (using wait or waitpid)
• Parent is given exit status information
• Kernel then deletes zombie child process

•What if parent doesn’t reap?
• If any parent terminates without reaping a child, then the orphaned 

child will be reaped by init process (pid == 1)

!10



Carnegie Mellon

Reaping Child Processes
• When process terminates, it still consumes system resources

• Examples: Exit status, various OS tables
• Called a “zombie”: Living corpse, half alive and half dead

• Reaping
• Performed by parent on terminated child (using wait or waitpid)
• Parent is given exit status information
• Kernel then deletes zombie child process

•What if parent doesn’t reap?
• If any parent terminates without reaping a child, then the orphaned 

child will be reaped by init process (pid == 1)
• So, only need explicit reaping in long-running processes

• e.g., shells and servers

!10



Carnegie Mellon

Zombie Example

!11

void fork7() { 
    if (fork() == 0) { 
        /* Child */ 
        printf("Terminating Child, PID = %d\n", getpid()); 
        exit(0); 
    } else { 
        printf("Running Parent, PID = %d\n", getpid()); 
        while (1) 
            ; /* Infinite loop */ 
    } 
} forks.c



Carnegie Mellon

Zombie Example

!11

linux> ./forks 7 & 
[1] 6639 
Running Parent, PID = 6639 
Terminating Child, PID = 6640 
linux> ps 
  PID TTY          TIME CMD 
 6585 ttyp9    00:00:00 tcsh 
 6639 ttyp9    00:00:03 forks 
 6640 ttyp9    00:00:00 forks <defunct> 
 6641 ttyp9    00:00:00 ps 
linux> kill 6639 
[1]    Terminated 
linux> ps 
  PID TTY          TIME CMD 
 6585 ttyp9    00:00:00 tcsh 
 6642 ttyp9    00:00:00 ps

void fork7() { 
    if (fork() == 0) { 
        /* Child */ 
        printf("Terminating Child, PID = %d\n", getpid()); 
        exit(0); 
    } else { 
        printf("Running Parent, PID = %d\n", getpid()); 
        while (1) 
            ; /* Infinite loop */ 
    } 
} forks.c



Carnegie Mellon

Zombie Example

• ps shows child process 
as “defunct” (i.e., a 
zombie)

!11

linux> ./forks 7 & 
[1] 6639 
Running Parent, PID = 6639 
Terminating Child, PID = 6640 
linux> ps 
  PID TTY          TIME CMD 
 6585 ttyp9    00:00:00 tcsh 
 6639 ttyp9    00:00:03 forks 
 6640 ttyp9    00:00:00 forks <defunct> 
 6641 ttyp9    00:00:00 ps 
linux> kill 6639 
[1]    Terminated 
linux> ps 
  PID TTY          TIME CMD 
 6585 ttyp9    00:00:00 tcsh 
 6642 ttyp9    00:00:00 ps

void fork7() { 
    if (fork() == 0) { 
        /* Child */ 
        printf("Terminating Child, PID = %d\n", getpid()); 
        exit(0); 
    } else { 
        printf("Running Parent, PID = %d\n", getpid()); 
        while (1) 
            ; /* Infinite loop */ 
    } 
} forks.c



Carnegie Mellon

Zombie Example

• ps shows child process 
as “defunct” (i.e., a 
zombie)

• Killing parent allows 
child to be reaped by 
init

!11

linux> ./forks 7 & 
[1] 6639 
Running Parent, PID = 6639 
Terminating Child, PID = 6640 
linux> ps 
  PID TTY          TIME CMD 
 6585 ttyp9    00:00:00 tcsh 
 6639 ttyp9    00:00:03 forks 
 6640 ttyp9    00:00:00 forks <defunct> 
 6641 ttyp9    00:00:00 ps 
linux> kill 6639 
[1]    Terminated 
linux> ps 
  PID TTY          TIME CMD 
 6585 ttyp9    00:00:00 tcsh 
 6642 ttyp9    00:00:00 ps

void fork7() { 
    if (fork() == 0) { 
        /* Child */ 
        printf("Terminating Child, PID = %d\n", getpid()); 
        exit(0); 
    } else { 
        printf("Running Parent, PID = %d\n", getpid()); 
        while (1) 
            ; /* Infinite loop */ 
    } 
} forks.c



Carnegie Mellon

Non-terminating Child

!12

void fork8() 
{ 
    if (fork() == 0) { 
        /* Child */ 
        printf("Running Child, PID = %d\n", 
               getpid()); 
        while (1) 
            ; /* Infinite loop */ 
    } else { 
        printf("Terminating Parent, PID = %d\n", 
               getpid()); 
        exit(0); 
    } 
} forks.c



Carnegie Mellon

Non-terminating Child

!12

linux> ./forks 8 
Terminating Parent, PID = 6675 
Running Child, PID = 6676 
linux> ps 
  PID TTY          TIME CMD 
 6585 ttyp9    00:00:00 tcsh 
 6676 ttyp9    00:00:06 forks 
 6677 ttyp9    00:00:00 ps 
linux> kill 6676 
linux> ps 
  PID TTY          TIME CMD 
 6585 ttyp9    00:00:00 tcsh 
 6678 ttyp9    00:00:00 ps

void fork8() 
{ 
    if (fork() == 0) { 
        /* Child */ 
        printf("Running Child, PID = %d\n", 
               getpid()); 
        while (1) 
            ; /* Infinite loop */ 
    } else { 
        printf("Terminating Parent, PID = %d\n", 
               getpid()); 
        exit(0); 
    } 
} forks.c



Carnegie Mellon

Non-terminating Child

• Child process still active even 
though parent has terminated. 
Can’t be reaped since it’s still 
running!

• Must kill child explicitly, or else 
will keep running indefinitely

!12

linux> ./forks 8 
Terminating Parent, PID = 6675 
Running Child, PID = 6676 
linux> ps 
  PID TTY          TIME CMD 
 6585 ttyp9    00:00:00 tcsh 
 6676 ttyp9    00:00:06 forks 
 6677 ttyp9    00:00:00 ps 
linux> kill 6676 
linux> ps 
  PID TTY          TIME CMD 
 6585 ttyp9    00:00:00 tcsh 
 6678 ttyp9    00:00:00 ps

void fork8() 
{ 
    if (fork() == 0) { 
        /* Child */ 
        printf("Running Child, PID = %d\n", 
               getpid()); 
        while (1) 
            ; /* Infinite loop */ 
    } else { 
        printf("Terminating Parent, PID = %d\n", 
               getpid()); 
        exit(0); 
    } 
} forks.c



Carnegie Mellon

wait: Synchronizing with Children

!13

void fork9() { 
    int child_status; 

    if (fork() == 0) { 
        printf("HC: hello from child\n"); 
 exit(0); 
    } else { 
        printf("HP: hello from parent\n"); 
        wait(&child_status); 
        printf("CT: child has terminated\n"); 
    } 
    printf("Bye\n"); 
} forks.c



Carnegie Mellon

wait: Synchronizing with Children

!13

void fork9() { 
    int child_status; 

    if (fork() == 0) { 
        printf("HC: hello from child\n"); 
 exit(0); 
    } else { 
        printf("HP: hello from parent\n"); 
        wait(&child_status); 
        printf("CT: child has terminated\n"); 
    } 
    printf("Bye\n"); 
}

printf wait printffork

printf
exit

HP

HC

CT 
Bye

forks.c



Carnegie Mellon

wait: Synchronizing with Children

!13

void fork9() { 
    int child_status; 

    if (fork() == 0) { 
        printf("HC: hello from child\n"); 
 exit(0); 
    } else { 
        printf("HP: hello from parent\n"); 
        wait(&child_status); 
        printf("CT: child has terminated\n"); 
    } 
    printf("Bye\n"); 
}

printf wait printffork

printf
exit

HP

HC

CT 
Bye

forks.c

Feasible output:
HC
HP
CT
Bye



Carnegie Mellon

wait: Synchronizing with Children

!13

void fork9() { 
    int child_status; 

    if (fork() == 0) { 
        printf("HC: hello from child\n"); 
 exit(0); 
    } else { 
        printf("HP: hello from parent\n"); 
        wait(&child_status); 
        printf("CT: child has terminated\n"); 
    } 
    printf("Bye\n"); 
}

printf wait printffork

printf
exit

HP

HC

CT 
Bye

forks.c

Feasible output:
HC
HP
CT
Bye

Infeasible output:
HP
CT
Bye
HC



Carnegie Mellon

wait: Synchronizing with Children

• Parent reaps a child by calling the wait function


•int wait(int *child_status) 
• Suspends current process until one of its children terminates
• Return value is the pid of the child process that terminated
• If child_status != NULL, then the integer it points to will be set 

to  a value that indicates reason the child terminated and the exit 
status:

• Checked using macros defined in wait.h 
• WIFEXITED, WEXITSTATUS, WIFSIGNALED, 
WTERMSIG, WIFSTOPPED, WSTOPSIG, 
WIFCONTINUED

• See textbook for details

!14



Carnegie Mellon

Another wait Example
• If multiple children completed, will take in arbitrary order

• Can use macros WIFEXITED and WEXITSTATUS to get information 

about exit status

!15

void fork10() { 
   int i, child_status; 

    for (i = 0; i < N; i++) 
        if (fork() == 0) { 
            exit(100+i); /* Child */ 
        } 
    for (i = 0; i < N; i++) { /* Parent */ 
        pid_t wpid = wait(&child_status); 
        if (WIFEXITED(child_status)) 
            printf("Child %d terminated with exit status %d\n", 
                   wpid, WEXITSTATUS(child_status)); 
        else 
            printf("Child %d terminate abnormally\n", wpid); 
    } 
}

forks.c



Carnegie Mellon

waitpid: Waiting for a Specific Process
• pid_t waitpid(pid_t pid, int &status, int options) 

• Suspends current process until specific process terminates
• Various options (see textbook)

!16

void fork11() { 
    pid_t pid[N]; 
    int i; 
    int child_status; 

    for (i = 0; i < N; i++) 
        if ((pid[i] = fork()) == 0) 
            exit(100+i); /* Child */ 
    for (i = N-1; i >= 0; i--) { 
        pid_t wpid = waitpid(pid[i], &child_status, 0); 
        if (WIFEXITED(child_status)) 
            printf("Child %d terminated with exit status %d\n", 
                   wpid, WEXITSTATUS(child_status)); 
        else 
            printf("Child %d terminate abnormally\n", wpid); 
    } 
} forks.c



Carnegie Mellon

!17

  char *myargv[] = {“/bin/ls”, “-lt”, “/usr/include”}; 
  char *environ[] = {“USER=droh”, “PWD=“/usr/droh”}; 
   
  if ((pid = Fork()) == 0) {   /* Child runs program */                                                
      if (execve(myargv[0], myargv, environ) < 0) {                                                         
          printf("%s: Command not found.\n", myargv[0]);                                                  
          exit(1);                                                                                      
      }                                                                                                 
  }                                                                                                    

Executes “/bin/ls –lt /usr/include” in child process using 
current environment:

execve: Loading and Running Programs



Carnegie Mellon

execve: Loading and Running Programs
•int execve(char *filename, char *argv[], char *envp[])

!18



Carnegie Mellon

execve: Loading and Running Programs
•int execve(char *filename, char *argv[], char *envp[])
• Loads and runs in the current process:


• Executable  file filename 
• Argument list argv 

• By convention argv[0]==filename
• Environment variable list envp 

• “name=value” strings (e.g., USER=droh)

!18



Carnegie Mellon

execve: Loading and Running Programs
•int execve(char *filename, char *argv[], char *envp[])
• Loads and runs in the current process:


• Executable  file filename 
• Argument list argv 

• By convention argv[0]==filename
• Environment variable list envp 

• “name=value” strings (e.g., USER=droh)

• Overwrites code, data, and stack

• Retains PID, open files and signal context

!18



Carnegie Mellon

execve: Loading and Running Programs
•int execve(char *filename, char *argv[], char *envp[])
• Loads and runs in the current process:


• Executable  file filename 
• Argument list argv 

• By convention argv[0]==filename
• Environment variable list envp 

• “name=value” strings (e.g., USER=droh)

• Overwrites code, data, and stack

• Retains PID, open files and signal context

• Called once and never returns

• …except if there is an error

!18



Carnegie Mellon

execve Example

!19

envp[n] = NULL
envp[n-1]

envp[0]
…

myargv[argc] = NULL
myargv[2]

myargv[0]
myargv[1]

“/bin/ls”
“-lt”
“/usr/include”

“USER=droh”

“PWD=/usr/droh”

environ

myargv

  if ((pid = Fork()) == 0) {   /* Child runs program */                                                
      if (execve(myargv[0], myargv, environ) < 0) {                                                         
          printf("%s: Command not found.\n", myargv[0]);                                                  
          exit(1);                                                                                      
      }                                                                                                 
  }                                                                                                    

Executes “/bin/ls –lt /usr/include” in child process using 
current environment:

(argc == 3)



Carnegie Mellon

Summary
• Processes


• At any given time, system has multiple active processes 
• Only one can execute at a time on a single core, though 
• Each process appears to have total control of  processor + private memory space 

• Spawning processes

• Call fork 
• One call, two returns 

• Process completion

• Call exit 
• One call, no return 

• Reaping and waiting for processes

• Call wait or waitpid 

• Loading and running programs

• Call execve (or variant) 
• One call, (normally) no return

!20



Carnegie Mellon

Today
• Process Control

• Signals: The Way to Communicate with Processes

!21



Carnegie Mellon

Signals

• A signal is a small message that notifies a process that an 
event of some type has occurred in the system

• Sent from the OS kernel 
• Could be requested by another process, by user, or automatically by 

the kernel 
• Signal type is identified by small integer ID’s (1-30)

!22



Carnegie Mellon

Signals

• A signal is a small message that notifies a process that an 
event of some type has occurred in the system

• Sent from the OS kernel 
• Could be requested by another process, by user, or automatically by 

the kernel 
• Signal type is identified by small integer ID’s (1-30)

!22

ID Name Default Action Corresponding Event
2 SIGINT Terminate User typed ctrl-c 
9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate Segmentation violation
14 SIGALRM Terminate Timer signal
17 SIGCHLD Ignore Child stopped or terminated



Carnegie Mellon

Signal Concepts: Sending a Signal
• Kernel sends (delivers) a signal to a destination process by 

updating some state in the context of the destination 
process

• Kernel sends a signal for one of the following reasons:

!23



Carnegie Mellon

Signal Concepts: Sending a Signal
• Kernel sends (delivers) a signal to a destination process by 

updating some state in the context of the destination 
process

• Kernel sends a signal for one of the following reasons:
• Kernel has detected a system event such as:

!23



Carnegie Mellon

Signal Concepts: Sending a Signal
• Kernel sends (delivers) a signal to a destination process by 

updating some state in the context of the destination 
process

• Kernel sends a signal for one of the following reasons:
• Kernel has detected a system event such as:

• Exception: divide-by-zero (SIGFPE)

!23



Carnegie Mellon

Signal Concepts: Sending a Signal
• Kernel sends (delivers) a signal to a destination process by 

updating some state in the context of the destination 
process

• Kernel sends a signal for one of the following reasons:
• Kernel has detected a system event such as:

• Exception: divide-by-zero (SIGFPE)
• Interrupt: user pressing Ctrl + C (SIGINT)

!23



Carnegie Mellon

Signal Concepts: Sending a Signal
• Kernel sends (delivers) a signal to a destination process by 

updating some state in the context of the destination 
process

• Kernel sends a signal for one of the following reasons:
• Kernel has detected a system event such as:

• Exception: divide-by-zero (SIGFPE)
• Interrupt: user pressing Ctrl + C (SIGINT)
• The termination of a child process (SIGCHLD)

!23



Carnegie Mellon

Signal Concepts: Sending a Signal
• Kernel sends (delivers) a signal to a destination process by 

updating some state in the context of the destination 
process

• Kernel sends a signal for one of the following reasons:
• Kernel has detected a system event such as:

• Exception: divide-by-zero (SIGFPE)
• Interrupt: user pressing Ctrl + C (SIGINT)
• The termination of a child process (SIGCHLD)

• Another process has invoked the kill system call to explicitly 
request the kernel to send a signal to the destination process.

!23



Carnegie Mellon

Signal Concepts: Sending a Signal
• Kernel sends (delivers) a signal to a destination process by 

updating some state in the context of the destination 
process

• Kernel sends a signal for one of the following reasons:
• Kernel has detected a system event such as:

• Exception: divide-by-zero (SIGFPE)
• Interrupt: user pressing Ctrl + C (SIGINT)
• The termination of a child process (SIGCHLD)

• Another process has invoked the kill system call to explicitly 
request the kernel to send a signal to the destination process.
• Note: kill doesn’t mean you are going to kill the target process. It is just a 

system call that allows you to send signals. Of course the signal you send 
could be SIGKILL.

!23



Carnegie Mellon

Signal Concepts: Receiving a Signal

• A destination process receives a signal when it is forced by 
the kernel to react in some way to the delivery of the signal

• Some possible ways to react:

!24



Carnegie Mellon

Signal Concepts: Receiving a Signal

• A destination process receives a signal when it is forced by 
the kernel to react in some way to the delivery of the signal

• Some possible ways to react:
• Ignore the signal (do nothing)

!24



Carnegie Mellon

Signal Concepts: Receiving a Signal

• A destination process receives a signal when it is forced by 
the kernel to react in some way to the delivery of the signal

• Some possible ways to react:
• Ignore the signal (do nothing)
• Terminate the process

!24



Carnegie Mellon

Signal Concepts: Receiving a Signal

• A destination process receives a signal when it is forced by 
the kernel to react in some way to the delivery of the signal

• Some possible ways to react:
• Ignore the signal (do nothing)
• Terminate the process
• Catch the signal by executing a user-level function called signal handler

!24



Carnegie Mellon

Signal Concepts: Receiving a Signal

• A destination process receives a signal when it is forced by 
the kernel to react in some way to the delivery of the signal

• Some possible ways to react:
• Ignore the signal (do nothing)
• Terminate the process
• Catch the signal by executing a user-level function called signal handler

• Similar to a hardware exception handler being called in response 
to an asynchronous interrupt:

!24



Carnegie Mellon

Signal Concepts: Receiving a Signal

• A destination process receives a signal when it is forced by 
the kernel to react in some way to the delivery of the signal

• Some possible ways to react:
• Ignore the signal (do nothing)
• Terminate the process
• Catch the signal by executing a user-level function called signal handler

• Similar to a hardware exception handler being called in response 
to an asynchronous interrupt:

!24

(2) Control passes  
to signal handler 

(3) Signal  
handler runs

(4) Signal handler 
returns to  
next instruction

Icurr
Inext

(1) Signal received 
by process 



Carnegie Mellon

Sending Signals with /bin/kill Program

• /bin/kill program sends 
arbitrary signal to a process 

• Examples

• /bin/kill –9 24818  

Send SIGKILL to process 24818 
• /bin/kill itself doesn’t kill the 

process. 9 is the ID for the SIGKILL 
signal, which terminates the 
process

!25

linux> ./forks 16  
Child1: pid=24818 pgrp=24817  
Child2: pid=24819 pgrp=24817  
  
linux> ps  
  PID TTY          TIME CMD  
24788 pts/2    00:00:00 tcsh  
24818 pts/2    00:00:02 forks  
24819 pts/2    00:00:02 forks  
24820 pts/2    00:00:00 ps 



Carnegie Mellon

Sending Signals with /bin/kill Program

• /bin/kill program sends 
arbitrary signal to a process 

• Examples

• /bin/kill –9 24818  

Send SIGKILL to process 24818 
• /bin/kill itself doesn’t kill the 

process. 9 is the ID for the SIGKILL 
signal, which terminates the 
process

!25

linux> ./forks 16  
Child1: pid=24818 pgrp=24817  
Child2: pid=24819 pgrp=24817  
  
linux> ps  
  PID TTY          TIME CMD  
24788 pts/2    00:00:00 tcsh  
24818 pts/2    00:00:02 forks  
24819 pts/2    00:00:02 forks  
24820 pts/2    00:00:00 ps 



Carnegie Mellon

Process Groups

• Every process belongs to exactly one process group

!26

Fore- 
ground 

job

Back- 
ground 
job #1

Back- 
ground 
job #2

Shell

Child Child

pid=10 
pgid=10

Foreground  
process group 
20

Background 
process group 32

Background 
process group 40

pid=20 
pgid=20

pid=32 
pgid=32

pid=40 
pgid=40

pid=21 
pgid=20

pid=22 
pgid=20



Carnegie Mellon

Process Groups

• Every process belongs to exactly one process group

!26

Fore- 
ground 

job

Back- 
ground 
job #1

Back- 
ground 
job #2

Shell

Child Child

pid=10 
pgid=10

Foreground  
process group 
20

Background 
process group 32

Background 
process group 40

pid=20 
pgid=20

pid=32 
pgid=32

pid=40 
pgid=40

pid=21 
pgid=20

pid=22 
pgid=20

getpgrp()  
Return process group of current 
process 
setpgid()  
Change process group of a process



Carnegie Mellon

Sending Signals with /bin/kill Program

• /bin/kill program 
sends arbitrary signal to a 
process or process group


• Examples

• /bin/kill –9 –24817  

Send SIGKILL to every process 
in process group 24817

!27

linux> ./forks 16  
Child1: pid=24818 pgrp=24817  
Child2: pid=24819 pgrp=24817  
  
linux> ps  
  PID TTY          TIME CMD  
24788 pts/2    00:00:00 tcsh  
24818 pts/2    00:00:02 forks  
24819 pts/2    00:00:02 forks  
24820 pts/2    00:00:00 ps  
linux> /bin/kill -9 -24817  
linux> ps   
  PID TTY          TIME CMD  
24788 pts/2    00:00:00 tcsh  
24823 pts/2    00:00:00 ps  
linux> 



Carnegie Mellon

Sending Signals with /bin/kill Program

• /bin/kill program 
sends arbitrary signal to a 
process or process group


• Examples

• /bin/kill –9 –24817  

Send SIGKILL to every process 
in process group 24817

!27

linux> ./forks 16  
Child1: pid=24818 pgrp=24817  
Child2: pid=24819 pgrp=24817  
  
linux> ps  
  PID TTY          TIME CMD  
24788 pts/2    00:00:00 tcsh  
24818 pts/2    00:00:02 forks  
24819 pts/2    00:00:02 forks  
24820 pts/2    00:00:00 ps  
linux> /bin/kill -9 -24817  
linux> ps   
  PID TTY          TIME CMD  
24788 pts/2    00:00:00 tcsh  
24823 pts/2    00:00:00 ps  
linux> 



Carnegie Mellon

Sending Signals from the Keyboard
• Typing ctrl-c causes the kernel to send a SIGINT to every 

process in the foreground process group.

• SIGINT – default action is to terminate each process  

• Typing ctrl-z causes the kernel to send a SIGTSTP to 
every job in the foreground process group.

• SIGTSTP – default action is to stop (suspend) each process

!28



Carnegie Mellon

Example of ctrl-c and ctrl-z

!29

bluefish> ./forks 17 
Child: pid=28108 pgrp=28107 
Parent: pid=28107 pgrp=28107 

<types ctrl-z> 
Suspended 
bluefish> ps w 
  PID TTY      STAT   TIME COMMAND 
27699 pts/8    Ss     0:00 -tcsh 
28107 pts/8    T      0:01 ./forks 17 
28108 pts/8    T      0:01 ./forks 17 
28109 pts/8    R+     0:00 ps w 

bluefish> fg 
./forks 17 
<types ctrl-c> 
bluefish> ps w 
  PID TTY      STAT   TIME COMMAND 
27699 pts/8    Ss     0:00 -tcsh 
28110 pts/8    R+     0:00 ps w 

STAT (process state) 
Legend: 

First letter: 
S: sleeping 
T: stopped 
R: running 

Second letter: 
s: session leader 
+: foreground proc group 

See “man ps” for more  
details



Carnegie Mellon

Sending Signals with kill Function

!30

void fork12() 
{ 
    pid_t pid[N]; 
    int i; 
    int child_status; 

    for (i = 0; i < N; i++) 
        if ((pid[i] = fork()) == 0) { 
            /* Child: Infinite Loop */ 
            while(1) 
                ; 
        } 
     
    for (i = 0; i < N; i++) { 
        printf("Killing process %d\n", pid[i]); 
        kill(pid[i], SIGINT); 
    } 

    for (i = 0; i < N; i++) { 
        pid_t wpid = wait(&child_status); 
        if (WIFEXITED(child_status)) 
            printf("Child %d terminated with exit status %d\n", 
                   wpid, WEXITSTATUS(child_status)); 
        else 
            printf("Child %d terminated abnormally\n", wpid); 
    } 
}

forks.c


