
CSC 252: Computer Organization 
 Spring 2021: Lecture 24 

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Carnegie Mellon

Announcements
• Lab5: https://www.cs.rochester.edu/courses/252/spring2021/labs/

assignment5.html

• Released a virtual memory problem set; not to be turned in: https://

www.cs.rochester.edu/courses/252/spring2021/handouts.html

!2

A5
Due

Today

Final

Last
Lecture

https://www.cs.rochester.edu/courses/252/spring2021/labs/assignment5.html
https://www.cs.rochester.edu/courses/252/spring2021/labs/assignment5.html
https://www.cs.rochester.edu/courses/252/spring2021/handouts.html
https://www.cs.rochester.edu/courses/252/spring2021/handouts.html
https://www.cs.rochester.edu/courses/252/spring2021/handouts.html

Carnegie Mellon

Keeping Track of Free Blocks

!3

5 4 26

5 4 26

• Method 1: Implicit list using length—links all blocks

• Method 2: Explicit list among the free blocks using pointers

• Method 3: Segregated free list
• Different free lists for different size classes

Carnegie Mellon

Explicit Free Lists

• Maintain list(s) of free blocks, not all blocks

• The “next” free block could be anywhere

• So we need to store forward/back pointers, not just sizes
• These pointers exist only in free blocks, occupying the would-be

payload area, so not really an overhead.
• Still need boundary tags for coalescing.

!4

Size

Payload and
padding

a

Size a

Size a

Size a

Next

Prev

Allocated block
(same as before) Free block

Carnegie Mellon

Explicit Free Lists
• Logically:

• Physically: blocks can be in any order

!5

A B C

4 4 4 4 66 44 4 4

Forward (next) links

Back (prev) links

A B

C

Carnegie Mellon

Allocating From Explicit Free Lists

!6

Before

After

= malloc(…)

(with splitting)

conceptual graphic

Carnegie Mellon

Freeing With Explicit Free Lists
• Insertion policy: Where in the free list do you put a newly freed

block?
• LIFO (last-in-first-out) policy

• Insert freed block at the beginning of the free list
• Pro: simple and constant time
• Con: studies suggest fragmentation is worse than address ordered

• Address-ordered policy

• Insert freed blocks so that free list blocks are always in address

order:  
 addr(prev) < addr(curr) < addr(next)

• Con: requires search
• Pro: studies suggest fragmentation is lower than LIFO

!7

Carnegie Mellon

Freeing With a LIFO Policy (Case 1)
• Insert the freed block at the root of the list

!8

free()

Root

Before conceptual graphic

Carnegie Mellon

Freeing With a LIFO Policy (Case 1)
• Insert the freed block at the root of the list

!8

free()

Root

Root

Before

After

conceptual graphic

Carnegie Mellon

Freeing With a LIFO Policy (Case 2)
• Splice out successor block, coalesce both memory blocks and

insert the new block at the root of the list

!9

free()

Root

Before conceptual graphic

Carnegie Mellon

Freeing With a LIFO Policy (Case 2)
• Splice out successor block, coalesce both memory blocks and

insert the new block at the root of the list

!9

free()

Root

Before

Root

After

conceptual graphic

Carnegie Mellon

Freeing With a LIFO Policy (Case 3)
• Splice out predecessor block, coalesce both memory blocks,

and insert the new block at the root of the list

!10

free()

Root

Before conceptual graphic

Carnegie Mellon

Freeing With a LIFO Policy (Case 3)
• Splice out predecessor block, coalesce both memory blocks,

and insert the new block at the root of the list

!10

free()

Root

Root

Before

After

conceptual graphic

Carnegie Mellon

Freeing With a LIFO Policy (Case 4)
• Splice out predecessor and successor blocks, coalesce all 3

memory blocks and insert the new block at the root of the list

!11

free()

Root

Before conceptual graphic

Carnegie Mellon

Freeing With a LIFO Policy (Case 4)
• Splice out predecessor and successor blocks, coalesce all 3

memory blocks and insert the new block at the root of the list

!11

free()

Root

Before

Root

After

conceptual graphic

Carnegie Mellon

Explicit List Summary
• Comparison to implicit list:

• Allocate is linear time in number of free blocks instead of all blocks.
Much faster when most of the memory is full.

• Slightly more complicated allocate and free since needs to splice
blocks in and out of the list

• Some extra space for the links in free blocks (2 extra words needed
for each block).

!12

Carnegie Mellon

Keeping Track of Free Blocks

!13

5 4 26

5 4 26

• Method 1: Implicit list using length—links all blocks

• Method 2: Explicit list among the free blocks using pointers

• Method 3: Segregated free list
• Different free lists for different size classes

Carnegie Mellon

Segregated List (Seglist) Allocators

• Each size class of blocks has its own free list

• Organize the Seglist

• Often have separate classes for each small size
• For larger sizes: One class for each two-power size (why?)

!14

1-2

3

4

5-8

9-inf

Carnegie Mellon

Seglist Allocator
• Given an array of free lists, each one for some size class

!15

Carnegie Mellon

Seglist Allocator
• Given an array of free lists, each one for some size class
• To allocate a block of size n:

• Search appropriate free list for block of size m > n
• If an appropriate block is found:

• Split block and place fragment on appropriate list (optional)
• If no block is found, try next larger class
• Repeat until block is found

!15

Carnegie Mellon

Seglist Allocator
• Given an array of free lists, each one for some size class
• To allocate a block of size n:

• Search appropriate free list for block of size m > n
• If an appropriate block is found:

• Split block and place fragment on appropriate list (optional)
• If no block is found, try next larger class
• Repeat until block is found

• If no block is found:

• Request additional heap memory from OS (using sbrk())
• Remember heap is in VM, so request heap memory in pages
• Allocate block of n bytes from this new memory
• Place remainder as a single free block in largest size class.

!15

Carnegie Mellon

Seglist Allocator
• Given an array of free lists, each one for some size class
• To allocate a block of size n:

• Search appropriate free list for block of size m > n
• If an appropriate block is found:

• Split block and place fragment on appropriate list (optional)
• If no block is found, try next larger class
• Repeat until block is found

• If no block is found:

• Request additional heap memory from OS (using sbrk())
• Remember heap is in VM, so request heap memory in pages
• Allocate block of n bytes from this new memory
• Place remainder as a single free block in largest size class.

• To free a block:

• Coalesce and place on appropriate list

!15

Carnegie Mellon

Advantages of Seglist allocators
• Higher throughput

• Constant time allocation and free for requests that have a dedicated
free list (most of the cases)

• log time for power-of-two size classes (searching the lists)
• Better memory utilization

• First-fit search of segregated free list approximates a best-fit search
of entire heap.

• Extreme case: Giving each block its own size class is equivalent to
best-fit.

!16

Carnegie Mellon

Explicit/Implicit Memory Management
• So far we have been talking about explicitly memory

management: programmers explicitly calling malloc/free (C/C++)

!17

Carnegie Mellon

Explicit/Implicit Memory Management
• So far we have been talking about explicitly memory

management: programmers explicitly calling malloc/free (C/C++)
• Downside: potential memory leaks

!17

void foo() {
 int *p = malloc(128);
 p = malloc(32);
 return; /* both blocks are now garbage */
}

Carnegie Mellon

Explicit/Implicit Memory Management
• So far we have been talking about explicitly memory

management: programmers explicitly calling malloc/free (C/C++)
• Downside: potential memory leaks

!17

void foo() {
 int *p = malloc(128);
 p = malloc(32);
 return; /* both blocks are now garbage */
}

• Alternative: implicit memory management; the programmers never
explicitly request/free memory

Carnegie Mellon

Explicit/Implicit Memory Management
• So far we have been talking about explicitly memory

management: programmers explicitly calling malloc/free (C/C++)
• Downside: potential memory leaks

!17

void foo() {
 int *p = malloc(128);
 p = malloc(32);
 return; /* both blocks are now garbage */
}

• Alternative: implicit memory management; the programmers never
explicitly request/free memory

• Common in many dynamic languages:

• Python, Ruby, Java, JavaScript, Perl, ML, Lisp, Mathematica

Carnegie Mellon

Explicit/Implicit Memory Management
• So far we have been talking about explicitly memory

management: programmers explicitly calling malloc/free (C/C++)
• Downside: potential memory leaks

!17

void foo() {
 int *p = malloc(128);
 p = malloc(32);
 return; /* both blocks are now garbage */
}

• Alternative: implicit memory management; the programmers never
explicitly request/free memory

• Common in many dynamic languages:

• Python, Ruby, Java, JavaScript, Perl, ML, Lisp, Mathematica

• The key: Garbage collection

• Automatic reclamation of heap-allocated storage—application

never has to free

Carnegie Mellon

Garbage Collection
• How does the memory manager know when certain memory

blocks can be freed?

!18

Carnegie Mellon

Garbage Collection
• How does the memory manager know when certain memory

blocks can be freed?
• If a block will never be used in the future. How do we know that?

!18

Carnegie Mellon

Garbage Collection
• How does the memory manager know when certain memory

blocks can be freed?
• If a block will never be used in the future. How do we know that?
• In general we cannot know what is going to be used in the future

since it depends on program’s future behaviors

!18

Carnegie Mellon

Garbage Collection
• How does the memory manager know when certain memory

blocks can be freed?
• If a block will never be used in the future. How do we know that?
• In general we cannot know what is going to be used in the future

since it depends on program’s future behaviors
• But we can tell that certain blocks cannot possibly be used if

there are no pointers to them

!18

Carnegie Mellon

Garbage Collection
• How does the memory manager know when certain memory

blocks can be freed?
• If a block will never be used in the future. How do we know that?
• In general we cannot know what is going to be used in the future

since it depends on program’s future behaviors
• But we can tell that certain blocks cannot possibly be used if

there are no pointers to them
• Garbage collection is essentially to obtain all reachable blocks

and discard unreachable blocks.

!18

Carnegie Mellon

Memory as a Graph
• We view memory as a directed graph

• Each block is a node in the graph
• Each pointer is an edge in the graph
• Locations not in the heap that contain pointers into the heap are called

root nodes (e.g. registers, locations on the stack, global variables)

!19

Root nodes

Heap nodes

Not-reachable  
(garbage)

Reachable

A node (block) is reachable if there is a path from any root to that node.
Non-reachable nodes are garbage (cannot be needed by the application)

Carnegie Mellon

Mark and Sweep Collecting
• Idea:

• Use extra mark bit in the header to indicate if a block is reachable
• Mark: Start at roots and set mark bit on each reachable block
• Sweep: Scan all blocks and free blocks that are not marked

!20

Mark bit set

root

Note: arrows here
denote memory refs,

not free list ptrs.

Carnegie Mellon

Mark and Sweep Collecting
• Idea:

• Use extra mark bit in the header to indicate if a block is reachable
• Mark: Start at roots and set mark bit on each reachable block
• Sweep: Scan all blocks and free blocks that are not marked

!20

Mark bit set

root

Note: arrows here
denote memory refs,

not free list ptrs.

Carnegie Mellon

Mark and Sweep Collecting
• Idea:

• Use extra mark bit in the header to indicate if a block is reachable
• Mark: Start at roots and set mark bit on each reachable block
• Sweep: Scan all blocks and free blocks that are not marked

!20

Mark bit set

root

Note: arrows here
denote memory refs,

not free list ptrs.

Carnegie Mellon

Mark and Sweep Collecting
• Idea:

• Use extra mark bit in the header to indicate if a block is reachable
• Mark: Start at roots and set mark bit on each reachable block
• Sweep: Scan all blocks and free blocks that are not marked

!20

Mark bit set

root

Note: arrows here
denote memory refs,

not free list ptrs.

Carnegie Mellon

Mark and Sweep Collecting
• Idea:

• Use extra mark bit in the header to indicate if a block is reachable
• Mark: Start at roots and set mark bit on each reachable block
• Sweep: Scan all blocks and free blocks that are not marked

!20

Mark bit set

root

Note: arrows here
denote memory refs,

not free list ptrs.

Carnegie Mellon

Mark and Sweep Collecting
• Idea:

• Use extra mark bit in the header to indicate if a block is reachable
• Mark: Start at roots and set mark bit on each reachable block
• Sweep: Scan all blocks and free blocks that are not marked

!20

Mark bit set
freefree

root

Note: arrows here
denote memory refs,

not free list ptrs.

Carnegie Mellon

Conservative Mark & Sweep in C
• Garbage Collection in C is tricky.

!21

Carnegie Mellon

Conservative Mark & Sweep in C
• Garbage Collection in C is tricky.
• How do you know a pointer is a pointer? After all, a pointer is just

a 8-byte value. Any consecutive 8 bytes could be disguised as a
pointer.

!21

Carnegie Mellon

Conservative Mark & Sweep in C
• Garbage Collection in C is tricky.
• How do you know a pointer is a pointer? After all, a pointer is just

a 8-byte value. Any consecutive 8 bytes could be disguised as a
pointer.

• Must be conservative. Any 8 bytes whose values fall within the
range of the heap must be treated as a pointer.

!21

Carnegie Mellon

Conservative Mark & Sweep in C
• Garbage Collection in C is tricky.
• How do you know a pointer is a pointer? After all, a pointer is just

a 8-byte value. Any consecutive 8 bytes could be disguised as a
pointer.

• Must be conservative. Any 8 bytes whose values fall within the
range of the heap must be treated as a pointer.

• C pointers can point to the middle of a block. How do you find the
header of a block?

!21

Carnegie Mellon

Conservative Mark & Sweep in C
• Garbage Collection in C is tricky.
• How do you know a pointer is a pointer? After all, a pointer is just

a 8-byte value. Any consecutive 8 bytes could be disguised as a
pointer.

• Must be conservative. Any 8 bytes whose values fall within the
range of the heap must be treated as a pointer.

• C pointers can point to the middle of a block. How do you find the
header of a block?

!21

ptr

Header Data
Size

Carnegie Mellon

Conservative Mark & Sweep in C
• Garbage Collection in C is tricky.
• How do you know a pointer is a pointer? After all, a pointer is just

a 8-byte value. Any consecutive 8 bytes could be disguised as a
pointer.

• Must be conservative. Any 8 bytes whose values fall within the
range of the heap must be treated as a pointer.

• C pointers can point to the middle of a block. How do you find the
header of a block?
• Can use a balanced binary tree to keep track of all allocated blocks (key

is start-of-block)

!21

ptr

Header Data
Size

Carnegie Mellon

Conservative Mark & Sweep in C
• Garbage Collection in C is tricky.
• How do you know a pointer is a pointer? After all, a pointer is just

a 8-byte value. Any consecutive 8 bytes could be disguised as a
pointer.

• Must be conservative. Any 8 bytes whose values fall within the
range of the heap must be treated as a pointer.

• C pointers can point to the middle of a block. How do you find the
header of a block?
• Can use a balanced binary tree to keep track of all allocated blocks (key

is start-of-block)

!21

ptr

Header Data

Left Right

Size Left: smaller addresses
Right: larger addresses

Carnegie Mellon

Potential GC Implementations (in C)
• Can build on top of malloc/free function
• Call malloc until you run out of space. Then malloc will call GC.

!22

Program malloc Garbage

Collection

free

Hidden From Programmers

Carnegie Mellon

Potential GC Implementations (in C)
• Can build on top of malloc/free function
• Call malloc until you run out of space. Then malloc will call GC.
• Stop-the-world GC. When performing GC, the entire program stops.

Some calls to malloc will take considerably longer than others.

!22

Program malloc Garbage

Collection

free

Hidden From Programmers

Carnegie Mellon

Potential GC Implementations (in C)
• Can build on top of malloc/free function
• Call malloc until you run out of space. Then malloc will call GC.
• Stop-the-world GC. When performing GC, the entire program stops.

Some calls to malloc will take considerably longer than others.

!22

Program malloc Garbage

Collection

free

Hidden From Programmers

• To minimize main application (called mutator) pause time:

Carnegie Mellon

Potential GC Implementations (in C)
• Can build on top of malloc/free function
• Call malloc until you run out of space. Then malloc will call GC.
• Stop-the-world GC. When performing GC, the entire program stops.

Some calls to malloc will take considerably longer than others.

!22

Program malloc Garbage

Collection

free

Hidden From Programmers

• To minimize main application (called mutator) pause time:
• Incremental GC: Examine a small portion of heap every GC run

Carnegie Mellon

Potential GC Implementations (in C)
• Can build on top of malloc/free function
• Call malloc until you run out of space. Then malloc will call GC.
• Stop-the-world GC. When performing GC, the entire program stops.

Some calls to malloc will take considerably longer than others.

!22

Program malloc Garbage

Collection

free

Hidden From Programmers

• To minimize main application (called mutator) pause time:
• Incremental GC: Examine a small portion of heap every GC run
• Concurrent GC: Run GC service in a separate process/thread

Carnegie Mellon

Garbage Collection Implications
• GC is a great source of performance non-determinisms

• Generally can’t predict when GC will happen

!23https://robertovitillo.com/why-you-should-measure-tail-latencies/

Carnegie Mellon

Garbage Collection Implications
• GC is a great source of performance non-determinisms

• Generally can’t predict when GC will happen
• Stop-the-world GC makes program periodically unresponsive

!23https://robertovitillo.com/why-you-should-measure-tail-latencies/

Carnegie Mellon

Garbage Collection Implications
• GC is a great source of performance non-determinisms

• Generally can’t predict when GC will happen
• Stop-the-world GC makes program periodically unresponsive
• Concurrent/Incremental GC helps, but still has performance impacts

!23https://robertovitillo.com/why-you-should-measure-tail-latencies/

Carnegie Mellon

Garbage Collection Implications
• GC is a great source of performance non-determinisms

• Generally can’t predict when GC will happen
• Stop-the-world GC makes program periodically unresponsive
• Concurrent/Incremental GC helps, but still has performance impacts
• Bad for real-time systems: think of a self-driving car that needs to

decide whether to avoid a pedestrian but a GC kicks in…

!23https://robertovitillo.com/why-you-should-measure-tail-latencies/

Carnegie Mellon

Garbage Collection Implications
• GC is a great source of performance non-determinisms

• Generally can’t predict when GC will happen
• Stop-the-world GC makes program periodically unresponsive
• Concurrent/Incremental GC helps, but still has performance impacts
• Bad for real-time systems: think of a self-driving car that needs to

decide whether to avoid a pedestrian but a GC kicks in…
• Bad for server/cloud systems: GC is a great source of tail latency

!23https://robertovitillo.com/why-you-should-measure-tail-latencies/

Carnegie Mellon

Classical GC Algorithms
•Mark-and-sweep collection (McCarthy, 1960)

!24

Carnegie Mellon

Classical GC Algorithms
•Mark-and-sweep collection (McCarthy, 1960)
•Mark-sweep-compact collection (Styger, 1967)

• After M&S, compact allocated blocks to consecutive memory region.
• Reduce external fragmentation. Allocation is also easier.

!24

Carnegie Mellon

Classical GC Algorithms
•Mark-and-sweep collection (McCarthy, 1960)
•Mark-sweep-compact collection (Styger, 1967)

• After M&S, compact allocated blocks to consecutive memory region.
• Reduce external fragmentation. Allocation is also easier.

!24

root

Before mark

Carnegie Mellon

Classical GC Algorithms
•Mark-and-sweep collection (McCarthy, 1960)
•Mark-sweep-compact collection (Styger, 1967)

• After M&S, compact allocated blocks to consecutive memory region.
• Reduce external fragmentation. Allocation is also easier.

!24

After mark Mark bit set

root

Before mark

Carnegie Mellon

Classical GC Algorithms
•Mark-and-sweep collection (McCarthy, 1960)
•Mark-sweep-compact collection (Styger, 1967)

• After M&S, compact allocated blocks to consecutive memory region.
• Reduce external fragmentation. Allocation is also easier.

!24

After mark Mark bit set

After sweep freefree

root

Before mark

Carnegie Mellon

Classical GC Algorithms
•Mark-and-sweep collection (McCarthy, 1960)
•Mark-sweep-compact collection (Styger, 1967)

• After M&S, compact allocated blocks to consecutive memory region.
• Reduce external fragmentation. Allocation is also easier.

!24

After mark Mark bit set

After sweep freefree

root

Before mark

After compact freefree

Carnegie Mellon

Classical GC Algorithms
•Mark-and-sweep collection (McCarthy, 1960)
•Mark-sweep-compact collection (Styger, 1967)
• Mark-copy collection (Minsky, 1963)

!25

Jones and Lin, “Garbage Collection: Algorithms for Automatic Dynamic Memory”, 1996.

Carnegie Mellon

Classical GC Algorithms
•Mark-and-sweep collection (McCarthy, 1960)
•Mark-sweep-compact collection (Styger, 1967)
• Mark-copy collection (Minsky, 1963)

• After mark, copy reachable objects to another region of memory as
they are being traversed. Can be done without auxiliary storage.

!25

Jones and Lin, “Garbage Collection: Algorithms for Automatic Dynamic Memory”, 1996.

Carnegie Mellon

Classical GC Algorithms
•Mark-and-sweep collection (McCarthy, 1960)
•Mark-sweep-compact collection (Styger, 1967)
• Mark-copy collection (Minsky, 1963)

• After mark, copy reachable objects to another region of memory as
they are being traversed. Can be done without auxiliary storage.

• Generational Collectors (Lieberman and Hewitt, 1983)

!25

Jones and Lin, “Garbage Collection: Algorithms for Automatic Dynamic Memory”, 1996.

Carnegie Mellon

Classical GC Algorithms
•Mark-and-sweep collection (McCarthy, 1960)
•Mark-sweep-compact collection (Styger, 1967)
• Mark-copy collection (Minsky, 1963)

• After mark, copy reachable objects to another region of memory as
they are being traversed. Can be done without auxiliary storage.

• Generational Collectors (Lieberman and Hewitt, 1983)
• Observation: most allocations become garbage very soon (“infant

mortality”); others will survive for a long time.

!25

Jones and Lin, “Garbage Collection: Algorithms for Automatic Dynamic Memory”, 1996.

Carnegie Mellon

Classical GC Algorithms
•Mark-and-sweep collection (McCarthy, 1960)
•Mark-sweep-compact collection (Styger, 1967)
• Mark-copy collection (Minsky, 1963)

• After mark, copy reachable objects to another region of memory as
they are being traversed. Can be done without auxiliary storage.

• Generational Collectors (Lieberman and Hewitt, 1983)
• Observation: most allocations become garbage very soon (“infant

mortality”); others will survive for a long time.
• Wasteful to scan long-lived objects every collection time

!25

Jones and Lin, “Garbage Collection: Algorithms for Automatic Dynamic Memory”, 1996.

Carnegie Mellon

Classical GC Algorithms
•Mark-and-sweep collection (McCarthy, 1960)
•Mark-sweep-compact collection (Styger, 1967)
• Mark-copy collection (Minsky, 1963)

• After mark, copy reachable objects to another region of memory as
they are being traversed. Can be done without auxiliary storage.

• Generational Collectors (Lieberman and Hewitt, 1983)
• Observation: most allocations become garbage very soon (“infant

mortality”); others will survive for a long time.
• Wasteful to scan long-lived objects every collection time
• Idea: divide heap into two generations, young and old. Allocate into

young gen., and promote to old gen. if lived long enough. Collect
young gen. more often than old gen.

!25

Jones and Lin, “Garbage Collection: Algorithms for Automatic Dynamic Memory”, 1996.

Carnegie Mellon

Classical GC Algorithms
•Mark-and-sweep collection (McCarthy, 1960)
•Mark-sweep-compact collection (Styger, 1967)
• Mark-copy collection (Minsky, 1963)

• After mark, copy reachable objects to another region of memory as
they are being traversed. Can be done without auxiliary storage.

• Generational Collectors (Lieberman and Hewitt, 1983)
• Observation: most allocations become garbage very soon (“infant

mortality”); others will survive for a long time.
• Wasteful to scan long-lived objects every collection time
• Idea: divide heap into two generations, young and old. Allocate into

young gen., and promote to old gen. if lived long enough. Collect
young gen. more often than old gen.

• Question: Can any of these algorithms be used for GC in C?

!25

Jones and Lin, “Garbage Collection: Algorithms for Automatic Dynamic Memory”, 1996.

Carnegie Mellon

Classical GC Algorithms
• All the GC algorithms described so far are tracing-based

• Start from the root pointers, trace all the reachable objects
• Need graph traversal. Different to implement.

!26

Carnegie Mellon

Classical GC Algorithms
• All the GC algorithms described so far are tracing-based

• Start from the root pointers, trace all the reachable objects
• Need graph traversal. Different to implement.

• Reference counting (Collins, 1960)

• Keep a counter for each object
• Increment the counter if there is a new pointer pointing to the object
• Decrement the counter if a pointer is taken off the object
• When the counter reaches zero, collect the object

!26

Carnegie Mellon

Classical GC Algorithms
• All the GC algorithms described so far are tracing-based

• Start from the root pointers, trace all the reachable objects
• Need graph traversal. Different to implement.

• Reference counting (Collins, 1960)

• Keep a counter for each object
• Increment the counter if there is a new pointer pointing to the object
• Decrement the counter if a pointer is taken off the object
• When the counter reaches zero, collect the object

• Advantages of Reference Counting

• Simpler to implement
• Collect garbage objects immediately; generally less long pauses

!26

Carnegie Mellon

Classical GC Algorithms
• All the GC algorithms described so far are tracing-based

• Start from the root pointers, trace all the reachable objects
• Need graph traversal. Different to implement.

• Reference counting (Collins, 1960)

• Keep a counter for each object
• Increment the counter if there is a new pointer pointing to the object
• Decrement the counter if a pointer is taken off the object
• When the counter reaches zero, collect the object

• Advantages of Reference Counting

• Simpler to implement
• Collect garbage objects immediately; generally less long pauses

• Disadvantages of Reference Counting

• A naive implementation can’t deal with self-referencing

!26

Carnegie Mellon

Classical GC Algorithms
• All the GC algorithms described so far are tracing-based

• Start from the root pointers, trace all the reachable objects
• Need graph traversal. Different to implement.

• Reference counting (Collins, 1960)

• Keep a counter for each object
• Increment the counter if there is a new pointer pointing to the object
• Decrement the counter if a pointer is taken off the object
• When the counter reaches zero, collect the object

• Advantages of Reference Counting

• Simpler to implement
• Collect garbage objects immediately; generally less long pauses

• Disadvantages of Reference Counting

• A naive implementation can’t deal with self-referencing

!26

Carnegie Mellon

Classical GC Algorithms
• All the GC algorithms described so far are tracing-based

• Start from the root pointers, trace all the reachable objects
• Need graph traversal. Different to implement.

• Reference counting (Collins, 1960)

• Keep a counter for each object
• Increment the counter if there is a new pointer pointing to the object
• Decrement the counter if a pointer is taken off the object
• When the counter reaches zero, collect the object

• Advantages of Reference Counting

• Simpler to implement
• Collect garbage objects immediately; generally less long pauses

• Disadvantages of Reference Counting

• A naive implementation can’t deal with self-referencing

• A heterogeneous approach (RC + tracing) is often used
!26

Carnegie Mellon

Today
• From process to threads

• Basic thread execution model
•Multi-threading programming

• Hardware support of threads

• Single core
• Multi-core
• Hyper-threading
• Cache coherence

!27

Carnegie Mellon

Programmers View of A Process

• Process = process context + code, data, and stack

!28

Shared libraries

Run-time heap

0

Read/write data

Program context:
 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)

Code, data, and stack

Read-only code/data

Stack
SP

PC

brk

Process context

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Carnegie Mellon

A Process With Multiple Threads
• Multiple threads can be associated with a process

• Each thread has its own logical control flow
• Each thread shares the same code, data, and kernel context
• Each thread has its own stack for local variables

• but not protected from other threads
• Each thread has its own thread id (TID)

!29

Thread 1 context:
 Data registers
 Condition codes
 SP1
 PC1

stack 1

Thread 1 (main thread)

shared libraries

run-time heap

0

read/write data

 Shared code and data

read-only code/data

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Thread 2 context:
 Data registers
 Condition codes
 SP2
 PC2

stack 2

Thread 2 (peer thread)

Carnegie Mellon

Logical View of Threads

• Threads associated with process form a pool of peers

• Unlike processes which form a tree hierarchy

!30

P0

P1

sh sh sh

foo

bar

T1

Process hierarchyThreads associated with process foo

T2
T4

T5 T3

shared code, data
and kernel context

Carnegie Mellon

Concurrent Threads

• Two threads are concurrent if their flows overlap in
time

• Otherwise, they are sequential

• Examples:

• Concurrent: A & B, A&C
• Sequential: B & C

!31

Time

Thread A Thread B Thread C

Carnegie Mellon

Concurrent Thread Execution
• Single Core Processor

• Simulate parallelism
by time slicing

!32

Time

Thread A Thread B Thread C Thread A Thread B Thread C

Run 3 threads on 2 cores

•Multi Core Processor

• Threads can have

true parallelisms

Carnegie Mellon

Threads vs. Processes

• How threads and processes are similar

• Each has its own logical control flow
• Each can run concurrently with others (possibly on different cores)
• Each is context switched, controlled by kernel

!33

Carnegie Mellon

Threads vs. Processes

• How threads and processes are similar

• Each has its own logical control flow
• Each can run concurrently with others (possibly on different cores)
• Each is context switched, controlled by kernel

• How threads and processes are different

• Threads share all code and data (except local stacks)

• Processes (typically) do not
• Threads are less expensive than processes

• Space: threads share the same virtual address space except
stacks, but processes have their own virtual address space

• Process control (creating and reaping) twice as expensive
• Typical Linux numbers:

• ~20K cycles to create and reap a process
• ~10K cycles (or less) to create and reap a thread

!33

Carnegie Mellon

Posix Threads (Pthreads) Interface
• Pthreads: Standard interface for ~60 functions that manipulate

threads from C programs
• Creating and reaping threads

• pthread_create()
• pthread_join()

• Determining your thread ID
• pthread_self()

• Terminating threads
• pthread_cancel()
• pthread_exit()

• exit() [terminates all threads] , return()[terminates current
thread]

• Synchronizing access to shared variables
• pthread_mutex_init
• pthread_mutex_[un]lock

!34

Carnegie Mellon

The Pthreads "hello, world" Program

!35

void *thread(void *vargp) /* thread routine */
{
 printf("Hello, world!\n");
 return NULL;
}

/*
 * hello.c - Pthreads "hello, world" program
 */
#include "csapp.h"
void *thread(void *vargp);

int main()
{
 pthread_t tid;
 Pthread_create(&tid, NULL, thread, NULL);
 Pthread_join(tid, NULL);
 exit(0);
}

hello.c

hello.c

Carnegie Mellon

The Pthreads "hello, world" Program

!35

void *thread(void *vargp) /* thread routine */
{
 printf("Hello, world!\n");
 return NULL;
}

/*
 * hello.c - Pthreads "hello, world" program
 */
#include "csapp.h"
void *thread(void *vargp);

int main()
{
 pthread_t tid;
 Pthread_create(&tid, NULL, thread, NULL);
 Pthread_join(tid, NULL);
 exit(0);
}

hello.c

Thread ID

hello.c

Carnegie Mellon

The Pthreads "hello, world" Program

!35

void *thread(void *vargp) /* thread routine */
{
 printf("Hello, world!\n");
 return NULL;
}

/*
 * hello.c - Pthreads "hello, world" program
 */
#include "csapp.h"
void *thread(void *vargp);

int main()
{
 pthread_t tid;
 Pthread_create(&tid, NULL, thread, NULL);
 Pthread_join(tid, NULL);
 exit(0);
}

Thread attributes
(usually NULL)

hello.c

Thread ID

hello.c

Carnegie Mellon

The Pthreads "hello, world" Program

!35

void *thread(void *vargp) /* thread routine */
{
 printf("Hello, world!\n");
 return NULL;
}

/*
 * hello.c - Pthreads "hello, world" program
 */
#include "csapp.h"
void *thread(void *vargp);

int main()
{
 pthread_t tid;
 Pthread_create(&tid, NULL, thread, NULL);
 Pthread_join(tid, NULL);
 exit(0);
}

Thread attributes
(usually NULL)

hello.c

Thread ID

Thread routine

hello.c

Carnegie Mellon

The Pthreads "hello, world" Program

!35

void *thread(void *vargp) /* thread routine */
{
 printf("Hello, world!\n");
 return NULL;
}

/*
 * hello.c - Pthreads "hello, world" program
 */
#include "csapp.h"
void *thread(void *vargp);

int main()
{
 pthread_t tid;
 Pthread_create(&tid, NULL, thread, NULL);
 Pthread_join(tid, NULL);
 exit(0);
}

Thread attributes
(usually NULL)

Thread arguments
(void *p)

hello.c

Thread ID

Thread routine

hello.c

Carnegie Mellon

The Pthreads "hello, world" Program

!35

void *thread(void *vargp) /* thread routine */
{
 printf("Hello, world!\n");
 return NULL;
}

/*
 * hello.c - Pthreads "hello, world" program
 */
#include "csapp.h"
void *thread(void *vargp);

int main()
{
 pthread_t tid;
 Pthread_create(&tid, NULL, thread, NULL);
 Pthread_join(tid, NULL);
 exit(0);
}

Thread attributes
(usually NULL)

Thread arguments
(void *p)

Return value
(void **p)

hello.c

Thread ID

Thread routine

hello.c

Carnegie Mellon

Execution of Threaded “hello, world”

!36

Main thread

Carnegie Mellon

Execution of Threaded “hello, world”

!36

Main thread

call Pthread_create()

Carnegie Mellon

Execution of Threaded “hello, world”

!36

Main thread

call Pthread_create()

Carnegie Mellon

Execution of Threaded “hello, world”

!36

Main thread

Peer thread
call Pthread_create()

Carnegie Mellon

Execution of Threaded “hello, world”

!36

Main thread

Peer thread
call Pthread_create()

Pthread_create() returns

Carnegie Mellon

Execution of Threaded “hello, world”

!36

Main thread

Peer thread
call Pthread_create()

call Pthread_join()

Pthread_create() returns

Carnegie Mellon

Execution of Threaded “hello, world”

!36

Main thread

Peer thread

Main thread waits for
peer thread to terminate

call Pthread_create()

call Pthread_join()

Pthread_create() returns

Carnegie Mellon

Execution of Threaded “hello, world”

!36

Main thread

Peer thread

return NULL;Main thread waits for
peer thread to terminate

call Pthread_create()

call Pthread_join()
printf()

Peer thread
terminates

Pthread_create() returns

Carnegie Mellon

Execution of Threaded “hello, world”

!36

Main thread

Peer thread

return NULL;Main thread waits for
peer thread to terminate

call Pthread_create()

call Pthread_join()

Pthread_join() returns

printf()

Peer thread
terminates

Pthread_create() returns

Carnegie Mellon

Execution of Threaded “hello, world”

!36

Main thread

Peer thread

return NULL;Main thread waits for
peer thread to terminate

exit()
Terminates

main thread and
any peer threads

call Pthread_create()

call Pthread_join()

Pthread_join() returns

printf()

Peer thread
terminates

Pthread_create() returns

