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Announcements
• Lab5: https://www.cs.rochester.edu/courses/252/spring2021/labs/

assignment5.html

• Released a virtual memory problem set; not to be turned in: https://

www.cs.rochester.edu/courses/252/spring2021/handouts.html
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Keeping Track of Free Blocks
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• Method 1: Implicit list using length—links all blocks


• Method 2: Explicit list among the free blocks using pointers


• Method 3: Segregated free list
• Different free lists for different size classes



Carnegie Mellon

Explicit Free Lists

• Maintain list(s) of free blocks, not all blocks

• The “next” free block could be anywhere

• So we need to store forward/back pointers, not just sizes
• These pointers exist only in free blocks, occupying the would-be 

payload area, so not really an overhead.
• Still need boundary tags for coalescing.
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Explicit Free Lists
• Logically:


• Physically: blocks can be in any order
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Allocating From Explicit Free Lists
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Freeing With Explicit Free Lists
• Insertion policy: Where in the free list do you put a newly freed 

block?
• LIFO (last-in-first-out) policy


• Insert freed block at the beginning of the free list
• Pro: simple and constant time
• Con: studies suggest fragmentation is worse than address ordered

• Address-ordered policy

• Insert freed blocks so that free list blocks are always in address 

order:  
         addr(prev) < addr(curr) < addr(next)

•  Con: requires search
•  Pro: studies suggest fragmentation is lower than LIFO
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Freeing With a LIFO Policy (Case 1)
• Insert the freed block at the root of the list
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Freeing With a LIFO Policy (Case 2)
• Splice out successor block, coalesce both memory blocks and 

insert the new block at the root of the list
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Freeing With a LIFO Policy (Case 2)
• Splice out successor block, coalesce both memory blocks and 

insert the new block at the root of the list
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Freeing With a LIFO Policy (Case 3)
• Splice out predecessor block, coalesce both memory blocks, 

and insert the new block at the root of the list
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Freeing With a LIFO Policy (Case 3)
• Splice out predecessor block, coalesce both memory blocks, 

and insert the new block at the root of the list
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Freeing With a LIFO Policy (Case 4)
• Splice out predecessor and successor blocks, coalesce all 3 

memory blocks and insert the new block at the root of the list
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Freeing With a LIFO Policy (Case 4)
• Splice out predecessor and successor blocks, coalesce all 3 

memory blocks and insert the new block at the root of the list
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Explicit List Summary
• Comparison to implicit list:


• Allocate is linear time in number of free blocks instead of all blocks. 
Much faster when most of the memory is full. 

• Slightly more complicated allocate and free since needs to splice 
blocks in and out of the list 

• Some extra space for the links in free blocks (2 extra words needed 
for each block).
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Keeping Track of Free Blocks
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• Method 1: Implicit list using length—links all blocks


• Method 2: Explicit list among the free blocks using pointers


• Method 3: Segregated free list
• Different free lists for different size classes



Carnegie Mellon

Segregated List (Seglist) Allocators

• Each size class of blocks has its own free list

• Organize the Seglist


• Often have separate classes for each small size 
• For larger sizes: One class for each two-power size (why?)
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Seglist Allocator
• Given an array of free lists, each one for some size class

!15



Carnegie Mellon

Seglist Allocator
• Given an array of free lists, each one for some size class
• To allocate a block of size n:


• Search appropriate free list for block of size m > n
• If an appropriate block is found:

• Split block and place fragment on appropriate list (optional)
• If no block is found, try next larger class
• Repeat until block is found
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Seglist Allocator
• Given an array of free lists, each one for some size class
• To allocate a block of size n:


• Search appropriate free list for block of size m > n
• If an appropriate block is found:

• Split block and place fragment on appropriate list (optional)
• If no block is found, try next larger class
• Repeat until block is found

• If no block is found:

• Request additional heap memory from OS (using sbrk())
• Remember heap is in VM, so request heap memory in pages
• Allocate block of n bytes from this new memory
• Place remainder as a single free block in largest size class.

• To free a block:

• Coalesce and place on appropriate list 
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Advantages of Seglist allocators
• Higher throughput


• Constant time allocation and free for requests that have a dedicated 
free list (most of the cases) 

• log time for power-of-two size classes (searching the lists) 
• Better memory utilization


• First-fit search of segregated free list approximates a best-fit search 
of entire heap. 

• Extreme case: Giving each block its own size class is equivalent to 
best-fit.
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Explicit/Implicit Memory Management
• So far we have been talking about explicitly memory 

management: programmers explicitly calling malloc/free (C/C++)
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Explicit/Implicit Memory Management
• So far we have been talking about explicitly memory 

management: programmers explicitly calling malloc/free (C/C++)
• Downside: potential memory leaks
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   return; /* both blocks are now garbage */ 
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Explicit/Implicit Memory Management
• So far we have been talking about explicitly memory 

management: programmers explicitly calling malloc/free (C/C++)
• Downside: potential memory leaks

!17

void foo() { 
   int *p = malloc(128); 
   p = malloc(32); 
   return; /* both blocks are now garbage */ 
}

• Alternative: implicit memory management; the programmers never 
explicitly request/free memory

• Common in many dynamic languages:

• Python, Ruby, Java, JavaScript, Perl, ML, Lisp, Mathematica

• The key: Garbage collection

• Automatic reclamation of heap-allocated storage—application 

never has to free
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Garbage Collection
• How does the memory manager know when certain memory 

blocks can be freed?
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Garbage Collection
• How does the memory manager know when certain memory 

blocks can be freed?
• If a block will never be used in the future. How do we know that?
• In general we cannot know what is going to be used in the future 

since it depends on program’s future behaviors
• But we can tell that certain blocks cannot possibly be used if 

there are no pointers to them
• Garbage collection is essentially to obtain all reachable blocks 

and discard unreachable blocks.
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Memory as a Graph
• We view memory as a directed graph


• Each block is a node in the graph 
• Each pointer is an edge in the graph
• Locations not in the heap that contain pointers into the heap are called 

root  nodes  (e.g. registers, locations on the stack, global variables)
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Root nodes

Heap nodes

Not-reachable  
(garbage)

Reachable

A node (block) is reachable  if there is a path from any root to that node. 
Non-reachable nodes are garbage (cannot be needed by the application)
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Mark and Sweep Collecting
• Idea:


• Use extra mark bit in the header to indicate if a block is reachable
• Mark: Start at roots and set mark bit on each reachable block
• Sweep: Scan all blocks and free blocks that are not marked
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Mark and Sweep Collecting
• Idea:


• Use extra mark bit in the header to indicate if a block is reachable
• Mark: Start at roots and set mark bit on each reachable block
• Sweep: Scan all blocks and free blocks that are not marked

!20
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freefree
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Note: arrows here 
denote memory refs, 

not free list ptrs. 
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Conservative Mark & Sweep in C
• Garbage Collection in C is tricky.
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Conservative Mark & Sweep in C
• Garbage Collection in C is tricky.
• How do you know a pointer is a pointer? After all, a pointer is just 

a 8-byte value. Any consecutive 8 bytes could be disguised as a 
pointer.

• Must be conservative. Any 8 bytes whose values fall within the 
range of the heap must be treated as a pointer.

• C pointers can point to the middle of a block. How do you find the 
header of a block?
• Can use a balanced binary tree to keep track of all allocated blocks (key 

is start-of-block)
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Potential GC Implementations (in C)
• Can build on top of malloc/free function
• Call malloc until you run out of space. Then malloc will call GC.
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• Stop-the-world GC. When performing GC, the entire program stops. 

Some calls to malloc will take considerably longer than others.

!22

Program malloc Garbage

Collection

free

Hidden From Programmers



Carnegie Mellon

Potential GC Implementations (in C)
• Can build on top of malloc/free function
• Call malloc until you run out of space. Then malloc will call GC.
• Stop-the-world GC. When performing GC, the entire program stops. 

Some calls to malloc will take considerably longer than others.

!22

Program malloc Garbage

Collection

free

Hidden From Programmers

• To minimize main application (called mutator) pause time:



Carnegie Mellon

Potential GC Implementations (in C)
• Can build on top of malloc/free function
• Call malloc until you run out of space. Then malloc will call GC.
• Stop-the-world GC. When performing GC, the entire program stops. 

Some calls to malloc will take considerably longer than others.

!22

Program malloc Garbage

Collection

free

Hidden From Programmers

• To minimize main application (called mutator) pause time:
• Incremental GC: Examine a small portion of heap every GC run



Carnegie Mellon

Potential GC Implementations (in C)
• Can build on top of malloc/free function
• Call malloc until you run out of space. Then malloc will call GC.
• Stop-the-world GC. When performing GC, the entire program stops. 

Some calls to malloc will take considerably longer than others.

!22

Program malloc Garbage

Collection

free

Hidden From Programmers

• To minimize main application (called mutator) pause time:
• Incremental GC: Examine a small portion of heap every GC run
• Concurrent GC: Run GC service in a separate process/thread
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Garbage Collection Implications
• GC is a great source of performance non-determinisms

• Generally can’t predict when GC will happen

!23https://robertovitillo.com/why-you-should-measure-tail-latencies/
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Garbage Collection Implications
• GC is a great source of performance non-determinisms

• Generally can’t predict when GC will happen
• Stop-the-world GC makes program periodically unresponsive
• Concurrent/Incremental GC helps, but still has performance impacts
• Bad for real-time systems: think of a self-driving car that needs to 

decide whether to avoid a pedestrian but a GC kicks in…

!23https://robertovitillo.com/why-you-should-measure-tail-latencies/
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Garbage Collection Implications
• GC is a great source of performance non-determinisms

• Generally can’t predict when GC will happen
• Stop-the-world GC makes program periodically unresponsive
• Concurrent/Incremental GC helps, but still has performance impacts
• Bad for real-time systems: think of a self-driving car that needs to 

decide whether to avoid a pedestrian but a GC kicks in…
• Bad for server/cloud systems: GC is a great source of tail latency

!23https://robertovitillo.com/why-you-should-measure-tail-latencies/
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•Mark-and-sweep collection (McCarthy, 1960)
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• After M&S, compact allocated blocks to consecutive memory region. 
• Reduce external fragmentation. Allocation is also easier.
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Classical GC Algorithms
•Mark-and-sweep collection (McCarthy, 1960)
•Mark-sweep-compact collection (Styger, 1967)


• After M&S, compact allocated blocks to consecutive memory region. 
• Reduce external fragmentation. Allocation is also easier.
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Classical GC Algorithms
•Mark-and-sweep collection (McCarthy, 1960)
•Mark-sweep-compact collection (Styger, 1967)
• Mark-copy collection (Minsky, 1963)

!25

Jones and Lin, “Garbage Collection: Algorithms for Automatic Dynamic Memory”, 1996.
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Classical GC Algorithms
•Mark-and-sweep collection (McCarthy, 1960)
•Mark-sweep-compact collection (Styger, 1967)
• Mark-copy collection (Minsky, 1963)

• After mark, copy reachable objects to another region of memory as 
they are being traversed. Can be done without auxiliary storage.

• Generational Collectors (Lieberman and Hewitt, 1983)
• Observation: most allocations become garbage very soon (“infant 

mortality”); others will survive for a long time.
• Wasteful to scan long-lived objects every collection time
• Idea: divide heap into two generations, young and old. Allocate into 

young gen., and promote to old gen. if lived long enough. Collect 
young gen. more often than old gen.

• Question: Can any of these algorithms be used for GC in C?
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Jones and Lin, “Garbage Collection: Algorithms for Automatic Dynamic Memory”, 1996.
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Classical GC Algorithms
• All the GC algorithms described so far are tracing-based


• Start from the root pointers, trace all the reachable objects 
• Need graph traversal. Different to implement.
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Classical GC Algorithms
• All the GC algorithms described so far are tracing-based


• Start from the root pointers, trace all the reachable objects 
• Need graph traversal. Different to implement.

• Reference counting (Collins, 1960)

• Keep a counter for each object 
• Increment the counter if there is a new pointer pointing to the object 
• Decrement the counter if a pointer is taken off the object 
• When the counter reaches zero, collect the object

• Advantages of Reference Counting

• Simpler to implement 
• Collect garbage objects immediately; generally less long pauses

• Disadvantages of Reference Counting

• A naive implementation can’t deal with self-referencing

• A heterogeneous approach (RC + tracing) is often used
!26
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Today
• From process to threads


• Basic thread execution model 
•Multi-threading programming

• Hardware support of threads


• Single core 
• Multi-core 
• Hyper-threading 
• Cache coherence
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Programmers View of A Process

• Process = process context + code, data, and stack

!28

Shared libraries

Run-time heap

0

Read/write data

Program context: 
    Data registers 
    Condition codes 
    Stack pointer (SP) 
    Program counter (PC)

Code, data, and stack

Read-only code/data

Stack
SP

PC

brk

Process context

Kernel context: 
    VM structures 
    Descriptor table 
    brk pointer
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A Process With Multiple Threads
• Multiple threads can be associated with a process


• Each thread has its own logical control flow 
• Each thread shares the same code, data, and kernel context
• Each thread has its own stack for local variables 

• but not protected from other threads
• Each thread has its own thread id (TID)
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Thread 1 context: 
    Data registers 
    Condition codes 
    SP1 
    PC1

stack 1

Thread 1 (main thread)

shared libraries

run-time heap

0

read/write data

 Shared code and data

read-only code/data

Kernel context: 
   VM structures 
   Descriptor table 
   brk pointer

Thread 2 context: 
    Data registers 
    Condition codes 
    SP2 
    PC2

stack 2

Thread 2 (peer thread)



Carnegie Mellon

Logical View of Threads

• Threads associated with process form a pool of peers

• Unlike processes which form a tree hierarchy
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P0

P1

sh sh sh

foo

bar

T1

Process hierarchyThreads associated with process foo

T2
T4

T5 T3

shared code, data 
and kernel context
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Concurrent Threads

• Two threads are concurrent if their flows overlap in 
time


• Otherwise, they are sequential


• Examples:

• Concurrent: A & B, A&C
• Sequential: B & C
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Time

Thread A Thread B Thread C
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Concurrent Thread Execution
• Single Core Processor


• Simulate parallelism 
by time slicing
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Time

Thread A Thread B Thread C Thread A Thread B Thread C

Run 3 threads on 2 cores

•Multi Core Processor

• Threads can have 

true parallelisms
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Threads vs. Processes

• How threads and processes are similar

• Each has its own logical control flow
• Each can run concurrently with others (possibly on different cores)
• Each is context switched, controlled by kernel
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Threads vs. Processes

• How threads and processes are similar

• Each has its own logical control flow
• Each can run concurrently with others (possibly on different cores)
• Each is context switched, controlled by kernel

• How threads and processes are different

• Threads share all code and data (except local stacks)

• Processes (typically) do not
• Threads are less expensive than processes

• Space: threads share the same virtual address space except 
stacks, but processes have their own virtual address space

• Process control (creating and reaping) twice as expensive
• Typical Linux numbers:

• ~20K cycles to create and reap a process
• ~10K cycles (or less) to create and reap a thread
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Posix Threads (Pthreads) Interface
• Pthreads: Standard interface for ~60 functions that manipulate 

threads from C programs
• Creating and reaping threads

• pthread_create()
• pthread_join()

• Determining your thread ID
• pthread_self()

• Terminating threads
• pthread_cancel()
• pthread_exit()

• exit() [terminates all threads] , return()[terminates current 
thread]

• Synchronizing access to shared variables
• pthread_mutex_init 
• pthread_mutex_[un]lock
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The Pthreads "hello, world" Program
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void *thread(void *vargp) /* thread routine */ 
{ 
    printf("Hello, world!\n"); 
    return NULL;                  
} 

/*                                                                                                                
 * hello.c - Pthreads "hello, world" program                                                                      
 */ 
#include "csapp.h" 
void *thread(void *vargp);                     

int main() 
{ 
    pthread_t tid;                             
    Pthread_create(&tid, NULL, thread, NULL);  
    Pthread_join(tid, NULL);                   
    exit(0);                                   
}

hello.c

hello.c
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The Pthreads "hello, world" Program

!35

void *thread(void *vargp) /* thread routine */ 
{ 
    printf("Hello, world!\n"); 
    return NULL;                  
} 

/*                                                                                                                
 * hello.c - Pthreads "hello, world" program                                                                      
 */ 
#include "csapp.h" 
void *thread(void *vargp);                     

int main() 
{ 
    pthread_t tid;                             
    Pthread_create(&tid, NULL, thread, NULL);  
    Pthread_join(tid, NULL);                   
    exit(0);                                   
}

Thread attributes  
(usually NULL)

Thread arguments 
(void *p) 

Return value 
(void **p)

hello.c

Thread ID

Thread routine

hello.c
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Execution of Threaded “hello, world”

!36

Main thread
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Peer thread
call Pthread_create()

Pthread_create() returns
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Main thread

Peer thread
call Pthread_create()

call Pthread_join()

Pthread_create() returns
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Execution of Threaded “hello, world”

!36

Main thread

Peer thread

Main thread waits for  
peer  thread to terminate

call Pthread_create()

call Pthread_join()

Pthread_create() returns
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Execution of Threaded “hello, world”

!36

Main thread

Peer thread

return NULL;Main thread waits for  
peer  thread to terminate

call Pthread_create()

call Pthread_join()
printf()

Peer thread 
terminates

Pthread_create() returns
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Execution of Threaded “hello, world”
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Main thread

Peer thread

return NULL;Main thread waits for  
peer  thread to terminate

call Pthread_create()

call Pthread_join()

Pthread_join() returns

printf()

Peer thread 
terminates

Pthread_create() returns
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Execution of Threaded “hello, world”

!36

Main thread

Peer thread

return NULL;Main thread waits for  
peer  thread to terminate

exit()  
Terminates  

main thread and  
any peer threads

call Pthread_create()

call Pthread_join()

Pthread_join() returns

printf()

Peer thread 
terminates

Pthread_create() returns


