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• Final exam: May 12, 19:15 PM -- 22:15 PM; online. 
• Past exam & Problem set: https://www.cs.rochester.edu/courses/

252/spring2021/handouts.html 
• Exam will be electronic using Gradescope, but we will send you 

an PDF version so that you can work offline in case 
• 1) you don’t have Internet access at the exam time or 
• 2) you lose Internet access. 
• Write down the answers on a scratch paper, take pictures, and send us the 

pictures

https://www.cs.rochester.edu/courses/252/spring2021/handouts.html
https://www.cs.rochester.edu/courses/252/spring2021/handouts.html
https://www.cs.rochester.edu/courses/252/spring2021/handouts.html
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• Open book test: any sort of paper-based product, e.g., book, 
notes, magazine, old tests. 

• Exams are designed to test your ability to apply what you have 
learned and not your memory (though a good memory could help). 

• Nothing electronic (including laptop, cell phone, calculator, 
etc) other than the computer you use to take the exam. 

• Nothing biological, including your roommate, husband, wife, 
your hamster, another professor, etc. 

• “I don’t know” gets15% partial credit. Must erase everything else.
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Today
• From process to threads


• Basic thread execution model 
•Multi-threading programming

• Hardware support of threads


• Single core 
• Multi-core 
• Cache coherence
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Shared Variables in Threaded C Programs
• One great thing about threads is that they can share same 

program variables.

• Question: Which variables in a threaded C program are shared?

• Intuitively, the answer is as simple as “global variables are 

shared” and “stack variables are private”. Not so simple in reality.
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Thread 1 context: 
    Data registers 
    Condition codes 
    SP1 
    PC1

stack 1

Thread 1 (main thread) shared libraries

run-time heap

0

read/write data

 Shared code and data

read-only code/data

Kernel context: 
   VM structures 
   Descriptor table 
   brk pointer

Thread 2 context: 
    Data registers 
    Condition codes 
    SP2 
    PC2

stack 2

Thread 2 (peer thread)
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char **ptr;  /* global var */ 

void *thread(void *vargp) 
{ 
    long myid = (long)vargp; 
    static int cnt = 0; 
    printf("[%ld]:  %s (cnt=%d)\n",  
         myid, ptr[myid], ++cnt); 
    return NULL; 
} 

int main() 
{ 
    long i; 
    pthread_t tid; 
    char *msgs[2] = { 
        "Hello from foo", 
        "Hello from bar" 
    }; 
    ptr = msgs; 
    for (i = 0; i < 2; i++) 
        pthread_create(&tid,  
            NULL,  
            thread,  
            (void *)i); 
    pthread_exit(NULL); 
} sharing.c

Memory mapped region  
for shared libraries

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

Main thread stack

Peer thread 0 stack

Peer thread 1 stack
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Synchronizing Threads  
• Shared variables are handy...


•…but introduce the possibility of nasty synchronization errors.
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Improper Synchronization
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/* Global shared variable */ 
volatile long cnt = 0; /* Counter */ 

int main(int argc, char **argv) 
{ 
   pthread_t tid1, tid2; 
   long niters = 10000; 

   Pthread_create(&tid1, NULL, 
        thread, &niters); 
    Pthread_create(&tid2, NULL, 
        thread, &niters); 
    Pthread_join(tid1, NULL); 
    Pthread_join(tid2, NULL); 

    /* Check result */ 
    if (cnt != (2 * 10000)) 
        printf("BOOM! cnt=%ld\n", cnt); 
    else 
        printf("OK cnt=%ld\n", cnt); 
    exit(0); 
}

/* Thread routine */                                                                                              
void *thread(void *vargp)                                                                                         
{                                                                                                                 
    long i, niters =  
               *((long *)vargp);                                                                            
                                                                                                                  
    for (i = 0; i < niters; i++) 
        cnt++;                    
                                                                                                                  
    return NULL;                                                                                                  
} 

badcnt.c

https://www.geeksforgeeks.org/understanding-volatile-qualifier-in-c/
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Improper Synchronization
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/* Global shared variable */ 
volatile long cnt = 0; /* Counter */ 

int main(int argc, char **argv) 
{ 
   pthread_t tid1, tid2; 
   long niters = 10000; 

   Pthread_create(&tid1, NULL, 
        thread, &niters); 
    Pthread_create(&tid2, NULL, 
        thread, &niters); 
    Pthread_join(tid1, NULL); 
    Pthread_join(tid2, NULL); 

    /* Check result */ 
    if (cnt != (2 * 10000)) 
        printf("BOOM! cnt=%ld\n", cnt); 
    else 
        printf("OK cnt=%ld\n", cnt); 
    exit(0); 
}

/* Thread routine */                                                                                              
void *thread(void *vargp)                                                                                         
{                                                                                                                 
    long i, niters =  
               *((long *)vargp);                                                                            
                                                                                                                  
    for (i = 0; i < niters; i++) 
        cnt++;                    
                                                                                                                  
    return NULL;                                                                                                  
} 

linux> ./badcnt 
OK cnt=20000 

linux> ./badcnt 
BOOM! cnt=13051

cnt should be 20,000. 

What went wrong?
badcnt.c

https://www.geeksforgeeks.org/understanding-volatile-qualifier-in-c/
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Assembly Code for Counter Loop
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for (i = 0; i < niters; i++) 
    cnt++; 

C code for counter loop in thread i

    movq  (%rdi), %rcx 
    testq %rcx,%rcx 
    jle   .L2 
    movl  $0, %eax 
.L3: 
    movq  cnt(%rip),%rdx 
    addq  $1, %rdx 
    movq  %rdx, cnt(%rip) 
    addq  $1, %rax 
    cmpq  %rcx, %rax 
    jne   .L3 
.L2:

Hi : Head

Ti : Tail

Li  : Load cnt 
Ui : Update cnt 
Si : Store cnt

Asm code for thread i
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Concurrent Execution
• Key observation: In general, any sequentially consistent 

interleaving is possible, but some give an unexpected result!
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L1
U1
S1
L2
U2
S2

1
1
1
2
2
2

0
1
1
-
-
-

0
0
1
1
1
2

i (thread) instri
cnt

(shared)
%rdx1

-
-
-
1
2
2

%rdx2

Thread 1 
critical section
Thread 2 
critical section

  movq  cnt(%rip),%rdx 
  addq  $1, %rdx 
  movq  %rdx, cnt(%rip)

Li
Ui
Si
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Concurrent Execution (cont)
• A legal (feasible) but undesired ordering: two threads increment 

the counter, but the result is 1 instead of 2

!12

L1
U1
L2
S1
U2
S2

1
1
2
1
2
2

0
1
-
1
-
-

0
0
0
1
1
1

i (thread) instri %rdx1

-
-
0
-
1
1

%rdx2
cnt

(shared)

  movq  cnt(%rip),%rdx 
  addq  $1, %rdx 
  movq  %rdx, cnt(%rip)

Li
Ui
Si
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Assembly Code for Counter Loop
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for (i = 0; i < niters; i++) 
    cnt++; 

    movq  (%rdi), %rcx 
    testq %rcx,%rcx 
    jle   .L2 
    movl  $0, %eax 
.L3: 
    movq  cnt(%rip),%rdx 
    addq  $1, %rdx 
    movq  %rdx, cnt(%rip) 
    addq  $1, %rax 
    cmpq  %rcx, %rax 
    jne   .L3 
.L2:

Hi : Head

Ti : Tail

Li  : Load cnt 
Ui : Update cnt 
Si : Store cnt

Asm code for thread i

critical 
section 
wrt cnt

C code for counter loop in thread i
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Critical Section
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• Code section (a sequence of instructions) where no more than one 
thread should be executing concurrently.


• Critical section refers to code, but its intention is to protect data!

    movq  (%rdi), %rcx 
    testq %rcx,%rcx 
    jle   .L2 
    movl  $0, %eax 
.L3: 
    movq  cnt(%rip),%rdx 
    addq  $1, %rdx 
    movq  %rdx, cnt(%rip) 
    addq  $1, %rax 
    cmpq  %rcx, %rax 
    jne   .L3 
.L2:

Hi : Head

Ti : Tail

Li  : Load cnt 
Ui : Update cnt 
Si : Store cnt

critical 
section 
wrt cnt
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Critical Section
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• Code section (a sequence of instructions) where no more than one 
thread should be executing concurrently.


• Critical section refers to code, but its intention is to protect data!
• Threads need to have mutually exclusive access to critical section. That 

is, the execution of the critical section must be atomic: instructions in a 
CS either are executed entirely without interruption or not executed at all.

    movq  (%rdi), %rcx 
    testq %rcx,%rcx 
    jle   .L2 
    movl  $0, %eax 
.L3: 
    movq  cnt(%rip),%rdx 
    addq  $1, %rdx 
    movq  %rdx, cnt(%rip) 
    addq  $1, %rax 
    cmpq  %rcx, %rax 
    jne   .L3 
.L2:

Hi : Head

Ti : Tail

Li  : Load cnt 
Ui : Update cnt 
Si : Store cnt

critical 
section 
wrt cnt
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Enforcing Mutual Exclusion
•We must coordinate/synchronize the execution of the threads


• i.e., need to guarantee mutually exclusive access for each critical 
section.

• Classic solution: 

• Semaphores/mutex (Edsger Dijkstra)

• Other approaches

• Condition variables
• Monitors (Java)
• 254/258 discusses these

!15
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Using Semaphores for Mutual Exclusion
• Basic idea:

!16
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Using Semaphores for Mutual Exclusion
• Basic idea:

• Associate each shared variable (or related set of shared variables) with 
a unique variable, called semaphore, initially 1.
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Using Semaphores for Mutual Exclusion
• Basic idea:

• Associate each shared variable (or related set of shared variables) with 
a unique variable, called semaphore, initially 1.

• Every time a thread tries to enter the critical section, it first checks the 
semaphore value. If it’s still 1, the thread decrements the mutex value to 
0 (through a P operation) and enters the critical section. If it’s 0, wait.

!16
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Using Semaphores for Mutual Exclusion
• Basic idea:

• Associate each shared variable (or related set of shared variables) with 
a unique variable, called semaphore, initially 1.

• Every time a thread tries to enter the critical section, it first checks the 
semaphore value. If it’s still 1, the thread decrements the mutex value to 
0 (through a P operation) and enters the critical section. If it’s 0, wait.

• Every time a thread exits the critical section, it increments the 
semaphore value to 1 (through a V operation) so that other threads are 
now allowed to enter the critical section.

• No more than one thread can be in the critical section at a time.

• Terminology
• Binary semaphore is also called mutex (i.e., the semaphore value 

could only be 0 or 1)
• Think of P operation as “locking”, and V as “unlocking”.
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Proper Synchronization
• Define and initialize a mutex for the shared variable cnt:

!17

  volatile long cnt = 0;  /* Counter */ 
  sem_t mutex;            /* Semaphore that protects cnt */ 
  
  Sem_init(&mutex, 0, 1); /* mutex = 1 */

• Surround critical section with P and V:

 for (i = 0; i < niters; i++) { 
     P(&mutex); 
     cnt++; 
     V(&mutex); 
  }

linux> ./goodcnt 10000 
OK cnt=20000 
linux> ./goodcnt 10000 
OK cnt=20000 
linux>

Warning: It’s orders of magnitude 
slower than badcnt.c. 

goodcnt.c
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Problem? 
• Wouldn’t there be a problem when multiple threads access the 

mutex? How do we ensure exclusive accesses to mutex itself?

!18

 for (i = 0; i < niters; i++) { 
     P(&mutex); 
     cnt++; 
     V(&mutex); 
  } goodcnt.c
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Problem? 
• Wouldn’t there be a problem when multiple threads access the 

mutex? How do we ensure exclusive accesses to mutex itself?
• Hardware MUST provide mechanisms for atomic accesses to the 

mutex variable.

!18

 for (i = 0; i < niters; i++) { 
     P(&mutex); 
     cnt++; 
     V(&mutex); 
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Problem? 
• Wouldn’t there be a problem when multiple threads access the 
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mutex? How do we ensure exclusive accesses to mutex itself?
• Hardware MUST provide mechanisms for atomic accesses to the 

mutex variable.
• Checking mutex value and setting its value must be an atomic 

unit: they either are performed entirely or not performed at all.
• on x86: the atomic test-and-set instruction.

!18

 for (i = 0; i < niters; i++) { 
     P(&mutex); 
     cnt++; 
     V(&mutex); 
  } goodcnt.c

function Lock(boolean *lock) { 
    while (test_and_set(lock) == 1); 
}
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Deadlock
• Def: A process/thread is deadlocked if and only if it is waiting for 

a condition that will never be true

• General to concurrent/parallel programming (threads, 

processes)

• Typical Scenario


• Processes 1 and 2 needs two resources (A and B) to proceed
• Process 1 acquires A, waits for B
• Process 2 acquires B, waits for A
• Both will wait forever!

!19
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Deadlocking With Semaphores

!20

void *count(void *vargp) 
{ 
    int i; 
    int id = (int) vargp; 
    for (i = 0; i < NITERS; i++) { 
 P(&mutex[id]); P(&mutex[1-id]); 
 cnt++; 
 V(&mutex[id]); V(&mutex[1-id]); 
    } 
    return NULL; 
} 

int main() 
{ 
    pthread_t tid[2]; 
    Sem_init(&mutex[0], 0, 1);  /* mutex[0] = 1 */ 
    Sem_init(&mutex[1], 0, 1);  /* mutex[1] = 1 */ 
    Pthread_create(&tid[0], NULL, count, (void*) 0); 
    Pthread_create(&tid[1], NULL, count, (void*) 1); 
    Pthread_join(tid[0], NULL); 
    Pthread_join(tid[1], NULL); 
    printf("cnt=%d\n", cnt); 
    exit(0); 
}

Tid[0]: 
P(s0); 
P(s1); 
cnt++; 
V(s0); 
V(s1); 

Tid[1]: 
P(s1); 
P(s0); 
cnt++; 
V(s1); 
V(s0); 
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Avoiding Deadlock

!21

Tid[0]: 
P(s0); 
P(s1); 
cnt++; 
V(s0); 
V(s1);

Tid[1]: 
P(s0); 
P(s1); 
cnt++; 
V(s1); 
V(s0);

Acquire shared resources in same order

Tid[0]: 
P(s0); 
P(s1); 
cnt++; 
V(s0); 
V(s1);

Tid[1]: 
P(s1); 
P(s0); 
cnt++; 
V(s1); 
V(s0);
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Another Deadlock Example: Signal Handling

• Signal handlers are concurrent with main program and may 
share the same global data structures.
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static int x = 5; 
void handler(int sig) 
{ 
    x = 10; 
} 

int main(int argc, char **argv) 
{ 
    int pid; 
    Signal(SIGCHLD, handler); 

    if ((pid = Fork()) == 0) { /* Child */ 
        Execve("/bin/date", argv, NULL); 
    } 

    if (x == 5) 
        y = x * 2; // You’d expect y == 10 
    exit(0); 
}
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Another Deadlock Example: Signal Handling

• Signal handlers are concurrent with main program and may 
share the same global data structures.

!22

static int x = 5; 
void handler(int sig) 
{ 
    x = 10; 
} 

int main(int argc, char **argv) 
{ 
    int pid; 
    Signal(SIGCHLD, handler); 

    if ((pid = Fork()) == 0) { /* Child */ 
        Execve("/bin/date", argv, NULL); 
    } 

    if (x == 5) 
        y = x * 2; // You’d expect y == 10 
    exit(0); 
}

What if the following happens:
• Parent process executes and 

finishes if (x == 5)
• OS decides to take the 

SIGCHLD interrupt and 
executes the handler

• When return to parent 
process, y == 20!
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Fixing the Signal Handling Bug

!23

static int x = 5; 
void handler(int sig) 
{ 
    x = 10; 
} 

int main(int argc, char **argv) 
{ 
    int pid; 
    sigset_t mask_all, prev_all; 
    sigfillset(&mask_all); 
    signal(SIGCHLD, handler); 

    if ((pid = Fork()) == 0) { /* Child */ 
        Execve("/bin/date", argv, NULL); 
    } 

    Sigprocmask(SIG_BLOCK, &mask_all, &prev_all); 
    if (x == 5) 
        y = x * 2; // You’d expect y == 10 
    Sigprocmask(SIG_SETMASK, &prev_all, NULL); 

    exit(0); 
}

• Block all signals before 
accessing a shared, 
global data structure.
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How About Using a Mutex?

!24

static int x = 5; 
void handler(int sig) 
{ 
    P(&mutex); 
    x = 10; 
    V(&mutex); 
} 

int main(int argc, char **argv) 
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    int pid; 
    sigset_t mask_all, prev_all; 
    signal(SIGCHLD, handler); 

    if ((pid = Fork()) == 0) { /* Child */ 
        Execve("/bin/date", argv, NULL); 
    } 

    P(&mutex); 
    if (x == 5) 
        y = x * 2; // You’d expect y == 10 
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How About Using a Mutex?
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static int x = 5; 
void handler(int sig) 
{ 
    P(&mutex); 
    x = 10; 
    V(&mutex); 
} 

int main(int argc, char **argv) 
{ 
    int pid; 
    sigset_t mask_all, prev_all; 
    signal(SIGCHLD, handler); 

    if ((pid = Fork()) == 0) { /* Child */ 
        Execve("/bin/date", argv, NULL); 
    } 

    P(&mutex); 
    if (x == 5) 
        y = x * 2; // You’d expect y == 10 
    V(&mutex); 

    exit(0); 
}

• This implementation 
will get into a deadlock.

• Signal handler wants 
the mutex, which is 
acquired by the main 
program.

• Key: signal handler is in 
the same process/
thread as the main 
program. The kernel 
forces the handler to 
finish before returning 
to the main program.
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Summary of Multi-threading Programming
• Concurrent/parallel threads access shared variables

• Need to protect concurrent accesses to guarantee correctness

• Semaphores (e.g., mutex) provide a simple solution

• Can lead to deadlock if not careful

• Take CSC 254/258 to know more about avoiding deadlocks 

(and parallel programming in general)

!25
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Thread-level Parallelism (TLP)
• Thread-Level Parallelism


• Splitting a task into independent sub-tasks 
• Each thread is responsible for a sub-task
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Thread-level Parallelism (TLP)
• Thread-Level Parallelism


• Splitting a task into independent sub-tasks 
• Each thread is responsible for a sub-task

• Example: Parallel summation of N number

• Partition values 1, …, n-1 into t ranges,⎣n/t⎦ values each range 

• Each of t threads processes one range (sub-task) 
• Sum all sub-sums in the end

• Question: if you parallel you work N ways, do you always an N 
times speedup?

!26
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Why the Sequential Bottleneck?
• Maximum speedup limited by the 

sequential portion
• Main cause: Non-parallelizable 

operations on data
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Amdahl’s Law

•Gene Amdahl (1922 – 2015). Giant in computer architecture
•Captures the difficulty of using parallelism to speed things up
• Amdahl’s Law


• f: Parallelizable fraction of a program 
• N: Number of processors (i.e., maximal achievable speedup)

!28

Speedup =
1

+1 - f f
N

Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.

• Completely parallelizable (f = 1): Speedup = N
• Completely sequential (f = 0): Speedup = 1
•Mostly parallelizable (f = 0.9, N = 1000): Speedup = 9.9
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Today
• From process to threads


• Basic thread execution model 
•Multi-threading programming

• Hardware support of threads


• Single core 
• Multi-core 
• Cache coherence

!29
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Can A Single Core Support Multi-threading?

• Need to multiplex between different threads (time slicing)

!30

Thread A Thread B Thread C

Sequential Multi-threaded
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Any benefits?
• Can single-core multi-threading provide any performance gains?
• If Thread A has a cache miss and the pipeline gets stalled, 

switch to Thread C. Improves the overall performance.

!31

Thread A Thread B Thread C

Cache

Miss!
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When to Switch?

!32

• Coarse grained

• Event based, e.g., switch on L3 cache miss 
• Quantum based (every thousands of cycles)

• Fine grained

• Cycle by cycle 
• Thornton, “CDC 6600: Design of a Computer,” 1970. 
• Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP 

1978. The HEP machine. A seminal paper that shows that using multi-
threading can avoid branch prediction.

•Either way, need to save/restore thread context upon 
switching.
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Fine-Grained Switching

!33

•One big bonus of fine-grained switching: no need for 
branch predictor!!

1
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E

5

M
W

FF

    xorg %rax, %rax 
    jne L1            # Not taken

irmovq $3, %rax   # Target + 1

irmovq $1, %rax   # Fall Through
L1  irmovq $4, %rcx   # Target

Stall

6

W

DD

7

EE

8

MM

9

WW
FF DD EE MM WW

FF DD EE MM

Stall
Stall

Stall

The stalling approach
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•One big bonus of fine-grained switching: no need for 
branch predictor!!

The branch prediction approach
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•One big bonus of fine-grained switching: no need for branch 
predictor!!
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FF DD EE
FF DD

… …
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Fine-Grained Switching
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•One big bonus of fine-grained switching: no need for branch 
predictor!!

• Context switching overhead would be very high! Use separate 
hardware contexts for each thread (e.g., separate register files).

1

F

2

D
F

3

E
D

4

M
E

5

M
W

FF

    xorg %rax, %rax 

    jne L1            # Not taken

irmovq $1, %rax   # Fall Through

6

W

DD

7

EE

8

MM

9

WW
FF DD EE MM WW

FF DD EE MM

The fine-grained multi-threading approach

Inst x from TID=1

Inst x+1 from TID=1

FF DD EE MM WW
FF DD EE MM WW

Inst y from TID=2

Inst y+1 from TID=2

Inst x+2 from TID=1
Inst y+2 from TID=2

FF DD EE
FF DD

… …



Carnegie Mellon

Fine-Grained Switching

!35

•One big bonus of fine-grained switching: no need for branch 
predictor!!

• Context switching overhead would be very high! Use separate 
hardware contexts for each thread (e.g., separate register files).

• GPUs do this (among other things). More later.
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Multi-threading Illustration (so far…)

!36

Thread 1

Context 
Switch

Thread 2

Coarse-
grained MT

Fine-grained MT 
without hw support

Thread 3

Fine-grained MT 
with hw support



Carnegie Mellon

Modern Single-Core: Superscalar
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Instruction Control

Registers

Instruction 
Decoder

Instruction 
queue

Instruction 
Cache

PC

Functional Units

Int
Arith

Int
Arith

FP 
Arith

Load / 
Store Data Cache

• Typically has multiple function units to allow for decoding and 
issuing multiple instructions at the same time


• Called “Superscalar”
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From Scalar to Multi-Scalar Multi-threading
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Thread 1
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Thread 2



Carnegie Mellon

From Scalar to Multi-Scalar Multi-threading

!38

Functional Units

Thread 1

Context 
Switch

Thread 2



Carnegie Mellon

From Scalar to Multi-Scalar Multi-threading

!38

Functional Units

Thread 1

Context 
Switch

Thread 2

Why these 
empty slots?
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Simultaneous Multi-Threading (SMT)
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Functional Units

Int
Arith

Int
Arith

FP 
Arith

Load / 
Store

Instruction Control
Instruction 

Decoder

Data Cache

Instruction 
Cache

• Intel call it hyper-threading.

• Replicate enough hardware structures to process K instruction 

streams, i.e., threads. K copies of all registers. Share functional units.

• SMT = Superscalar + Multi-threading

Reg A Instruction queue

PC A
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Simultaneous Multi-Threading (SMT)
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Functional Units

Int
Arith

Int
Arith

FP 
Arith

Load / 
Store

Instruction Control
Instruction 

Decoder

Data Cache

Instruction 
Cache

• Intel call it hyper-threading.

• Replicate enough hardware structures to process K instruction 

streams, i.e., threads. K copies of all registers. Share functional units.

• SMT = Superscalar + Multi-threading

Reg A Instruction queue

PC A
Reg B Instruction queue

PC B
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Conventional Multi-threading vs. Hyper-threading

!40

Thread 1

Context 
Switch

Thread 2

Coarse-grained MT on 
a superscalar core SMT

Multiple threads 
actually execute in 
parallel (even with 
one single core)

No/little context 
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Today
• From process to threads


• Basic thread execution model 
•Multi-threading programming

• Hardware support of threads


• Single core 
• Multi-core 
• Cache coherence
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Multi-Threading on a Multi-core Processor

• Each core can run 
multiple threads, mostly 
through coarse-grained 
switching.


• Fine-grained switching 
on conventional multi-
core CPU is too costly.

!42

Regs

L1  
d-cache

L1  
i-cache

L2 unified 
cache

Core 0

Regs

L1  
d-cache

L1  
i-cache

L2 unified 
cache

Core n-1

…

L3 unified cache 
(shared by all cores)

Main memory



Carnegie Mellon

Combine Multi-core with SMT
• Common for laptop/desktop/server machine. E.g., 2 physical 

cores, each core has 2 hyper-threads => 4 virtual cores.

• Not for mobile processors (Hyper-threading costly to implement)
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Asymmetric Multiprocessor (AMP)
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Asymmetric Chip-Multiprocessor (ACMP)
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• Already used in commodity devices (e.g., Samsung Galaxy S6, iPhone 7)
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Today
• From process to threads


• Basic thread execution model 
•Multi-threading programming

• Hardware support of threads


• Single core 
• Multi-core 
• Cache coherence
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The Issue
• Assume that we have a multi-core processor. Thread 0 runs on Core 0, 

and Thread 1 runs on Core 1.
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The Issue
• Assume that we have a multi-core processor. Thread 0 runs on Core 0, 

and Thread 1 runs on Core 1.
• Threads share variables: e.g., Thread 0 writes to an address, followed 

by Thread 1 reading.
• Each read should receive the value last written by anyone
• Basic question: If multiple cores access the same data, how do they 

ensure they all see a consistent state?
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Thread 1 
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The Issue
• Without cache, the issue is (theoretically) solvable by using mutex.

• …because there is only one copy of x in the entire system. Accesses 

to x in memory are serialized by mutex.
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The Issue
• What if each core cache the same data, how do they ensure they all 

see a consistent state? (assuming a write-back cache)
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The Issue
• What if each core cache the same data, how do they ensure they all 
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The Issue
• What if each core cache the same data, how do they ensure they all 

see a consistent state? (assuming a write-back cache)
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Cache Coherence: The Idea
• Issue: there are multiple copies of the same data in the system, 

and they could have different values at the same time.
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Cache Coherence: The Idea
• Issue: there are multiple copies of the same data in the system, 

and they could have different values at the same time.
• Idea: ensure multiple copies have same value, i.e., coherent
• How? Two options:

• Update: push new value to all copies (in other caches)
• Invalidate: invalidate other copies (in other caches)

!50
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Readings: Cache Coherence
• Most helpful


• Culler and Singh, Parallel Computer Architecture 
• Chapter 5.1 (pp 269 – 283), Chapter 5.3 (pp 291 – 305) 

• Patterson&Hennessy, Computer Organization and Design 
• Chapter 5.8 (pp 534 – 538 in 4th and 4th revised eds.) 

• Papamarcos and Patel, “A low-overhead coherence solution for multiprocessors 
with private cache memories,” ISCA 1984. 

• Also very useful

• Censier and Feautrier, “A new solution to coherence problems in multicache 

systems,” IEEE Trans. Computers, 1978. 
• Goodman, “Using cache memory to reduce processor-memory traffic,” ISCA 1983. 
• Laudon and Lenoski, “The SGI Origin: a ccNUMA highly scalable server,” ISCA 

1997. 
• Martin et al, “Token coherence: decoupling performance and correctness,” ISCA 

2003. 
• Baer and Wang, “On the inclusion properties for multi-level cache hierarchies,” 

ISCA 1988.
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Does Hardware Have to Keep Cache Coherent?

• Hardware-guaranteed cache coherence is complex to implement.
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Does Hardware Have to Keep Cache Coherent?

• Hardware-guaranteed cache coherence is complex to implement.
• Can the programmers ensure cache coherence themselves?
• Key: ISA must provide cache flush/invalidate instructions


• FLUSH-LOCAL A: Flushes/invalidates the cache block containing 
address A from a processor’s local cache.  

• FLUSH-GLOBAL A: Flushes/invalidates the cache block containing 
address A from all other processors’ caches.  

• FLUSH-CACHE X: Flushes/invalidates all blocks in cache X.
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Does Hardware Have to Keep Cache Coherent?

• Hardware-guaranteed cache coherence is complex to implement.
• Can the programmers ensure cache coherence themselves?
• Key: ISA must provide cache flush/invalidate instructions


• FLUSH-LOCAL A: Flushes/invalidates the cache block containing 
address A from a processor’s local cache.  

• FLUSH-GLOBAL A: Flushes/invalidates the cache block containing 
address A from all other processors’ caches.  

• FLUSH-CACHE X: Flushes/invalidates all blocks in cache X.
•Classic example: TLB


• Hardware does not guarantee that TLBs of different core are coherent 
• ISA provides instructions for OS to flush PTEs 
• Called “TLB shootdown”
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