CSC 252: Computer Organization
Spring 2021: Lecture 26

Instructor: Yuhao Zhu

Department of Computer Science
University of Rochester

Announcements

SUN MON TUE

25 26 @

9 10 1

WED
28

12

Final

THU
29

Today
Last
Lecture

13

FRI
30

14

SAT
May 1

A5
Due

15

Announcements

e Final exam: May 12, 19:15 PM -- 22:15 PM; online.

e Past exam & Problem set: https://www.cs.rochester.edu/courses/
252/spring2021/handouts.html

e Exam will be electronic using Gradescope, but we will send you
an PDF version so that you can work offline in case
* 1) you don’t have Internet access at the exam time or

» 2) you lose Internet access.

* Write down the answers on a scratch paper, take pictures, and send us the
pictures

https://www.cs.rochester.edu/courses/252/spring2021/handouts.html
https://www.cs.rochester.edu/courses/252/spring2021/handouts.html
https://www.cs.rochester.edu/courses/252/spring2021/handouts.html

Announcements

e Open book test: any sort of paper-based product, e.g., book,
notes, magazine, old tests.

e Exams are designed to test your ability to apply what you have
learned and not your memory (though a good memory could help).

¢ Nothing electronic (including laptop, cell phone, calculator,
etc) other than the computer you use to take the exam.

¢ Nothing biological, including your roommate, husband, wife,
your hamster, another professor, etc.

¢ ‘| don’t know” gets15% partial credit. Must erase everything else.

Dynamic Power

T Vad

4.

J—
|
||
@

Dynamic Power

T Vad

Ty

Vdd

v(t)

t0

Dynamic Power

T Vad Vdd - s

4{] -V v

= —C |

t0 tl

E,,=["P@ydt=[(V,,—v)-it)dt =[' (V,,—v)-c(dv/dt)dt =

=cV,, " dv —crv dv=cV,’ —1/2chd2 =1/2¢V,,
t t - 4

0

Dynamic Power

T Vad Vdd - s

—C {
t0 tl

|

Energy dissipated for every transition (0->1 or 1->0)

E,,=["P@ydt=[(V,,—v)-it)dt =[' (V,,—v)-c(dv/dt)dt =

:CVdd tldV—CthV'dv — CVdd2 _]‘/ZCVddz :1/2CVdd2
/ f

))

Dynamic Power

T Vg Vdd -t e

{] -\ v(t) . .
— e |

—C |
t0 tl

|

Average dynamic power of a transistor:
P=a-(E/T)=a-Ef=%aCV,j2f

a: switch activity factor. No switching, no dynamic power consumption

Dynamic Power

P=kCV2f

Dynamic Power

P=kCV2f

e |[ncreasing f requires V to be increased proportionally

Dynamic Power

P=kCV2f

e |[ncreasing f requires V to be increased proportionally

* Intuitively: a higher frequency means a shorter cycle time, which
means the critical path of your processor needs to be shorter, which
requires faster transistors, which you get by increasing the voltage

Dynamic Power

P=kCV2f

e |[ncreasing f requires V to be increased proportionally

* Intuitively: a higher frequency means a shorter cycle time, which
means the critical path of your processor needs to be shorter, which
requires faster transistors, which you get by increasing the voltage

» “Overclocking” just increases the clock speed without increasing
voltage => machine might crash (cycle time shorter than the critical
path delay)

Dynamic Power

P=kCV2f

e |[ncreasing f requires V to be increased proportionally

* Intuitively: a higher frequency means a shorter cycle time, which
means the critical path of your processor needs to be shorter, which
requires faster transistors, which you get by increasing the voltage

» “Overclocking” just increases the clock speed without increasing
voltage => machine might crash (cycle time shorter than the critical
path delay)

 Corollary: reducing voltage requires reducing frequency

Dynamic Power

P=kCV2f

e |[ncreasing f requires V to be increased proportionally

* Intuitively: a higher frequency means a shorter cycle time, which
means the critical path of your processor needs to be shorter, which
requires faster transistors, which you get by increasing the voltage

» “Overclocking” just increases the clock speed without increasing

voltage => machine might crash (cycle time shorter than the critical
path delay)

 Corollary: reducing voltage requires reducing frequency
* 15% reduction in voltage requires about 15% slow down in frequency

Dynamic Power

P=kCV2f

e |[ncreasing f requires V to be increased proportionally

* Intuitively: a higher frequency means a shorter cycle time, which
means the critical path of your processor needs to be shorter, which
requires faster transistors, which you get by increasing the voltage

» “Overclocking” just increases the clock speed without increasing

voltage => machine might crash (cycle time shorter than the critical
path delay)

 Corollary: reducing voltage requires reducing frequency
* 15% reduction in voltage requires about 15% slow down in frequency

* \What’s the impact on dynamic power? 0.853 =~ 60% -> 40% dynamic
power reduction.

Dynamic Power Favors Parallelisms

P=KkCf

e Dynamic power favors parallel processing over higher clock rate

Dynamic Power Favors Parallelisms

P=KkCf

e Dynamic power favors parallel processing over higher clock rate
* TJake a core and replicate it 4 times: 4x speedup & 4x power

Dynamic Power Favors Parallelisms

P=KkCf

e Dynamic power favors parallel processing over higher clock rate
* TJake a core and replicate it 4 times: 4x speedup & 4x power

* Jake a core and clock it 4 times faster: 4x speedup but 64x
dynamic power!

Dynamic Power Favors Parallelisms

P=KkCf

e Dynamic power favors parallel processing over higher clock rate
* Jake a core and replicate it 4 times: 4x speedup & 4x power

* Jake a core and clock it 4 times faster: 4x speedup but 64x
dynamic power!

e Another way to think about this

Dynamic Power Favors Parallelisms

P=kC f

e Dynamic power favors parallel processing over higher clock rate
* Jake a core and replicate it 4 times: 4x speedup & 4x power

* Jake a core and clock it 4 times faster: 4x speedup but 64x
dynamic power!
e Another way to think about this

* |f atask can be perfectly parallelized by 4 cores, we can
reduce the clock frequency of each core to 1/4 while retaining
the same performance

Dynamic Power Favors Parallelisms

P=KkCf

e Dynamic power favors parallel processing over higher clock rate
* Jake a core and replicate it 4 times: 4x speedup & 4x power

* Jake a core and clock it 4 times faster: 4x speedup but 64x
dynamic power!

e Another way to think about this

* |f atask can be perfectly parallelized by 4 cores, we can
reduce the clock frequency of each core to 1/4 while retaining
the same performance

e Dynamic power becomes 4 x (1/4)3 = 1/16

Moore’s Law

* Gordon Moore in 1965 predicted that the number of transistors
doubles every year

Moore’s Law

* Gordon Moore in 1965 predicted that the number of transistors
doubles every year

1 | S 1 1 I T 1 [S G T | 3

Gi6l
v.61
€461
c.l6l
1461
0.L61
6961
8961
L1961
9961
96l
961
€96l
12961
11961
10961
6661

YEAR

Lot g Rt &L .t ¢ B r .0 %

DUOITHON—OITOMOOTMHN—~QO

—— ——— — —

NOILONND Q31VYO3LINI ¥3d48

IHNQINOD

40 ¥38WNN 3HL 40 %001)

Moore’s Law

* Gordon Moore in 1965 predicted that the number of transistors
doubles every year

1 | S 11 I T S WD

Lot g Rt &L .t ¢ B r .0 %

~
(o)
2

YEAR

DUOITHON—OITOMOOTMHN—~QO

40 ¥38WNN 3HL o %901)

Moore’s Law

* Gordon Moore in 1965 predicted that the number of transistors
doubles every year

N NN N SRS S SN EEE\ NE 3m BE) 1

~
(o)
2

YEAR

: 2961
: 1961

: 096!

> RN 2NN K | 11 I T | - . " mmm—
NOILONNS Q3LVHOILNI ¥3STNINQJINOD

40 ¥38WAN 3HL f0 2001)

Moore’s Law

* Gordon Moore in 1965 predicted that the number of transistors
doubles every year

e In 1975 he revised the prediction to doubling every 2 years

T ITTTTTTT T T T Ty T
\

LOG, OF THE NUMBER OF
COMPONENTS PER INTEGRATED FUNCTION
O=MNDUWHOONODW

Moore’s Law

* Gordon Moore in 1965 predicted that the number of transistors
doubles every year

e In 1975 he revised the prediction to doubling every 2 years

e Today’s widely-known Moore’s Law: number of transistors double
about every 18 months (Moore never used the number 18...)

16 1

T T T T T T TY
N\

L062 OF THE NUMBER OF
COMPONENTS PER INTEGRATED FUNCTION
O=MNDUWHOONODW

Moore’s Law

16-Core SPARC T3
Six-Core Core i7
Six-Core Xeon 7400

2,600,000,000] @10-Core Xeon Westmere-EX
Dual-Core ltanium 2@ @ g oocrje W$&7
AMD K10 +«—Quad-core 2196 .
1,000,000,000 POWERG @7g, %, = 8.Core Xoon NehalomEX.
Itanium 2 with 9MB cache ® " Six-Core Opteron 2400
AM Core i7 (Quad)
2Di
Itanium 2 @ gg"'e ue
100,000,000
Pentium 4 @ Barton @ Atom
AMD K7
@ AMD K6-lil
— AMD K6
= 1 0,000,000] @ Pentium Il
8 Pentium Il
(&) @®AMD K5
— Pentium
O
D
‘B 1,000,000 -
C
g
|_
100,000 -
10,000
8080
3
5 is ®MOS 6502
2, 00 - 4004.?:R:A 1802
L& 8 [I I I 1
o 4
g5 3 1971 1980 1990 2000 2011
€o
8

10

Dennard Scaling

Vg Gate Vs Vp

Source Drain

192 tox /

L

p-type doped Si

Body & Vg

p-type doped Si

Body & Vo

Scale factor a<1
o =0.7=>2X more transistors!

Design of lon-Implanted MOSFET’s with Very Small Physical Dimensions. Proc. of IEEE. Dennart et al. 1974.

Den nard Scal i ng Parameter Value ([Scaled
Value
Dopant Na, Nd |Na/a, Nd/
Ve Gate © Vg Vo concentrations a
souree orain Dimensions LW, |aL, aw,
0l / Tox aTox
) : Field E E
p-type doped Si Voltage \/ O_\/
Body $ Ve
Capacitance C aC
Current I al

p-type doped Si

Body A Ve

Scale factor a<1
o =0.7=>2X more transistors!

Design of lon-Implanted MOSFET’s with Very Small Physical Dimensions. Proc. of IEEE. Dennart et al. 1974.

Dennard Scaling

Vg Gate Vs Vp

Source Drain

19, tox /

L

p-type doped Si

Body $ Vg

p-type doped Si

Body A Ve

Scale factor o<1

o =0.7=>2X more transistors!

Design of lon-Implanted MOSFET’s with Very Small Physical Dimensions. Proc. of IEEE. Dennart et al. 1974.

Parameter Value Scaled
Value
Dopant Na, Nd |Na/a, Nd/
concentrations a
Dimensions L, W, alL, aW,
Tox alox
Field E E
Voltage V aVv
Capacitance C aC
Current I al
Transistors/Area |d d/o2

Dennard Scaling

Vg Gate Vs Vp

Source Drain

19, tox /

L

p-type doped Si

Body $ Vg

p-type doped Si

Body A Ve

Scale factor o<1

o =0.7=>2X more transistors!

Design of lon-Implanted MOSFET’s with Very Small Physical Dimensions. Proc. of IEEE. Dennart et al. 1974.

Parameter Value Scaled
Value
Dopant Na, Nd |Na/a, Nd/
concentrations a
Dimensions L, W, alL, aWw,
Tox alox
Field E E
Voltage V aVv
Capacitance C aC
Current I al
Transistors/Area |d d/o2
Propagation time |t at
(~CV/)
Frequency (1/t) f f/a

Dennard Scaling

Vg Gate Vs Vp

Source Drain

19, tox /

L

p-type doped Si

Body $ Vg

p-type doped Si

Body A Ve

Scale factor a<1
o =0.7=>2X more transistors!

Design of lon-Implanted MOSFET’s with Very Small Physical Dimensions. Proc. of IEEE. Dennart et al. 1974.

Parameter Value Scaled
Value
Dopant Na, Nd |Na/a, Nd/
concentrations a
Dimensions L, W, alL, aWw,
Tox alox
Field E E
Voltage V aVv
Capacitance C aC
Current I al
Transistors/Area |d d/o2
Propagation time |t at
(~CV/)
Frequency (1/t) f f/a
Power (CV2) P a2P
Power/area Pd Pd

(Power density)

Implications of Dennard Scaling and Moore’s Law

* Each new processor generation can have more transistors
(Moore’s Law), and will run at higher frequency but won’t
consume more power under the same area budget.

12

Implications of Dennard Scaling and Moore’s Law

* Each new processor generation can have more transistors
(Moore’s Law), and will run at higher frequency but won’t
consume more power under the same area budget.

e More transistors means better microarchitecture, which leads to
better performance even under the same frequency.

12

Implications of Dennard Scaling and Moore’s Law

* Each new processor generation can have more transistors
(Moore’s Law), and will run at higher frequency but won’t
consume more power under the same area budget.

e More transistors means better microarchitecture, which leads to
better performance even under the same frequency.

* Higher frequency means better performance even under the
same microarchitecture.

12

Implications of Dennard Scaling and Moore’s Law

* Each new processor generation can have more transistors
(Moore’s Law), and will run at higher frequency but won’t
consume more power under the same area budget.

e More transistors means better microarchitecture, which leads to
better performance even under the same frequency.

* Higher frequency means better performance even under the
same microarchitecture.

* QOverall, software gets a free ride: wait for the next generation of
hardware and performance will naturally increase without
consuming more power.

12

Implications of Dennard Scaling and Moore’s Law

* Each new processor generation can have more transistors
(Moore’s Law), and will run at higher frequency but won’t
consume more power under the same area budget.

e More transistors means better microarchitecture, which leads to
better performance even under the same frequency.

* Higher frequency means better performance even under the
same microarchitecture.

* QOverall, software gets a free ride: wait for the next generation of
hardware and performance will naturally increase without
consuming more power.

Moore’s law gave us more transistors;

Dennard scaling made them useful.
Bob Colwell, DAC 2013, June 4, 2013

12

2005: End of Dennard Scaling

e \What Happened?

e Supply voltage Vaq stops scaling (Can’t drop voltage below ~1 V)
o Remember Power = CV2f

13

2005: End of Dennard Scaling

e \What Happened?
e Supply voltage Vaq stops scaling (Can’t drop voltage below ~1 V)
« Remember Power = CVaf

e Why?

* There is a fundamental limit as to how much voltage we need to
switch a transistor, called threshold voltage (Vin).

* Vin stopped scaling because leakage power/reliability/variation
becomes huge issues, and accordingly Vaq stops scaling

13

2005: End of Dennard Scaling

e \What Happened?
e Supply voltage Vaq stops scaling (Can’t drop voltage below ~1 V)
« Remembe 6

Source: P. Packan (Intel),

e Why? o |oge BB 2007 IEDM Short Course
e Thereis a o > need to
switchati o * \
* Vin Stoppe § 3 ariation

becomes , | Gate Overdrive R g
Voo— Vr \

1

.\M"—O—O—a—o

14 10 8 6 .35 .25 18 .13 .09 .065
Technology Generation

13

2005: End of Dennard Scaling

e \What Happened?
e Supply voltage Vaq stops scaling (Can’t drop voltage below ~1 V)
« Remember Power = CVaf
e Why?
* There is a fundamental limit as to how much voltage we need to
switch a transistor, called threshold voltage (Vin).
* Vin stopped scaling because leakage power/reliability/variation
becomes huge issues, and accordingly Vaq stops scaling
e The demise of Dennard Scaling means the power density
(power consumption per unit area) will increase rather than
staying stable.

13

2005: End of Dennard Scaling

Power Density

2000—"""""':"""'""':"""""'""""""'.'"""""': """
w000l N s SR . .
CTIE e s aaa o AR RS i Pl T U
BOOf- - - - - RS R e ma
400k - - oo S o SR R ol '—
NE l O - =] ..-Fﬁ'-
E m] m W -;_: = -‘ -
2200 """""""""""" n I I e e
£ : - " m" = s
188 ------------ I R R PP P PR
-------- seespesess s sansejallostoagosconcsssospossas g RS Eposo S
FlllEeessssssaas SRR DR R i "j'-'.'-?_i""'. """"""""""" ot e
40 [emsai e el D m) Sl TR ML o el e i Siiietidap Sl s i)
- o S
D) | P S Py S
10 '
1985 1990 1995 2000 2005 2010

14

2005: End of Dennard Scaling

Power Density

1985 1990 1995 2000 2005

2010

14

2005: End of Dennard Scaling

Power Density

1985 1990 1995 2000 2005

2010

Hot
Plate

14

2005: End of Dennard Scaling

Power Density

1990

1995

2000

2005

2010

Hot
Plate

14

2005: End of Dennard Scaling

Power Density

1990

1995

2000

2005

2010

Sun
Surface
(~10%)

Hot
Plate

14

Dark Silicon
n. [dark, sil'I-ken, -kon’]
More transistors on chip (due to Moore’s Law), but a growing

fraction cannot actually be used due to power limits (due to the
end of Dennard Scaling).

15

2005: End of Dennard Scaling

* |nitial response has been to lower frequency and increase cores / chip

16

2005: End of Dennard Scaling

* Initial response has been to lower frequency and increase cores / chip

7
10 r Transistors
{ (thousands)
6|
10|
5 |
10" |
: Single-thread
4 | Performance
10 : (SpecINT)
3|
10 |
2 | Typical Power
10 (Watts)
1 : Number of
10 b Cores
o
10 |
1975 1980 1985 1990 1995 2000 2005 2010 2015
Original data collected and piotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

16

2005: End of Dennard Scaling

* |nitial response has been to lower frequency and increase cores / chip

« There is a limit to core scaling. Why?

10’

4

10° |

10°

10* |

Transistors
(thousands)

Single-thread
Performance
(SpecINT)

Typical Power
(Watts)

Number of
Cores

1975 1980 1985 1990 1995 2000 2005 2010 2015

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

16

2007: A Revolutionary New Computer

17

’ OPINION

No Moore’s Law for batteries

Fred Schlachter’

American Physical Society, Washington, DC 20045

The public has become accustomed to
rapid progress in mobile phone technol-
ogy, computers, and access to information;
tablet computers, smart phones, and other
powerful new devices are familiar to most
people on the planet.

These developments are due in part to the
ongoing exponential increase in computer
processing power, doubling approximately
every 2 years for the past several decades.
This pattern is usually called Moore’s Law
and is named for Gordon Moore, a co-
founder of Intel. The law is not a law like
that for gravity; it is an empirical obser-
vation, which has become a self-fulfilling
prophecy. Unfortunately, much of the
public has come to expect that all technol-
ogy does, will, or should follow such a law,
which is not consistent with our everyday
observations: For example, the maximum

there is a Moore’s Law for computer pro-
cessors is that electrons are small and they
do not take up space on a chip. Chip per-
formance is limited by the lithography tech-
nology used to fabricate the chips; as lithog-
raphy improves ever smaller features can be
made on processors. Batteries are not like
this. Ions, which transfer charge in batter-
ies, are large, and they take up space, as do
anodes, cathodes, and electrolytes. A D-cell
battery stores more energy than an AA-cell.
Potentials in a battery are dictated by the
relevant chemical reactions, thus limiting
eventual battery performance. Significant
improvement in battery capacity can only
be made by changing to a different chem-
istry.

Scientists and battery experts, who have
been optimistic in the recent past about im-
proving lithium-ion batteries and about de-

18

“Improving” Energy Capacity

600 smartphone from 2006 to 2014 on http://www.gsmarena.com/makers.php3

19

http://www.gsmarena.com/makers.php3

“Improving” Energy Capacity

3
3.5x10
= 3.0r
<
S
b 25_
S
o 2.0r
O
e u
E’ 1.5
©
M 1.0r

20 30 40 50 6.0

Screen Size (inches)

600 smartphone from 2006 to 2014 on http://www.gsmarena.com/makers.php3

19

http://www.gsmarena.com/makers.php3

“Improving” Energy Capacity

3 oo o
3.5x10 | . 0 @
o $
an
= 3.0 o ¢ °
< o o0 o
S %o
S 25 g
S
o 2.0
@)
>
E’ 1.5
©
m 10 o
® °

20 30 40 50 6.0
Screen Size (inches)

600 smartphone from 2006 to 2014 on http://www.gsmarena.com/makers.php3

19

http://www.gsmarena.com/makers.php3

“Improving” Energy Capacity

3
3.5x10
= 3.0
<
S
> 2.5
9
o 2.0
@)
>
E’ 1.5
©
m 10

20 30 40 50 6.0
Screen Size (inches)

600 smartphone from 2006 to 2014 on http://www.gsmarena.com/makers.php3

19

http://www.gsmarena.com/makers.php3

“Improving” Energy Capacity

“Improving” Energy Capacity

SMARTPHONE PHABLET TABLET

20

“Improving” Energy Capacity

y

SMARTPHONE PHABLET TABLET

20

“Improving” Energy Capacity

SMARTPHONE

y

PHABLET

TABLET

20

“Improving” Energy Capacity

Sources of Energy-Inefficiencies

General-Purpose CPU = Instruction Delivery + Data Feeding + Execution +
Control, where instruction delivery, data feeding & control are pure overhead

Understanding sources of inefficiency in general-purpose chips, Hameed et al., ISCA 2010

21

Sources of Energy-Inefficiencies

General-Purpose CPU = Instruction Delivery + Data Feeding + Execution +
Control, where instruction delivery, data feeding & control are pure overhead

IF: Instruction fetch

Ctrl: Other control logics
Pipe: Pipeline reg, bus, clock
D$: Data cache

RF: Register file

ALU: Functional units

Understanding sources of inefficiency in general-purpose chips, Hameed et al., ISCA 2010
21

Sources of Energy-Inefficiencies

General-Purpose CPU = Instruction Delivery + Data Feeding + Execution +
Control, where instruction delivery, data feeding & control are pure overhead

=

IF: Instruction fetch

Ctrl: Other control logics
Pipe: Pipeline reg, bus, clock
D$: Data cache

RF: Register file

ALU: Functional units

Understanding sources of inefficiency in general-purpose chips, Hameed et al., ISCA 2010
21

Sources of Energy-Inefficiencies

General-Purpose CPU = Instruction Delivery + Data Feeding + Execution +
Control, where instruction delivery, data feeding & control are pure overhead

L~

Pure Overhead
IF: Instruction fetch

Ctrl: Other control logics
Pipe: Pipeline reg, bus, clock
D$: Data cache

RF: Register file

ALU: Functional units

Understanding sources of inefficiency in general-purpose chips, Hameed et al., ISCA 2010
21

Sources of Energy-Inefficiencies

General-Purpose CPU = Instruction Delivery + Data Feeding + Execution +
Control, where instruction delivery, data feeding & control are pure overhead

L~

Pure Overhead
IF: Instruction fetch

Ctrl: Other control logics
Pipe: Pipeline reg, bus, clock
D$: Data cache

RF: Register file

ALU: Functional units

Doing Actual Work

Understanding sources of inefficiency in general-purpose chips, Hameed et al., ISCA 2010
21

Computation vs. Data Movement

Data movement energy >> computation energy

64-bit DP DRAM
20p. 256p) 16 n) N)\

256-bit buses

Efficient
200P M otf.chip link

256-bit access
8 kB SRAM

Challenges for future computing systems, Bill Dally, 2015

22

Computation vs. Data Movement

Data movement energy >> computation energy

Normalized Energy

1000000

330000
100000 —]
Data Transfer
10000 12000 —
Compute 6291
1000 —]
374 | | 480
100 125 144 —]
64 72
3
y 1

()] (@) = @) — @) (@) o @] @) X > @

o @) = <) D Q — 1%p)

< < = = = = < § = 2 > % o

s £ B B £ &g £ 3 ¢ = =

- om

SIMD

* Single Instruction (operating on) Multiple Data

e Amortizing the cost of instruction delivery/
control across many execution units (even
cores).

e Almost all modern ISAs provide such
instructions:

e x86: MMX/SSE/AVX
* Arm: Neon

Scalar Process Vector Process (N=8)

|bo[b1|b2|b3|b4|bS|b6[b7| |cOfci|c2|c3|c4|cS|c6(c7|

[ao|ai]a2|a3|a4|aS|a6|a7|

4 instructions 1 instruction
elements 8 elements (AVX)

24

Graphics Processing Units/GPUs (SIMT)

* Designed for graphics rendering, which is massively parallel.

3D Application

or Game
3D API
Commands
y
3D APL: - - - = - -
wencLor | Graphics rendering pipeline based on rasterization
CPU - GPU Boundary
GPU
Assembled
Command & Polygons, Pixel
Data Stream" Vertex Index Lines, and Location Pixel
GPU Stream Points Stream Updates
Front 4| Primitive .| Rasterization & Raster
End "| Assembly "| Interpolation "| Operation
s
Pre-transformed
Vertices i
Same program Transformed Pre-traRr?sSft(frrrlrfgg Transformed
for all vertices Vertiees Fragments Fragments
P’°9\;:rr:‘£ab'e Programmable Same program
Fragment
Processor

Fragment - b=~ for all pixels

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign ' Computer Architecture

25

Execute shader

<Al

Kayvon Fatahali%SBZN: Principles of Computer Architecture

!

<diffuseShader>:

sample ro, v4, to, so

mul
madd
madd
clmp
mul
mul
mul

mov

r3,
r3,
r3,
r3,
00,
ol,
02,

03,

vo, cbo[o]

vl, cbe[1], r3

v2, cbe[2], r3

r3, 1(e.e), 1(1.0)
ro, r3

rl, r3

r2, r3

1(1.0)

!

Kayvon Fatahalian, 2008

15

15

26

23

TWO cores (two fragments in parallel)

fragment 1 fragment 2

!

<diffuseShader>:

!

<diffuseShader>:
sample ro, v4, t0, so

mul r3, ve, cbe[e]
madd r3, vi, cbe[1], r3

sample ro, v4, to, so
mul r3, vo, cbe[0]

madd r3, vi, cbe[1], r3
madd r3, v2, cbe[2], r3

madd r3, v2, cbe[2], r3
clmp r3, r3, 1(0.0), 1(1.0)

clmp r3, r3, 1(0.0), 1(1.0)

mul 00, re, r3

mul 0@, re, r3
mul o1, ri, r3 mul o1, ri, r3

5 1,
mul o2, r2, r3

mul o2, r2, r3
mov 03, 1(1.0)

mov 03, 1(1.0)

!

<Al

. . 23
Kayvon Fataha“%SBZN: Principles of Computer Architecture Kayvon Fatahallan, 2008

Four cores

«

«

Me

)
'

2
J
Al

Kayvon Fatahaligf3gon: principles of ¢

8-

(four fragments in parallel)

omputer Architecture

Kayvon Fatahalian, 2008

24

24

28

Sixteen cores

<Al

Kayvon Fataha”%sszn: Principles of Computer Architecture

(sixteen fragments in parallel)

QO O O O
[
A
e o @ 0
QO O O O
A
+ 3 3 3
e & @& &
QO O O O
A
+ 3 3 3
o @ @ O
QO O O O
TPy 3
+ 3 3 3
e &8 0 @

16 cores = 1

25

B | B |
ALU ALU ALU ALU
T | N |
| ALU | | ALU l | ALU ' | ALU |
[i — [e
| ALU | | ALU ' | ALU ' | ALU I
[i — N |
| ALU l | ALU l | ALU ' | ALU I
mm
6 simultaneous instruction streams

Kayvon Fatahalian, 2008

25

Instruction stream coherence

«(] | B« <]
«(] | Me <]
«(] | B <]
(] | Me <]

0«
Ne
B
LK

Be «] | e «)
Be «] | B <«
e «] | B <«
Be <« | Me «)

< Al

Kayvon Fataha“%.’sSZN: Principles of Computer Architecture

26

But... many fragments should
be able to share an instruction

stream!

<diffuseShader>:

sample ro, v4, to, so

mul

madd r3,
madd r3,
clmp r3,

mul
mul
mul

mov

r3,

00,
ol,
02,
o3,

vo,
vl,
v2,
r3,
roe,
rl,
r2,

cbo[0]

cbo[1], r3
cbo[2], r3
1(0.0), 1(1.0)
r3

r3

r3

1(1.0)

30

Kayvon Fatahalian, 2008

Amortize cost/complexity of
managing an instruction
stream across many ALUs

SIMD processing

Al

) 28
Kayvon Fataha“aﬁssZN: Principles of Computer Architecture Kayvon Fatahalian, 2008

31

SIMD/vector instructions, each operates on a vector of 8 elements here.

ENIEEREY

sl)]

!

vec_vo,
vec_vil,
VEC8_madd _ vec_v2,
VEC8_clmp _ vec_r3,
VEC8_mul (vec_ro,
VEC8_mul vec_ri,
vec_r2,

1(1.0)

~ Al

cbo[0]
cbo[1], vec_r3
cbo[2], vec_r3
1(0.0), 1(1.0)
vec_r3
vec_r3

vec_r3

KayVDn Fataha”aﬁ%ZN: Principles of Computer Architecture Kayvon Fatahalian, 2008

31

32

16 cores, each with 8 ALUs. Each core here runs the same

program (fragment shader)

0000 0000 0000 0000

0000 O0O00 o000 0000 0/ | /2 0/ |

1 1 1 1 oooo | |ooon | | oooo | oooo
I | [[Y o [o [o [[Y o [o [o [

I I I I E E E E

OEDD ©EEE 0S8 ©E00

@88C G880 6UE0 8880

0000 0000 0000 0000 o | & o |

0000 0OO00 0000 0000 oooo ||ooon | | oooo | oooo

3 3 3 3 I [[[o [o [O [o [o [

I s s s E E E E

OEDD ©EEE 0S8 ©800

@88C G880 6UE0 G880

0000 0000 0000 0000 b | o |

000 dooo 0000 0ooo OoO0o0 || Ooood OoOo0O || oood

3 3 3 3 | o o | N

I 3 I I

oEDD ©EEE 0EEE ©E00

@880 GEE0 0080 eSO

0000 0000 0000 0000

0000 O©O00 0000 0000 o A O o

= = = & HH FHH B

I s s s

oEDD ©EEE 0S8 ©E00

@88C G8S0 6UE0 8880

< Al

16 cores = 128 ALUs

= 16 simultaneous instruction streams

Kayvon Fataha”%?;SZN: Principles of Computer Architecture

Kayvon Fatahalian, 2008

32

33

16 cores, each with 8 ALUs. Cores here run different programs
(some are processing vertices, some are processing fragments)

primitives EH_I‘ EE'_H HH EH-H
verices |HEEH] FHEFH| [FEEH] [FEEH
fragments 5E|_;E| EEI-HE] HH EH-EH

< Al

. . 33
KayVon Fataha'@%sszn: Principles of Computer Architecture Kayvon Fatahallan, 2008

Each Core Does Fine-Grained Multi-threading

Time No need for branch prediction and out-of-
Wrap: a group of '*x order execution. Simple core design.

threads (8 here)

e |[=
L ==

Warp 3, instruction 60

IRRRARRRRRRRAARA

Warp 3, instruction 61

IRRRARRRARRRRRRN .""" oy Fonain 08

i
j::

(]
[[]
[[]
[[]
ad
g
g
a0

i
ol

/N
/N
/N
/N
/N
/N
/N
/N
/N
/N
/N
/N
/N
/N
/N
/N

I
iE
I
j::

/N
/N
/N
/N
O
/N
/N
/N
/N
/N
(i
/N
/N
/N
/N
/N

li
H
i
H

35

Nvidia Maxwell GPU (2014)

* Today: General Purpose GPU (GPGPU), used for any massive
parallel applications:
* Physics simulation

* Deep learning
* Computer vision

36

Nvidia Maxwell GPU (2014)

* Today: General Purpose GPU (GPGPU), used for any massive

parallel applications:
NVIDIA Corporation

$578 34 135164.63% +576.70 MAX

After Hours: $577.00 (v -0.23%) -$1.34
Closed: May 5, 7:59:33 PM UTC-4 - USD - NASDAQ - Disclaimer

1D 5D ™ 6M YTD 1Y 5Y MAX

700
600
500
400
300
200

100

T T T T
2000 2005 2010 2015 2020

36

Entering the Era of Specialization

Entering the Era of Specialization

* GPUs are very efficient for massively parallel program

37

Entering the Era of Specialization

* GPUs are very efficient for massively parallel program

» But are still fairly general, so there are still many inefficiencies
e Still need to fetch and decode instructions
 Still have (very large) caches, so data delivery isn’t efficient

37

Entering the Era of Specialization

* GPUs are very efficient for massively parallel program

» But are still fairly general, so there are still many inefficiencies
e Still need to fetch and decode instructions
 Still have (very large) caches, so data delivery isn’t efficient

* |dea: instead of building general-purpose processors that can
do everything, but inefficiently, let’s build specialized processors
that can only do limited things, but extremely efficiently.

37

Entering the Era of Specialization

* GPUs are very efficient for massively parallel program

» But are still fairly general, so there are still many inefficiencies
e Still need to fetch and decode instructions
 Still have (very large) caches, so data delivery isn’t efficient

* |dea: instead of building general-purpose processors that can
do everything, but inefficiently, let’s build specialized processors
that can only do limited things, but extremely efficiently.

e A.k.a., domain-specific accelerators

37

Example: Vector Dot Product

a[5]

a[4]

a[3]

a[2]

a[1]

a[0]

— — — — — —
0 < (4] N o
r i = =T S | — MAC

Example: Vector Dot Product

a[5]

a[4]

a[3]

a[2]

a[1]

a[0]

v

b[5]

b[4]

b[3]

b[2]

b[1]

b[0]

MAC

Multiplicand Multiplier
d !
Multiplier
.
Adder
Register
Result

38

Example: Vector Dot Product

a[5]

a[4]

a[3]

al2]

a[1]

v

b[5]

b[4]

b[3]

b[2]

b[1]

a[0] x b[0]

MAC

Multiplicand Multiplier
d !
Multiplier
.
Adder
Register
Result

39

Example: Vector Dot Product

a[5]

a[4]

a[3]

a[2]

v

b[5]

b[4]

b[3]

b[2]

a[0] x b[0]
+ a[1] x b[1]

MAC

Multiplicand Multiplier
d !
Multiplier
.
Adder
Register
Result

40

Example: Vector Dot Product

a[5]

a[4]

a[3]

v

b[5]

b[4]

b[3]

a[0] x b[0]
+ a[1] x b[1]
+ a[2] x b[2]

MAC

Multiplicand Multiplier
d !
Multiplier
.
Adder
Register
Result

41

Example: Vector Dot Product

Multiplicand Multiplier
d d
Multiplier
.
Adder
a[5]
a[4] A 4
Register
a[0] x b[0] Result
+ a[1] x b[1]
+ a[2] x b[2]
+ a[3] x b[3]

b[5]
b[4]

MAC

Example: Vector Dot Product

a[5]

v

b[5]

a[0] x b[0]
+ a[1] x b[1]
+ a[2] x b[2]
+ a[3] x b[3]
+ a[4] x b[4]

MAC

Multiplicand Multiplier
d !
Multiplier
.
Adder
Register
Result

43

Example: Vector Dot Product

Multiplicand Multiplier
d !
Multiplier
.
Adder
Register

p = a[0] x b[0] Result
+ a[1] x b[1]
+a[2] x b[2]
+ a[3] x b[3]
—P | . ai]xbl]
+ a[5] x b[5]

MAC

Example: Vector Dot Product

Multiplicand Multiplier

* Does nothing but vector dot product | |
e No instruction fetch and decode Mulsiplier
(there is no instruction)) 1
, , Adder
e The register is close to the ALU and
gets reused over and over: good
data delivery efficiency i Register
 \Very simple control
ry p p = a[0] x b[0] Result
+ a[1] x b[1]
o
— + a[4] x b[4]
+ a[5] x b[5]

MAC

44

Matrix Vector Multiplication

a[5]

a[4]

a[3]

al2]

a[1]

a[o]

'

b[5]

b[4]

b[3]

b[2]

b[1]

b[0]

MAC

45

Matrix Vector Multiplication

a[5]

a[4]

a[3]

al2]

a[1]

a[o]

'

™ Larw] Ly} == - .
) < () (2] o (=)
Red L d d Red Rl
Qo Qo o Qo Qo Qo

G| | 8| 8| =| 8

Red Rd Rl d d Red

O o o 3] o o

MAC

MAC

45

Matrix Vector Multiplication

a[5]
a[4]
a[3]
al2]
a[1]
a[0] x b[0]
Z|2|8| 8|5 |—>
MAC
la[O]
21 5(%|8|5|§|—»
MAC

Matrix Vector Multiplication

a[5]

a[4]

a[3]

al2]

'

a[0] x b[0]
+ a[1] x b[1]

b[5]
b[4]
b[3]
b[2]
'

MAC

la[ﬂ

a[0] x c[0]

c[5]
cl4]
c[3]
c[2]
c[1]
|

MAC

Matrix Vector Multiplication

a[5]

a[4]

a[3]

'

a[0] x b[0]
+ a[1] x b[1]
+ a[2] x b[2]

b[5]
b[4]
b[3]

MAC

l a[2]

a[0] x c[0]
+ a[1] x c[1]

c[5]
c[4]
c[3]
cl[2]
'

MAC

Matrix Vector Multiplication

a[5]

a[4]

'

a[0] x b[0]
+ a[1] x b[1]
+ a[2] x b[2]
+ a[3] x b[3]

b[5]
b[4]

MAC

l a[3]

a[0] x c[0]
+ a[1] x c[1]
+ a[2] x c[2]

c[5]
c[4]
c[3]

MAC

Matrix Vector Multiplication

a[5]

'

a[0] x b[0]
+ a[1] x b[1]
+ a[2] x b[2]
+ a[3] x b[3]
+ a[4] x b[4]

MAC

l a[4]

a[0] x c[0]
+ a[1] x c[1]
+ a[2] x c[2]
+ a[3] x c[3]

b[5]

c[5]
cl[4]

MAC

Matrix Vector Multiplication

'

p1 =a[0] x b[0]
+ a[1] x b[1]
+ a[2] x b[2]
+ a[3] x b[3]
+ a[4] x b[4]
+ a[5] x b[5]

l a[5]

c[5]

a[0] x c[0]
+ a[1] x c[1]
+ a[2] x c[2]
+ a[3] x c[3]
+ a[4] x c[4]

51

Matrix Vector Multiplication

'

p1 =a[0] x b[0]
+ a[1] x b[1]
+ a[2] x b[2]
—l + a[3] x b[3]
+ a[4] x b[4]
+ a[5] x b[5]

'

p2 =a[0] x c[0]
+ a[1] x c[1]
+ a[2] x c[2]
— + a[3] x c[3]
+ a[4] x c[4]
+ a[5] x c[5]

52

Matrix Matrix Multiplication

a[5]

a[4]

a[3]

al2]

a[1]

a[o]

—» | MAC

b[5]
b[4]
b[3]
b[2]
b[1]
b[0]

MAC

c[5]
cl[4]
c[3]
cl[2]
c[1]
c[o]
}

Matrix Matrix Multiplication

d[5]
a[5] d[4]
a[4] d[3]
a[3] d[2]
a[2] d[1]
a[1] d[o0]
a[0]

' '

MAC | —» | MAC

b[5]
b[4]
b[3]
b[2]
b[1]
b[0]
'

' '

MAC — MAC

c[5]
cl[4]
c[3]
cl[2]
c[1]
c[o]
'

Matrix Matrix Multiplication

* Systolic array (Kung & Leiserson,

d[5]

1978). Basically a matrix multiplication

a[5]

d[4]

engine.

a[4]

d[3]

e Convolution neural network heavily

a[3]

d[2]

relies on this. Used in Google’s TPU,

al2]

d[1]

among other industry products.

a[1]

d[o0]

a[o]

'

'

b[5]
b[4]
b[3]
b[2]
b[1]
b[0]
}

MAC

MAC

'

'

c[5]
cl[4]
c[3]
cl[2]
c[1]
c[o]
}

MAC

MAC

53

Google Tensor Processing Unit

e Convolution in deep learning can be transformed to matrix multiplication.

e TPU: specialized processor (i.e., systolic array architecture) for tensor
processing (matrix multiply)
* 30x~80x more power-efficient than GPU

p— — DDR3 DRAM Chips | ||

. \/ 30 GiBls
14 GiB/s DDR3 30 GiB/s Weight FIFO)
) nterfaces | ——— |__(Weight Fetcher) |
|m—a

e 2\ (TR
2
™ 8 Unified 167 Matrix Multiply
$ £ , 8 10 GiB/s Buffer Systolic |GiB/s Unit
14 GiB/s - g 14 GiB/s & (Local Data (64K per cycle)
< :} 3 et <:> 8 Activation Setup
g £ Storage)
b7
o
i - & J\ 4 [Accumulators J
t [Activation]
=
E 167 GiB/s
L [Normalize / Pool]
[] oftchip 1o i i
[] pata Buffer
[:] Computation _ _

. Control

Another Domain: Video Compression

Numbers credit: Kayvon Fatahalian . 4% KAk Y

P
»
o]

Another Domain: Video Compression

30-second video @ 1080p resolution (1920 x 1080 pixels per frame) @ 30 frames per second (FPS)
3 colors per pixel + 1 byte per color = 6.2 MB/frame — 6.2 MB x 30 s x 30 FPS = 5.2 GB total size
Actual H.264 video file size: 65.4 MB (80-to-1 compression ratio).

Compression/encoding done in real-time without you even realizing it!

.

Numbers credit: Kayvon Fatahalian &5
e

Another Domain: Computational Photography

* Use computational algorithms to mimic a DSLR.

* Must be done in real-time. Executed on a dedicated Image
Signal Processor (ISP).

Conventional cameras Today’s “cameras”

56

Another Domain: Computational Photography

Portrait mode: simulate a large aperture

HDR mode: simulate a high
dynamic range sensor

57

360° (VR/Panoramic) Videos and Photos

https://www.cursosfotografiabarcelona.com/como-hacer-una-foto-esferica-360-grados-reflex/

VR Video Capturing

Facebook Surround 360

tatic. | rcontent.com/media/r: rch. le.com/en, rchive/4.
https://www.wired.com/2016/04/heres-360-degree-video-camera-facebook-giving-away/

https://twitter.com/yitechnology/status/918116570559336448

Google Jump VR

59

https://twitter.com/yitechnology/status/918116570559336448
https://www.wired.com/2016/04/heres-360-degree-video-camera-facebook-giving-away/
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45617.pdf

Autonomous Machines

https://www.wired.com/story/news-rules-clear-way-self-driving-cars/

Autonomous Machines

61

https://www.wired.com/2017/05/the-physics-of-drones/

Ing

Render

Istic

Photoreal

https://notrianglestudio.com/all-categories-blog/why-photorealistic-renderings-should-be-part-of-your-real-estate-marketing-strategy

O)
-
p=
O
©
-
)
oC
O
fd
R
©
QO
-
O
e
O
L
al

https://www.youtube.com/watch?v=uY4cE_nq2IY

Photorealistic Rendering

https://www.digitaltrends.com/gaming/battlefield-v-dxr-ray-tracing-tested/

Today’s Processor Chips are Full of Accelerators

Advanced power
management

High-bandwidth
caches

Cryptography
acceleration

High-performance
unified memory

Machine learning
accelerators

High-efficiency High-performance Secure

CPU cores CPU cores

Advanced

display engine

HDRvideo
processor

Enclave

%M1

Always-on
processor

High-quality image Low-power
signal processor design

High-performance
NVMe storage

g == =g
_ﬁ:n. .-.?‘ 15
v ¥ puul-if

Low-power video Neural Engine
playback

High-performance
GPU

HDR imaging

Gen4PCl
Express

High-performance
video editing
Performance
controller
Thunderbolt / USB 4
controller

; iFey - il é} c-esto rn
High-efficiency audio Advanced Y - ! ”
processor silicon ; = =T TR I i

, Wl@

) ik Wi ¥ e e
packaging : -5 & ; gL iyt o mmy R
I 2o LSl e

https://www.techradar.com/news/apple-m1-chip https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive

65

Today’s Processor Chips are Full of Accelerators

Qualcomm Qualcomm
Snapdragon Snapdragon
820 SoC 835 SoC

Qualcomm’ Spectra™
480 ISP

Qualcomm’ Adreno™
650 GPU

Qualcomm’ Hexagon™
698 Processor

Qualcomm® | Qualcomm® | Qualcomm’
Sensing Processor Kryo™
Hub Security 585 CPU

~Spectra ™ ISP a5
i IR -

IHI o = —

66

Traditional Scope of Computer Systems

* Take a program and try to
figure out how to best
execute on the hardware

Problem

Algorithm

Program

Instruction Set
Architecture

Microarchitecture

Circuit

67

Real Scope of Computer Systems

e Understand the problem to be
solved, design algorithms,
understand algorithms
characteristics to design the
best computer systems.

e |t’s no longer enough to work
with a given program without

understanding it.

Problem

Algorithm

Program

Instruction Set
Architecture

Microarchitecture

Circuit

68

CSC 292/572: Mobile Visual Computing

Computational t Problem
photography
Display and lightning Algorithm
systems
Program

Computer graphics
Instruction Set

Architecture

AR/VR

Microarchitecture
Video/image

compression

v Circuit

69

The Most Important Take Away of 252

* “There is no magic.”

e Every thing can be derived from first principles. Trust your
logical reasoning.

* Apply to virtually everything in science and engineering.

70

The Second Most Important Take Away of 252

e “Things don’t have to be this way.”

e As long as you don’t violate physics, you can design a computer
however you want.

* But every design decision you make usually involves certain trade-
offs. Be clear what your design goal is.

71

The Third Most Important Take Away of 252

e Virtual all computer system design practices follow a small set of
basic principles.

e |t is these basic principles that are important, not the practices.

— Locality —~ Heterogeneity

Make < Parallelism Combine the

common best of both < Hierarchy Virtualization
case faster Speculation worlds

- Specialization ~ #pragma

72

