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• Final exam: May 12, 19:15 PM -- 22:15 PM; online. 
• Past exam & Problem set: https://www.cs.rochester.edu/courses/

252/spring2021/handouts.html 
• Exam will be electronic using Gradescope, but we will send you 

an PDF version so that you can work offline in case 
• 1) you don’t have Internet access at the exam time or 
• 2) you lose Internet access. 
• Write down the answers on a scratch paper, take pictures, and send us the 

pictures

https://www.cs.rochester.edu/courses/252/spring2021/handouts.html
https://www.cs.rochester.edu/courses/252/spring2021/handouts.html
https://www.cs.rochester.edu/courses/252/spring2021/handouts.html
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• Open book test: any sort of paper-based product, e.g., book, 
notes, magazine, old tests. 

• Exams are designed to test your ability to apply what you have 
learned and not your memory (though a good memory could help). 

• Nothing electronic (including laptop, cell phone, calculator, 
etc) other than the computer you use to take the exam. 

• Nothing biological, including your roommate, husband, wife, 
your hamster, another professor, etc. 

• “I don’t know” gets15% partial credit. Must erase everything else.
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Energy dissipated for every transition (0->1 or 1->0)
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v

C

Vdd

Average dynamic power of a transistor: 
P = α • (E / T) = α • E f = ½ α C Vdd

2 f

α: switch activity factor. No switching, no dynamic power consumption
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Dynamic Power

P = k C V2 f
• Increasing f requires V to be increased proportionally

• Intuitively: a higher frequency means a shorter cycle time, which 
means the critical path of your processor needs to be shorter, which 
requires faster transistors, which you get by increasing the voltage

• “Overclocking” just increases the clock speed without increasing 
voltage => machine might crash (cycle time shorter than the critical 
path delay)

• Corollary: reducing voltage requires reducing frequency 
• 15% reduction in voltage requires about 15% slow down in frequency
• What’s the impact on dynamic power? 0.853 ≈ 60% -> 40% dynamic 

power reduction.
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Dynamic Power Favors Parallelisms

• Dynamic power favors parallel processing over higher clock rate
• Take a core and replicate it 4 times: 4x speedup & 4x power
• Take a core and clock it 4 times faster: 4x speedup but 64x 

dynamic power!
• Another way to think about this

• If a task can be perfectly parallelized by 4 cores, we can 
reduce the clock frequency of each core to 1/4 while retaining 
the same performance

• Dynamic power becomes 4 x (1/4)3 = 1/16

!8

P = k C f3
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• Gordon Moore in 1965 predicted that the number of transistors 
doubles every year

• In 1975 he revised the prediction to doubling every 2 years
• Today’s widely-known Moore’s Law: number of transistors double 

about every 18 months (Moore never used the number 18…)



Moore’s Law
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!11Design of Ion-Implanted MOSFET’s with Very Small Physical Dimensions. Proc. of IEEE. Dennart et al. 1974.

Parameter Value Scaled 
Value

Dopant 
concentrations

Na, Nd Na/α, Nd/
α

Dimensions L, W, 
Tox

αL, αW, 
αTox

Field Ε Ε
Voltage V αV
Capacitance C αC
Current I αI

Scale factor α<1 
α = 0.7 => 2X more transistors!

Propagation time 
(~CV/I)

t αt

Frequency (1/t) f f/α

Power (CV2f) P α2P
Power/area 
(Power density)

Pd Pd

Transistors/Area d d/α2

}

Dennard Scaling
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Moore’s law gave us more transistors;

Dennard scaling made them useful.


Bob Colwell, DAC 2013, June 4, 2013
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2005: End of Dennard Scaling

•What Happened?

• Supply voltage Vdd stops scaling (Can’t drop voltage below ~1 V) 
• Remember Power = CV2f

•Why?

• There is a fundamental limit as to how much voltage we need to 

switch a transistor, called threshold voltage (Vth). 
• Vth stopped scaling because leakage power/reliability/variation 

becomes huge issues, and accordingly Vdd stops scaling
• The demise of Dennard Scaling means the power density 

(power consumption per unit area) will increase rather than 
staying stable.
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Dark Silicon 
n. [därk, sĭl′ĭ-kən, -kŏn′] 
More transistors on chip (due to Moore’s Law), but a growing 
fraction cannot actually be used due to power limits (due to the 
end of Dennard Scaling).
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• Initial response has been to lower frequency and increase cores / chip
• There is a limit to core scaling. Why?
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www.pnas.org/cgi/doi/10.1073/pnas.1302988110        PNAS   |    April 2, 2013   |   vol. 110   |   no. 14   |   5273

No Moore’s Law for batteries
Fred Schlachter1

American Physical Society, Washington, DC 20045

The public has become accustomed to 
rapid progress in mobile phone technol-
ogy, computers, and access to information; 
tablet computers, smart phones, and other 
powerful new devices are familiar to most 
people on the planet. 

These developments are due in part to the 
ongoing exponential increase in computer 
processing power, doubling approximately 
every 2 years for the past several decades. 
This pattern is usually called Moore’s Law 
and is named for Gordon Moore, a co-
founder of Intel. The law is not a law like 
that for gravity; it is an empirical obser-
vation, which has become a self-fulfilling 
prophecy. Unfortunately, much of the 
public has come to expect that all technol-
ogy does, will, or should follow such a law, 
which is not consistent with our everyday 
observations: For example, the maximum 
speed of cars, planes, or ships does not in-
crease exponentially; maximum speed bare-
ly increases at all.

Cars require a portable fuel, preferably 
one that is widely available, low in cost, 
and with a high energy density. Gasoline 
is nature’s ideal fuel. A full tank of gasoline 
contains as much energy as 1,000 sticks of 
dynamite. However, cost, national security, 
global climate change, and pollution lead 
to a national need to wean ourselves from 
powering cars with gasoline. There are not 
many alternate candidates. Natural gas is 
still a fossil fuel, and hydrogen can pres-
ently be produced only at a high energy cost 
and has low energy density. And then there 
is electricity. We power our mobile phones 
and our laptops with lithium-ion batter-
ies—why not power our cars this way? We 
already have an infrastructure for generat-
ing and distributing electricity. If only we 
had batteries that could store enough ener-
gy to power a car several hundred kilome-
ters and that were not too heavy and would 
not cost a fortune.

Sadly, such batteries do not exist. There 
is no Moore’s Law for batteries. The reason 

there is a Moore’s Law for computer pro-
cessors is that electrons are small and they 
do not take up space on a chip. Chip per-
formance is limited by the lithography tech-
nology used to fabricate the chips; as lithog-
raphy improves ever smaller features can be 
made on processors. Batteries are not like 
this. Ions, which transfer charge in batter-
ies, are large, and they take up space, as do 
anodes, cathodes, and electrolytes. A D-cell 
battery stores more energy than an AA-cell. 
Potentials in a battery are dictated by the 
relevant chemical reactions, thus limiting 
eventual battery performance. Significant 
improvement in battery capacity can only 
be made by changing to a different chem-
istry.

Scientists and battery experts, who have 
been optimistic in the recent past about im-
proving lithium-ion batteries and about de-
veloping new battery chemistries—lithium/
air and lithium/sulfur are the leading can-
didates—are considerably less optimistic 
now. Improvement in energy storage den-
sity of lithium-ion batteries has been only 
incremental for the past decade. A large-
scale research consortium (the Joint Center 
for Energy Storage Research) has been cre-
ated with an ambitious goal of improving 
energy storage density by a factor of five 
and reducing cost by a factor of five in 5 
years. This can only happen if there is a ter-
rific, wonderful, and amazing breakthrough 
in battery technology. One can only hope.

In addition to increased performance 
and lower cost, batteries need to be safe. Of 
course gasoline is not safe, there are hun-
dreds of thousands of car fires every year in 
the United States. Nonetheless, the public 
is more wary of electricity than of gasoline, 
and the recent safety issues of lithium-ion 
batteries on Boeing 787 aircraft have done 
little to reassure the public about the safety 
of such batteries. Consumers are question-
ing the practice of putting into cars batter-
ies that can burst into flames.

Meanwhile, while waiting for a wonderful 

breakthrough in battery technology, we do 
have a valuable and underutilized resource: 
energy efficiency, which in many cases is 
free or even has a negative cost. Cars can 
be made more energy efficient by reducing 
size, weight, and power. Incentives to re-
duce vehicle miles driven can be made by 
improving access to public transit. There 
are policy and financial incentives to driv-
ing less, such as higher taxes on gasoline to 
investments in the public transportation 
infrastructure. 

Improving the energy efficiency of cars 
is not a long-term solution to the problems 
related to combustion of fossil fuels, as cars 
will still be powered by gasoline. However, 
improved energy efficiency can happen and 
is happening. A good example of improved 
energy efficiency is hybrid cars, which can 
be considerably more energy efficient than 
traditional cars. We must take this prag-
matic direction while awaiting that terrific 
breakthrough in battery technology we all 
so desire.

Author contributions: F.S. wrote the paper.

The author declares no conflict of interest.
1E-mail: fsschlachter@gmail.com.

Fred Schlachter.
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Sources of Energy-Inefficiencies
General-Purpose CPU = Instruction Delivery + Data Feeding + Execution + 
Control, where instruction delivery, data feeding & control are pure overhead

!21
Understanding sources of inefficiency in general-purpose chips, Hameed et al., ISCA 2010
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ALU

RF

Ctrl

Pipe
D$

IF

64-bit DP 
20pJ 26 pJ 256 pJ 

1 nJ 

500 pJ Efficient 
off-chip link 

256-bit buses 

16 nJ 
DRAM 
Rd/Wr 

256-bit access 
8 kB SRAM 50 pJ 

20mm 

Communication Dominates Arithmetic 

Challenges for future computing systems, Bill Dally, 2015

Data movement energy >> computation energy
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SIMD
• Single Instruction (operating on) Multiple Data

• Amortizing the cost of instruction delivery/

control across many execution units (even 
cores).


• Almost all modern ISAs provide such 
instructions:


• x86: MMX/SSE/AVX 
• Arm: Neon

!24
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Graphics Processing Units/GPUs (SIMT)
• Designed for graphics rendering, which is massively parallel.
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EE382N: Principles of Computer Architecture

3Adding Programmability to the 
Graphics Pipeline

3D Application
or Game

3D API:
OpenGL or 
Direct3D

Programmable
Vertex

Processor

Primitive
Assembly

Rasterization & 
Interpolation

3D API 
Commands

Transformed 
Vertices

Assembled 
Polygons, 
Lines, and 

Points

GPU 
Command & 

Data  Stream

Programmable
Fragment
Processor

Rasterized
Pre-transformed

Fragments

Transformed
Fragments

Raster
Operation

s

Framebuffer

Pixel 
UpdatesGPU

Front 
End

Pre-transformed 
Vertices

Vertex Index 
Stream

Pixel 
Location 
Stream

CPU – GPU Boundary

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign

Graphics rendering pipeline based on rasterization

Same program

for all vertices

Same program

for all pixels
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15Execute shader

15

ALU
(Execute)

Fetch/
Decode

Execution
Context

<diffuseShader>:

sample r0, v4, t0, s0

mul  r3, v0, cb0[0]

madd r3, v1, cb0[1], r3

madd r3, v2, cb0[2], r3

clmp r3, r3, l(0.0), l(1.0)

mul  o0, r0, r3

mul  o1, r1, r3

mul  o2, r2, r3

mov  o3, l(1.0)

Kayvon Fatahalian, 2008Kayvon Fatahalian
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23Two cores   (two fragments in parallel)

23

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

<diffuseShader>:

sample r0, v4, t0, s0

mul r3, v0, cb0[0]

madd r3, v1, cb0[1], r3

madd r3, v2, cb0[2], r3

clmp r3, r3, l(0.0), l(1.0)

mul o0, r0, r3

mul o1, r1, r3

mul o2, r2, r3

mov o3, l(1.0)

fragment 1

<diffuseShader>:

sample r0, v4, t0, s0

mul r3, v0, cb0[0]

madd r3, v1, cb0[1], r3

madd r3, v2, cb0[2], r3

clmp r3, r3, l(0.0), l(1.0)

mul o0, r0, r3

mul o1, r1, r3

mul o2, r2, r3

mov o3, l(1.0)

fragment 2

Kayvon Fatahalian, 2008Kayvon Fatahalian
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24Four cores   (four fragments in parallel)

24

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

Kayvon Fatahalian, 2008Kayvon Fatahalian
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25Sixteen cores   (sixteen fragments in parallel)

25

ALU ALU

ALUALU

ALU ALU

ALUALU

ALU ALU

ALUALU

ALU ALU

ALUALU

16 cores = 16 simultaneous instruction streams

Kayvon Fatahalian, 2008Kayvon Fatahalian
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26Instruction stream coherence

26

<diffuseShader>:

sample r0, v4, t0, s0

mul r3, v0, cb0[0]

madd r3, v1, cb0[1], r3

madd r3, v2, cb0[2], r3

clmp r3, r3, l(0.0), l(1.0)

mul o0, r0, r3

mul o1, r1, r3

mul o2, r2, r3

mov o3, l(1.0)

But… many fragments should
be able to share an instruction
stream! 

Kayvon Fatahalian, 2008Kayvon Fatahalian
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28Add ALUs

28

Fetch/
Decode

Idea #2:

Amortize cost/complexity of
managing an instruction
stream across many ALUs

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

SIMD processingCtx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Ctx Data 

Kayvon Fatahalian, 2008Kayvon Fatahalian �31
N

EE382N: Principles of Computer Architecture

27Recall: simple processing core

27

Fetch/
Decode

ALU
(Execute)

Execution
Context

Kayvon Fatahalian, 2008Kayvon Fatahalian
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31Modifying the shader

31

Fetch/
Decode

<VEC8_diffuseShader>:

VEC8_sample vec_r0, vec_v4, t0, vec_s0

VEC8_mul  vec_r3, vec_v0, cb0[0]

VEC8_madd vec_r3, vec_v1, cb0[1], vec_r3

VEC8_madd vec_r3, vec_v2, cb0[2], vec_r3

VEC8_clmp vec_r3, vec_r3, l(0.0), l(1.0)

VEC8_mul  vec_o0, vec_r0, vec_r3

VEC8_mul  vec_o1, vec_r1, vec_r3

VEC8_mul  vec_o2, vec_r2, vec_r3

VEC8_mov  vec_o3, l(1.0)

Ctx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Ctx Data 

2 31 4

6 75 8

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

Kayvon Fatahalian, 2008Kayvon Fatahalian

SIMD/vector instructions, each operates on a vector of 8 elements here.
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16 cores, each with 8 ALUs. Each core here runs the same 
program (fragment shader)

N
EE382N: Principles of Computer Architecture

32128 fragments in parallel 

32
= 16 simultaneous instruction streams

16 cores = 128 ALUs

Kayvon Fatahalian, 2008Kayvon Fatahalian
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16 cores, each with 8 ALUs. Cores here run different programs 
(some are processing vertices, some are processing fragments)

N
EE382N: Principles of Computer Architecture

33128 [                       ] in parallel 

33

vertices / fragments
primitives

CUDA threads
OpenCL work items

compute shader threads

primitives

vertices

fragments

Kayvon Fatahalian, 2008Kayvon Fatahalian



Each Core Does Fine-Grained Multi-threading
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N
EE382N: Principles of Computer Architecture

33128 [                       ] in parallel 

33

vertices / fragments
primitives

CUDA threads
OpenCL work items

compute shader threads

primitives

vertices

fragments

Kayvon Fatahalian, 2008Kayvon Fatahalian

Wrap: a group of 
threads (8 here)

No need for branch prediction and out-of-
order execution. Simple core design.



Nvidia Maxwell GPU (2014)
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• Today: General Purpose GPU (GPGPU), used for any massive 
parallel applications:


• Physics simulation 
• Deep learning 
• Computer vision
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Entering the Era of Specialization
• GPUs are very efficient for massively parallel program
• But are still fairly general, so there are still many inefficiencies


• Still need to fetch and decode instructions 
• Still have (very large) caches, so data delivery isn’t efficient

• Idea: instead of building general-purpose processors that can 
do everything, but inefficiently, let’s build specialized processors 
that can only do limited things, but extremely efficiently.

• A.k.a., domain-specific accelerators

!37



Example: Vector Dot Product
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Example: Vector Dot Product
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Example: Vector Dot Product
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Example: Vector Dot Product
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MAC

a[0] x b[0]

Register

+ a[1] x b[1]
+ a[2] x b[2]
+ a[3] x b[3]
+ a[4] x b[4]
+ a[5] x b[5]

p =



• Does nothing but vector dot product

• No instruction fetch and decode 

(there is no instruction) 
• The register is close to the ALU and 

gets reused over and over: good 
data delivery efficiency 

• Very simple control

Example: Vector Dot Product

!44

MAC

a[0] x b[0]

Register

+ a[1] x b[1]
+ a[2] x b[2]
+ a[3] x b[3]
+ a[4] x b[4]
+ a[5] x b[5]

p =



Matrix Vector Multiplication
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Matrix Vector Multiplication
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Matrix Vector Multiplication
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Matrix Vector Multiplication
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Matrix Vector Multiplication
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a[5]

a[4]

b[
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MAC

MAC

c[
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c[
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a[0] x b[0]
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Matrix Vector Multiplication
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a[5]

MAC

MAC

c[
5]

a[0] x b[0]
+ a[1] x b[1]

a[0] x c[0]

+ a[2] x b[2]

+ a[1] x c[1]

+ a[3] x b[3]

+ a[2] x c[2]

+ a[4] x b[4]

+ a[3] x c[3]

+ a[5] x b[5]

+ a[4] x c[4]

p1 =



Matrix Vector Multiplication

!52

MAC

MAC

a[0] x b[0]
+ a[1] x b[1]

a[0] x c[0]

+ a[2] x b[2]

+ a[1] x c[1]

+ a[3] x b[3]

+ a[2] x c[2]

+ a[4] x b[4]

+ a[3] x c[3]
+ a[4] x c[4]

p1 =

p2 =

+ a[5] x c[5]

+ a[5] x b[5]



Matrix Matrix Multiplication
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Matrix Matrix Multiplication
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a[5]

a[4]

a[3]

a[2]

a[1]

a[0]

b[
5]

b[
4]

b[
3]

b[
2]

b[
1]

b[
0] MAC

MACc[
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c[
4]
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c[
2]

c[
1]
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MAC

MAC

d[5]
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• Systolic array (Kung & Leiserson, 
1978). Basically a matrix multiplication 
engine.


• Convolution neural network heavily 
relies on this. Used in Google’s TPU, 
among other industry products.



Google Tensor Processing Unit
• Convolution in deep learning can be transformed to matrix multiplication.

• TPU: specialized processor (i.e., systolic array architecture) for tensor 

processing (matrix multiply)

• 30x~80x more power-efficient than GPU

!54



Another Domain: Video Compression

!55Numbers credit: Kayvon Fatahalian



Another Domain: Video Compression

!55

 30-second video @ 1080p resolution (1920 x 1080 pixels per frame) @ 30 frames per second (FPS) 
 3 colors per pixel + 1 byte per color → 6.2 MB/frame → 6.2 MB x 30 s x 30 FPS = 5.2 GB total size 
 Actual H.264 video file size: 65.4 MB (80-to-1 compression ratio). 
 Compression/encoding done in real-time without you even realizing it!

Numbers credit: Kayvon Fatahalian



Another Domain: Computational Photography

!56

Conventional cameras Today’s “cameras”

• Use computational algorithms to mimic a DSLR.

•Must be done in real-time. Executed on a dedicated Image 

Signal Processor (ISP).



Another Domain: Computational Photography

!57

Portrait mode: simulate a large aperture

HDR mode: simulate a high 
dynamic range sensor



360° (VR/Panoramic) Videos and Photos
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https://www.cursosfotografiabarcelona.com/como-hacer-una-foto-esferica-360-grados-reflex/

https://www.cursosfotografiabarcelona.com/como-hacer-una-foto-esferica-360-grados-reflex/


VR Video Capturing

!59
https://twitter.com/yitechnology/status/918116570559336448

Google Jump VR

https://www.wired.com/2016/04/heres-360-degree-video-camera-facebook-giving-away/

Facebook Surround 360

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45617.pdf

https://twitter.com/yitechnology/status/918116570559336448
https://www.wired.com/2016/04/heres-360-degree-video-camera-facebook-giving-away/
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45617.pdf


Autonomous Machines

!60https://www.wired.com/story/news-rules-clear-way-self-driving-cars/

https://www.wired.com/story/news-rules-clear-way-self-driving-cars/


Autonomous Machines

!61https://www.wired.com/2017/05/the-physics-of-drones/

https://www.wired.com/2017/05/the-physics-of-drones/


Photorealistic Rendering

!62https://notrianglestudio.com/all-categories-blog/why-photorealistic-renderings-should-be-part-of-your-real-estate-marketing-strategy

https://notrianglestudio.com/all-categories-blog/why-photorealistic-renderings-should-be-part-of-your-real-estate-marketing-strategy


Photorealistic Rendering

!63https://www.youtube.com/watch?v=uY4cE_nq2IY

https://www.youtube.com/watch?v=uY4cE_nq2IY


Photorealistic Rendering
• Digital post-processing pushes the limit of photography

• Requires optics/sensor/algorithm co-design

!64https://www.digitaltrends.com/gaming/battlefield-v-dxr-ray-tracing-tested/

https://www.digitaltrends.com/gaming/battlefield-v-dxr-ray-tracing-tested/


Today’s Processor Chips are Full of Accelerators

!65
https://www.techradar.com/news/apple-m1-chip https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive



Today’s Processor Chips are Full of Accelerators

!66

Qualcomm 
Snapdragon 

820 SoC

Qualcomm 
Snapdragon 

835 SoC



Traditional Scope of Computer Systems
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Problem

Algorithm

Program

Instruction Set

Architecture

Microarchitecture

Circuit

• Take a program and try to 
figure out how to best 
execute on the hardware



Real Scope of Computer Systems
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Problem

Algorithm

Program

Instruction Set

Architecture

Microarchitecture

Circuit

• Understand the problem to be 
solved, design algorithms, 
understand algorithms 
characteristics to design the 
best computer systems.


• It’s no longer enough to work 
with a given program without 
understanding it. 



CSC 292/572: Mobile Visual Computing
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Problem

Algorithm

Program

Instruction Set

Architecture

Microarchitecture

Circuit

Computer graphics

Video/image 
compression

Computational 
photography

AR/VR

Display and lightning 
systems



The Most Important Take Away of 252
• “There is no magic.”

• Every thing can be derived from first principles. Trust your 

logical reasoning.

• Apply to virtually everything in science and engineering.
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The Second Most Important Take Away of 252

• “Things don’t have to be this way.”

• As long as you don’t violate physics, you can design a computer 

however you want.

• But every design decision you make usually involves certain trade-

offs. Be clear what your design goal is.

!71



The Third Most Important Take Away of 252
• Virtual all computer system design practices follow a small set of 

basic principles.

• It is these basic principles that are important, not the practices.

!72

Make 
common 

case faster

Combine the 
best of both 

worlds

Locality

Parallelism

Speculation
Hierarchy

Heterogeneity

Virtualization

Specialization
{ {

#pragma


