CSC 252: Computer Organization Spring 2021: Lecture 3

Instructor: Yuhao Zhu

Department of Computer Science
University of Rochester

Announcement

- Programming Assignment 1 is out
 - Details: https://www.cs.rochester.edu/courses/252/spring2021/labs/assignment1.html
 - Due on Feb. 17, 11:59 PM
 - You have 3 slip days

7	8	Today	10	11	12	13
14	15	16	Due	18	19	20

Announcement

- Programming assignment 1 is in C language. Seek help from TAs.
- TAs are best positioned to answer your questions about programming assignments!!!
- Programming assignments do NOT repeat the lecture materials. They ask you to synthesize what you have learned from the lectures and work out something new.

Binary
000
001
010
011
100
101
110
111

Unsigned	Binary
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
3	3	011
-4 -3 -2	4	100
-3	5	101
-2	6	110
-1	7	111

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
3	3	011
-4 -3 -2	4	100
-3	5	101
-2	6	110
-1	7	111

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
3	3	011
-4	4	100
-4 -3 -2	5	101
-2	6	110
-1	7	111

$$101_2 = 1^*2^0 + 0^*2^1 + (-1^*2^2) = -3_{10}$$

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
	3	011
-4 -3 -2	4	100
-3	5	101
-2	6	110
-1	7	111

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
3	3	011
-4	4	100
-4 -3 -2	5	101
-2	6	110
-1	7	111

$$101_2 = 1^*2^0 + 0^*2^1 + (-1^*2^2) = -3_{10}$$

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
3	3	011
-4	4	100
-4 -3 -2	5	101
-2	6	110
-1	7	111

$$101_2 = 1^*2^0 + 0^*2^1 + (-1^*2^2) = -3_{10}$$

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
3	3	011
-4	4	100
-4 -3 -2	5	101
-2	6	110
-1	7	111

- Only 1 zero
- There is (still) a bit that represents sign!
- Unsigned arithmetic still works

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3 -2	101
-2	110
-1	111

- Only 1 zero
- There is (still) a bit that represents sign!
- Unsigned arithmetic still works

	010	
+)	101	
	111	

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3 -2	101
-2	110
-1	111

- Only 1 zero
- There is (still) a bit that represents sign!
- Unsigned arithmetic still works

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3 -2	101
-2	110
-1	111

- Only 1 zero
- There is (still) a bit that represents sign!
- Unsigned arithmetic still works

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-4 -3 -2	101
-2	110
-1	111

• 3 + 1 becomes -4 (called overflow. More on it later.)

 Suppose you want to define a variable that represents a person's age. What assumptions can you make about this variable's numerical value?

- Suppose you want to define a variable that represents a person's age. What assumptions can you make about this variable's numerical value?
 - Integer

- Suppose you want to define a variable that represents a person's age. What assumptions can you make about this variable's numerical value?
 - Integer
 - Non-negative

- Suppose you want to define a variable that represents a person's age. What assumptions can you make about this variable's numerical value?
 - Integer
 - Non-negative
 - Between 0 and 255 (8 bits)

- Suppose you want to define a variable that represents a person's age. What assumptions can you make about this variable's numerical value?
 - Integer
 - Non-negative
 - Between 0 and 255 (8 bits)
- Define a data type that captures all these attributes: unsigned char in C

- Suppose you want to define a variable that represents a person's age. What assumptions can you make about this variable's numerical value?
 - Integer
 - Non-negative
 - Between 0 and 255 (8 bits)
- Define a data type that captures all these attributes:
 unsigned char in C
 - Internally, an **unsigned char** variable is represented as a 8-bit, non-negative, binary number

 What if you want to define a variable that could take negative values?

- What if you want to define a variable that could take negative values?
 - That's what signed data types (e.g., int, short, etc.) are for

- What if you want to define a variable that could take negative values?
 - That's what signed data types (e.g., int, short, etc.) are for
- How are int values internally represented?

- What if you want to define a variable that could take negative values?
 - That's what signed data types (e.g., int, short, etc.) are for
- How are int values internally represented?
 - Theoretically could be either signed-magnitude or two's complement

- What if you want to define a variable that could take negative values?
 - That's what signed data types (e.g., int, short, etc.) are for
- How are int values internally represented?
 - Theoretically could be either signed-magnitude or two's complement
 - The C language designers chose two's complement

- What if you want to define a variable that could take negative values?
 - That's what signed data types (e.g., int, short, etc.) are for
- How are int values internally represented?
 - Theoretically could be either signed-magnitude or two's complement
 - The C language designers chose two's complement

```
int x = -5, y = 4;
int z = x + y;
fprintf(stdout, "%d\n", z);
fprintf(stdout, "%u\n", z);
```

C Data Type	32-bit	64-bit
(unsigned) char	1	1
(unsigned) short	2	2
(unsigned) int	4	4
(unsigned) long	4	8

	W			
	8	16	32	64
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808

C Data Type	32-bit	64-bit
(unsigned) char	1	1
(unsigned) short	2	2
(unsigned) int	4	4
(unsigned) long	4	8

	W			
	8	16	32	64
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808

C Data Type	32-bit	64-bit
(unsigned) char	1	1
(unsigned) short	2	2
(unsigned) int	4	4
(unsigned) long	4	8

• C Language

- •#include <limits.h>
- Declares constants, e.g.,
 - •ULONG_MAX
 - •LONG_MAX
 - •LONG_MIN
- Values platform specific

- What does 10.01₂ mean?
- C.f., Decimal
 - $12.45 = 1*10^{1} + 2*10^{0} + 4*10^{-1} + 5*10^{-2}$
- $10.01_2 = 1^21 + 0^20 + 0^2-1 + 1^2-2 = 2.25_{10}$

- What does 10.01₂ mean?
- C.f., Decimal
 - $12.45 = 1*10^{1} + 2*10^{0} + 4*10^{-1} + 5*10^{-2}$
- $10.01_2 = 1^21 + 0^20 + 0^2-1 + 1^2-2 = 2.25_{10}$

Decimal	Binary
0	00.00
0.25	00.01
0.5	00.10
0.75	00.11
1	01.00
1.25	01.01
1.5	01.10
1.75	01.11
2	10.00
2.25	10.01
2.5	10.10
2.75	10.11
3	11.00
3.25	11.01
3.5	11.10
3.75	11.11

- What does 10.01₂ mean?
- C.f., Decimal

•
$$12.45 = 1*10^{1} + 2*10^{0} + 4*10^{-1} + 5*10^{-2}$$

• $10.01_2 = 1^21 + 0^20 + 0^2-1 + 1^2-2 = 2.25_{10}$

Decimal	Binary
0	00.00
0.25	00.01
0.5	00.10
0.75	00.11
1	01.00
1.25	01.01
1.5	01.10
1.75	01.11
2	10.00
2.25	10.01
2.5	10.10
2.75	10.11
3	11.00
3.25	11.01
3.5	11.10
3.75	11.11

- What does 10.01₂ mean?
- C.f., Decimal

•
$$12.45 = 1*10^{1} + 2*10^{0} + 4*10^{-1} + 5*10^{-2}$$

•
$$10.01_2 = 1^21 + 0^20 + 0^2-1 + 1^2-2 = 2.25_{10}$$

0 1 2 3

Decimal	Binary
0	00.00
0.25	00.01
0.5	00.10
0.75	00.11
1	01.00
1.25	01.01
1.5	01.10
1.75	01.11
2	10.00
2.25	10.01
2.5	10.10
2.75	10.11
3	11.00
3.25	11.01
3.5	11.10
3.75	11.11

Can We Represent Fractions in Binary?

- What does 10.01₂ mean?
- C.f., Decimal

•
$$12.45 = 1*10^{1} + 2*10^{0} + 4*10^{-1} + 5*10^{-2}$$

•
$$10.01_2 = 1^21 + 0^20 + 0^2-1 + 1^2-2 = 2.25_{10}$$

0 1 2 3

	01.10	
+	01.01	
	10.11	

Decimal	Binary
0	00.00
0.25	00.01
0.5	00.10
0.75	00.11
1	01.00
1.25	01.01
1.5	01.10
1.75	01.11
2	10.00
2.25	10.01
2.5	10.10
2.75	10.11
3	11.00
3.25	11.01
3.5	11.10
3.75	11.11

Can We Represent Fractions in Binary?

- What does 10.01₂ mean?
- C.f., Decimal

•
$$12.45 = 1*10^{1} + 2*10^{0} + 4*10^{-1} + 5*10^{-2}$$

•
$$10.01_2 = 1^21 + 0^20 + 0^2-1 + 1^2-2 = 2.25_{10}$$

▊┼┼┼╂┼┼┼╂┼┼┼╂┼┼┼

0 1 2 3

Integer Arithmetic Still Works!

$$\begin{array}{r}
 01.10 \\
 + 01.01 \\
 \hline
 10.11
 \end{array}$$

Decimal	Binary
0	00.00
0.25	00.01
0.5	00.10
0.75	00.11
1	01.00
1.25	01.01
1.5	01.10
1.75	01.11
2	10.00
2.25	10.01
2.5	10.10
2.75	10.11
3	11.00
3.25	11.01
3.5	11.10
3.75	11.11

Fixed-Point Representation

- Fixed interval between two representable numbers as long as the binary point stays fixed
 - Each bit represents 0.25₁₀
- Fixed-point representation of numbers
 - Integer is one special case of fixed-point

0 1 2 3

	01.10	
+	01.01	
	10.11	

Decimal	Binary
0	00.00
0.25	00.01
0.5	00.10
0.75	00.11
1	01.00
1.25	01.01
1.5	01.10
1.75	01.11
2	10.00
2.25	10.01
2.5	10.10
2.75	10.11
3	11.00
3.25	11.01
3.5	11.10
3.75	11.11

Today: Representing Information in Binary

- Why Binary (bits)?
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

One Bit Sequence, Two Interpretations

 A sequence of bits can be interpreted as either a signed integer or an unsigned integer

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
3	3	011
-4 -3 -2	4	100
-3	5	101
-2	6	110
-1	7	111

Signed vs. Unsigned Conversion in C

- What happens when we convert between signed and unsigned numbers?
- Casting (In C terminology)
 - Explicit casting between signed & unsigned

```
int tx, ty = -4;
unsigned ux = 7, uy;
tx = (int) ux; // U2T
uy = (unsigned) ty; // T2U
```

- Implicit casting
 - e.g., assignments, function calls

```
tx = ux;

uy = ty;
```

Mapping Between Signed & Unsigned

 Mappings between unsigned and two's complement numbers: Keep bit representations and reinterpret

Mapping Between Signed & Unsigned

 Mappings between unsigned and two's complement numbers: Keep bit representations and reinterpret

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
3	3	011
-4 -3 -2	4	100
-3	5	101
-2	6	110
-1	7	111

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Signed
0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

Unsigned
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Unsigned	
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Unsigned
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Signed
0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

Unsigned
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Conversion Visualized

- Signed → Unsigned
 - Ordering Inversion
 - Negative → Big Positive

Conversion Visualized

Conversion Visualized

Today: Representing Information in Binary

- Why Binary (bits)?
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

The Problem

```
short int x = 15213;
int     ix = (int) x;
short int y = -15213;
int     iy = (int) y;
```

C Data Type	64-bit
char	1
short	2
int	4
long	8

The Problem

```
short int x = 15213;
int     ix = (int) x;
short int y = -15213;
int     iy = (int) y;
```

- Converting from smaller to larger integer data type
- Should we preserve the value?
- Can we preserve the value?
- How?

C Data Type	64-bit
char	1
short	2
int	4
long	8

The Problem

```
short int x = 15213;
int     ix = (int) x;
short int y = -15213;
int     iy = (int) y;
```

C Data Type	64-bit
char	1
short	2
int	4
long	8

- Converting from smaller to larger integer data type
- Should we preserve the value?
- Can we preserve the value?
- How?

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101
У	-15213	C4 93	11000100 10010011
iy	-15213	FF FF C4 93	11111111 11111111 11000100 10010011

Signed Extension

- Task:
 - Given w-bit signed integer x
 - Convert it to (w+k)-bit integer with same value

Signed Extension

- Task:
 - Given w-bit signed integer x
 - Convert it to (w+k)-bit integer with same value
- Rule:
 - Make *k* copies of sign bit:

•
$$X' = X_{w-1}, ..., X_{w-1}, X_{w-1}, X_{w-2}, ..., X_0$$

k copies of MSB

Signed Extension

- Task:
 - Given w-bit signed integer x
 - Convert it to (w+k)-bit integer with same value
- Rule:
 - Make k copies of sign bit:

Another Problem

```
unsigned short x = 47981;
unsigned int ux = x;
```

	Decimal	Hex	Binary
x	47981	BB 6D	10111011 01101101
ux	47981	00 00 BB 6D	00000000 00000000 10111011 01101101

Unsigned (Zero) Extension

- Task:
 - Given w-bit unsigned integer x
 - Convert it to (w+k)-bit integer with same value
- Rule:
 - Simply pad zeros:

Yet Another Problem

```
int x = 53191;
short sx = (short) x;
```

	Decimal	Hex	Binary
x	53191	00 00 CF C7	00000000 00000000 11001111 11000111
sx	-12345	CF C7	11001111 11000111

Yet Another Problem

```
int x = 53191;
short sx = (short) x;
```

	Decimal	Hex	Binary
x	53191	00 00 CF C7	00000000 00000000 11001111 11000111
sx	-12345	CF C7	11001111 11000111

- Truncating (e.g., int to short)
 - C's implementation: leading bits are truncated, results reinterpreted
 - So can't always preserve the numerical value

Today: Representing Information in Binary

- Why Binary (bits)?
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Unsigned	Binary
0	000
1	001
2	010
3	011
3456	100
5	101
6	110
7	111

• Similar to Decimal Addition

Unsigned	Binary
0	000
1	001
2	010
	011
4 5 6	100
5	101
	110
7	111

- Similar to Decimal Addition
- Suppose we have a new data type that is
 3-bit wide (c.f., short has 16 bits)

Normal
Case

Unsigned	Binary
0	000
1	001
2	010
3	011
4 5 6	100
5	101
6	110
7	111

- Similar to Decimal Addition
- Suppose we have a new data type that is
 3-bit wide (c.f., short has 16 bits)
- Might overflow: result can't be represented within the size of the data type

Normal
Case

Unsigned	Binary
0	000
1	001
2	010
3	011
4 5 6	100
5	101
6	110
7	111

- Similar to Decimal Addition
- Suppose we have a new data type that is
 3-bit wide (c.f., short has 16 bits)
- Might overflow: result can't be represented within the size of the data type

Normal
Case

Overflow
Case

Unsigned Binary

True Sum

- Similar to Decimal Addition
- Suppose we have a new data type that is
 3-bit wide (c.f., short has 16 bits)
- Might overflow: result can't be represented within the size of the data type

Normal
Case

Unsigned	Binary
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

3

True Sum
Sum with same bits

Unsigned Addition in C

Two's Complement Addition

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

 Has identical bit-level behavior as unsigned addition (a big advantage over sign-magnitude)

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

 Has identical bit-level behavior as unsigned addition (a big advantage over sign-magnitude)

Normal Case

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

- Has identical bit-level behavior as unsigned addition (a big advantage over sign-magnitude)
- Overflow can also occur

Normal
Case

Overflow Case

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

- Has identical bit-level behavior as unsigned addition (a big advantage over sign-magnitude)
- Overflow can also occur

Normal
Case

Overflow Case

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-4 -3 -2	101
-2	110
-1	111

- Has identical bit-level behavior as unsigned addition (a big advantage over sign-magnitude)
- Overflow can also occur

M	in	

Signed

-4

-3

Binary

000

001

010

011

100

101

110

111

M	ın	AMMONDA NO.

Normal
Case

Overflow Case

Negative Overflow

- Has identical bit-level behavior as unsigned addition (a big advantage over sign-magnitude)
- Overflow can also occur

Signed	Dillai y
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

Rinary

Signad

Normal Case

Negative Overflow

- Has identical bit-level behavior as unsigned addition (a big advantage over sign-magnitude)
- Overflow can also occur

Min	***************************************
-----	---

Signed	Dillai y
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

Rinary

Signod

Normal Case

Overflow Case

Negative Overflow

- Has identical bit-level behavior as unsigned addition (a big advantage over sign-magnitude)
- Overflow can also occur

Max	
Min	

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

Normal Case

Overflow Case

Negative Overflow

Positive Overflow

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-4 -3 -2	101
-2	110
-1	111

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3 -2	101
-2	110
-1	111

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3 -2	101
-2	110
-1	111

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

This is not an overflow by definition

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

- This is not an overflow by definition
- Because the actual result can be represented using the bit width of the datatype (3 bits here)

In	Out	
0	1	
1	0	

NOR Gate (NOT + OR)

Α	В	С
0	0	1
0	1	0
1	0	0
1	1	0

Basic Logic Gates

Basic Logic Gates

A	В	C _{in}	S	\mathbf{C}_{ou}
				t
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

A	В	C _{in}	S	\mathbf{C}_{ou}
				t
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S = (A \& B \& C_{in})$$

A	В	C _{in}	S	C _{ou}
				t
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S = (\text{~A \& ~B \& C}_{in})$$

| (\times A & B & \times C_{in})

A	В	C _{in}	S	\mathbf{C}_{ou}
				t
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S = (\text{~A \& ~B \& C}_{in})$$

| (\tau A & B & \tau C_{in})
| (A & \tau B & \tau C_{in})

A	В	C _{in}	S	\mathbf{C}_{ou}
				t
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
 0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S = (\text{~A \& ~B \& C}_{in})$$

$$| (\text{~A \& B \& ~C}_{in})$$

$$| (\text{A \& ~B \& ~C}_{in})$$

$$| (\text{A & B & C}_{in})$$

A	В	C _{in}	S	C _{ou}
				t
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S = (\text{~A \& ~B \& C}_{in})$$

$$| (\text{~A \& B \& ~C}_{in})$$

$$| (\text{A \& ~B \& ~C}_{in})$$

$$| (\text{A \& B \& C}_{in})$$

A	В	C _{in}	S	C _{ou}
				t
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$C_{ou} = (\text{~A \& B \& C}_{in})$$

$$| (A \& \text{~B \& C}_{in})$$

$$| (A \& B \& \text{~C}_{in})$$

$$| (A \& B \& \text{~C}_{in})$$

Add two bits and carry-in, produce one-bit sum and carry-out.

Add two bits and carry-in, produce one-bit sum and carry-out.

Add two bits and carry-in, produce one-bit sum and carry-out.

Add two bits and carry-in, produce one-bit sum and carry-out.

 $C_{ou} = (A \& B \& C_{in})$

(A & ~B & C_{in}) | (A & B & ~C_{in})

Add two bits and carry-in, produce one-bit sum and carry-out.

- Ripple-carry Adder
 - Simple, but performance linear to bit width

- Ripple-carry Adder
 - Simple, but performance linear to bit width
- Carry look-ahead adder (CLA)
 - Generate all carriers simultaneously

• Design digital components from basic logic gates

- Design digital components from basic logic gates
- Key idea: use the truth table!

- Design digital components from basic logic gates
- Key idea: use the truth table!
- Example: how to design a piece of circuit that does majority vote?

- Design digital components from basic logic gates
- Key idea: use the truth table!
- Example: how to design a piece of circuit that does majority vote?

- Design digital components from basic logic gates
- Key idea: use the truth table!
- Example: how to design a piece of circuit that does majority vote?

Α	В	C	F
A	0	0	0
	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

- Design digital components from basic logic gates
- Key idea: use the truth table!
- Example: how to design a piece of circuit that does majority vote?

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

- Design digital components from basic logic gates
- Key idea: use the truth table!
- Example: how to design a piece of circuit that does majority vote?

Α	В	С	F
A	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

- Design digital components from basic logic gates
- Key idea: use the truth table!
- Example: how to design a piece of circuit that does majority vote?

_		_	
Α	В	C	F
A 0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1