CSC 252: Computer Organization
Spring 2021: Lecture 3

Instructor: Yuhao Zhu

Department of Computer Science
University of Rochester



Announcement

* Programming Assignment 1 is out

e Details: https://www.cs.rochester.edu/courses/252/
spring2021/labs/assignmenti.html

* DueonFeb. 17, 11:59 PM

e You have 3 slip days
: o

Today

Due


https://www.cs.rochester.edu/courses/252/spring2021/labs/assignment1.html
https://www.cs.rochester.edu/courses/252/spring2021/labs/assignment1.html
https://www.cs.rochester.edu/courses/252/spring2021/labs/assignment1.html

Announcement

* Programming assignment 1 is in C language. Seek help
from TAs.

* TAs are best positioned to answer your questions about
programming assignments!!!

* Programming assignments do NOT repeat the lecture
materials. They ask you to synthesize what you have
learned from the lectures and work out something new.
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Encoding Negative Numbers

e Two’s Complement

+——
-4 -3 -2 -1 0 1 2 3

b2b1bo Signed Unsigned Binary
/} T P\ 0 0 000
: : 1 1 001

Weights In

Unes? nz g 22 21 20 2 2 010
d 3 3 011
. . -4 4 100
\é\(elghss n 22 21 2 -3 5 101
igne -2 6 110
T -1 7 111

1012 = 17204 0°21 b+ (-1%22) = 34
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Encoding Negative Numbers

e Two’s Complement

+——
-4 -3 -2 -1 0 1 2 3

bob1bo Signed
Weights in /1 T ’\ ?

J 22 21 20 2
Unsigned 5
Weights in 5 1 =
Signed 5

-1

1015 = 120 + 0*27 + (-1

!

Unsigned Binary

0 000
1 001
2 010
3 011
4 100
5 101
6 110
14 111
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* Only 1 zero
* There is (still) a bit that represents sign!
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Two-Complement Implications

* Only 1 zero

* There is (still) a bit that represents sign!
* Unsigned arithmetic still works

010
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Two-Complement Implications

* Only 1 zero Signed  Binary
L . _ 0 000
* There is (still) a bit that represents sign! 001
* Unsigned arithmetic still works 2 010
3 011
-4 100
010 2 3 101
+) 101 +) -3 5 110
111 -1 -1 111

e 3 + 1 becomes -4 (called overflow. More on it later.)
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Data Types (in C)

e Suppose you want to define a variable that represents a
person’s age. What assumptions can you make about this
variable’s numerical value?

* Integer
* Non-negative
* Between 0 and 255 (8 bits)

* Define a data type that captures all these attributes:

unsigned charinC

e Internally, an unsigned char variable is represented as a 8-bit,
non-negative, binary number
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* What if you want to define a variable that could take
negative values?
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Data Types (in C)

* What if you want to define a variable that could take
negative values?

e That’s what signed data types (e.g., int, short, etc.) are for
e How are int values internally represented?

* Theoretically could be either signed-magnitude or two’s complement
* The C language designers chose two’s complement

int x = -5, y = 4;

int z = x + y;

fprintf (stdout, “%d\n”, z);
fprintf (stdout, “%u\n”, z);




Data Types (in C)

(unsigned) char 1 1

(unsigned) short

o H~ DN

2
(unsigned) int 4
4

(unsigned) long



Data Types (in C)

W
8 16 32 64
UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808

(unsigned) char

(unsigned) short

(unsigned) int

(unsigned) long

1

2
4
4

1

o H~ DN




Data Types (in C)

W
8 16 32 64
UMax | 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin | -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808
e C Language

C Data Type 32-bit | 64-bit o#include <limits.h>
(unsigned) char eDeclares constants, e.qg.,
(unsigned) short 2 2 *ULONG_MAX

e.LONG MAX
(unsigned) int 4 4 —

eLONG MIN
(unsigned) long 4 8 eValues platform specific



Can We Represent Fractions in Binary?

* What does 10.012 mean?
e C.f., Decimal
e 12.45=1"10" + 2*100 + 4*10-1 + 5102
¢ 10.012 =121 + 020 + 0*2-1 + 1722 = 2.251¢
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Can We Represent Fractions in Binary?

Decimal Binary

e \What does 10.012> mean? 0 00.00
e C.f., Decimal 0.25 00.01
+ 1245 = 1101 + 2100 + 410 + 5102 oo0p o0
' 075 0011
e 10.01o0=1214+ 020 + 0™2-1 + 122 =2.2510 1 01.00
125  01.01
15 01.10
e .75 0111
> 10.00
0 1 2 3 205 1001
25 10.10
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Can We Represent Fractions in Binary?

Decimal Binary

e What does 10.01> mean? 0 00.00
e C.f., Decimal 0.25 00.01
* * * _ * _ 0.5 00.10
e 1245 =110 + 2100 + 4*10-1 + 5102 R ST
e 10.01o0 =121+ 020 + 0™2-1 + 122 =2.2510 01.00
1.25 01.01
1.5 01.10
- 175 011
2 10.00
0 1 2 3 .05 10.01
Integer Arithmetic Still Works! 2.9 10.10
2.75 10.11
3 11.00

01.10 1.50
+ 01.01 + 1.25 3.25 11.01
3.5 11.10

10.11 2.75 3.75 11.11



Fixed-Point Representation

_ _ Decimal Bina
* Fixed interval between two representable 0 00 05”

numbers as long as the binary point stays fixed (o5 00.01
* Each bit represents 0.2510 0.5 00.10

. . . . 11
e Fixed-point representation of numbers ? & 8? 00
* Integer Iis one special case of fixed-point s 01.01
1.5 01.10
||||||||||||”” 1.75 01.11
2 10.00
0 1 2 3 225  10.01
2.5 10.10
2.75 10.11
01.10 1.50 §25 H'g?

+ 01.01 + 1.25 ' :
3.5 11.10

10.11 2.75 3.75 11.11

10



Today: Representing Information in Binary

* I[ntegers

« Conversion, casting

11



One Bit Sequence, Two Interpretations

* A sequence of bits can be interpreted as either a signed
iInteger or an unsigned integer

Signed Unsigned Binary

0 0 000
1 1 001
2 2 010
3 3 011
-4 4 100
-3 5 101
-2 6 110
-1 / 111



Signed vs. Unsigned Conversion in C

* What happens when we convert
between signed and unsigned numbers?

e Casting (In C terminology)
« Explicit casting between signed & unsigned

int tx, ty = -4;

unsigned ux = 7, uy;

tx (int) ux; // U2T

uy (unsigned) ty; // T2U

 Implicit casting
e €.g., assignments, function calls
tx = ux;

uy = ty;

13



Mapping Between Signed & Unsigned

* Mappings between unsigned and two’s complement
numbers: Keep bit representations and reinterpret

14



Mapping Between Signed & Unsigned

* Mappings between unsigned and two’s complement
numbers: Keep bit representations and reinterpret

Signed Unsigned Binary

0 0 000
1 1 001
2 2 010
3 3 011
-4 4 100
-3 5 101
-2 6 110
] 7 111



Mapping Signed <= Unsigned

Bits

0000

Signed

0001

Unsigned

0010

@)

0011

0100

0101

0110

0111

1000

1001
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OIN|O|OO ||| —

1011

O
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—
O

1101

—L
—L
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—
N

1111

—
w

—
N

—
Ol
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Mapping Signed <= Unsigned

Bits

0000

Signed

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101
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1111

A
|||
\4

OIN|O|OO ||| —

+/- 16

Unsigned
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Conversion Visualized

e Signed — Unsigned
« Ordering Inversion
* Negative — Big Positive

2’s Complement
Range

" TMax

UMax
UMax — 1

TMax + 1
TMax

Unsigned
Range

16



Conversion Visualized

e Signed — Unsigned
« Ordering Inversion
* Negative — Big Positive

UMax
UMax — 1

TMax + 1

*® TMax

-~ TMax @

2’s Complement 0 ®
Range 1
—2
- TMin

Unsigned
Range

16



Conversion Visualized

* Signed — Unsigned o UMax -
 Ordering Inversion »® UMax — 1
* Negative — Big Positive

- /7® TMax + 1
TMax @ *® TMax

2’s Complement
Range

E

TMin

Unsigned
Range

16



Today: Representing Information in Binary

* I[ntegers

« Expanding, truncating

17



The Problem

short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) vy;

char

short
int

long

o H~ DN

18



The Problem

short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;

* Converting from smaller to larger integer data type
e Should we preserve the value?

e Can we preserve the value?

e How?

char

short
int

long

o H~ DN
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The Problem

§hort int_x = }5213; s 1
int ix = (int) x;
§hort 1nt_y = —}5213; Si5Epat 2
int iy = (int) y;
int 4
long 8
* Converting from smaller to larger integer data type
e Should we preserve the value?
e Can we preserve the value?
e How?
Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
ix 15213 | 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 c4 93 11000100 10010011
iy -15213| FF FF C4 93 11111111 11111111 11000100 10010011

18



Sighed Extension

e Task:

« Given w-bit signed integer x
o Convert it to (w+k)-bit integer with same value

19
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Sighed Extension

e Task:

« Given w-bit signed integer x

o Convert it to (w+k)-bit integer with same value
e Rule:

« Make k copies of sign Dbit:
e X' =X coy Xt s Xyq s X o Xo

w—1 W—1" w—19 w23

k copies of MSB < w

19



Another Problem

unsigned short x = 47981;
unsigned int ux = x;
Decimal Hex Binary
X 47981 BB 6D 10111011 01101101

ux 47981 | 00 00 BB 6D 00000000 00000000 10111011 01101101




Unsigned (Zero) Extension

e Task:

« Given w-bit unsigned integer x

o Convert it to (w+k)-bit integer with same value
e Rule:

o Simply pad zeros:
e X'=20,...,0,x X 0 X

» AMw-T10 Mw=2
| I—|

k copies of O < w
X LI )
X, oo o0 0 oo )

21



Yet Another Problem

int x = 53191;
short sx = (short) x;
Decimal Hex Binary
p 4 53191 | 00 00 CF C7 00000000 00000000 11001111 11000111
SX -12345 CF C7 11001111 11000111

22



Yet Another Problem

int x = 53191;
short sx = (short) x;
Decimal Hex Binary
p 4 53191 | 00 00 CF C7 00000000 00000000 11001111 11000111
SX -12345 CF C7 11001111 11000111

* Truncating (e.g., int to short)
« C’s implementation: leading bits are truncated, results reinterpreted
e SO can’t always preserve the numerical value

22



Today: Representing Information in Binary

* I[ntegers

« Addition, negation, multiplication, shifting

23



Unsigned Addition

Unsigned Binary
000
001
010
011
100
101
110
111

~N O O &AW N 2+ O
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Unsigned Addition

e Similar to Decimal Addition

e Suppose we have a new data type that is
3-bit wide (c.f., short has 16 bits)

010
Normal +) 101 +)

Case

N

111 7

Unsigned Binary
000
001
010
011
100
101
110
111

~N O O &AW N 2+ O

24



Unsigned Addition

e Similar to Decimal Addition

e Suppose we have a new data type that is
3-bit wide (c.f., short has 16 bits)

e Might overflow: result can’t be
represented within the size of the data type

010 2
Normal +) 101 +) 5
Case 111 »

110 6
Overflow +) 101 +) 5
Case

1011 11

Unsigned Binary
000
001
010
011
100
101
110
111

~N O O &AW N 2+ O
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Unsigned Addition

e Similar to Decimal Addition

e Suppose we have a new data type that is
3-bit wide (c.f., short has 16 bits)

e Might overflow: result can’t be
represented within the size of the data type

010 2
Normal +) 101 +) 5
Case 111 »

110 6
Overflow +) 101 +) 5
Case

Unsigned Binary
000
001
010
011
100
101
110
111

~N O O &AW N 2+ O

1011 11 4~ True Sum
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Unsigned Addition

e Similar to Decimal Addition

Unsigned Binary

. 0 000
e Suppose we have a new data type that is ; 001
3-bit wide (c.f., short has 16 bits) 5 010
e Might overflow: result can’t be 3 011
represented within the size of the data type g 18?
010 5 6 110
Normal +) 101 +) 5 7 111
Case 111 7
110 6
Overflow +) 101 +) 5
Case 1011 11 44— True Sum

011 3 4  Sum with same bits

24



Unsigned Addition in C

Operands: w bits u
+ v

True Sum: w+1 bits U4V

Discard Carry: wbits UAdd (u ,v)

25



Two’s Complement Addition

Signed
0

y
2
3

Ll A

Binary
000
001
010
011
100
101
110
111

26



Two’s Complement Addition

* Has identical bit-level behavior as
unsigned addition (a big advantage
over sign-magnitude)

Signed
0
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Two’s Complement Addition

* Has identical bit-level behavior as
unsigned addition (a big advantage
over sign-magnitude)

Normal
Case

010
+) 101

111

2
+) -3

-1

Signed
0

y
2
3

Ll A

Binary
000
001
010
011
100
101
110
111

26



Two’s Complement Addition

* Has identical bit-level behavior as Signed  Binary
unsigned addition (a big advantage (1) 88?
over sign-magnitude) 5 010

* Overflow can also occur 3 011

-4 100
010 2 -3 101
Normal — +) 101+ -3 2 110
Case 111 1 -1 111
110 -2
Overflow +) 101 +) -3
Case

1011 -5

26



Two’s Complement Addition

* Has identical bit-level behavior as
unsigned addition (a big advantage

over sign-magnitude)

e Qverflow can also occur

010
Normal +) 101
Case 111
110

Overflow +) 101
Case

1011
011

2
+) -3

Signed
0

y
2
3

Ll A

Binary
000
001
010
011
100
101
110
111

26



Two’s Complement Addition

* Has identical bit-level behavior as Signed  Binary
unsigned addition (a big advantage (1) 88?
over sign-magnitude) 5 010

* Overflow can also occur 3 011

Min —# -4 100

010 2 -3 101

Normal — +) 101+ -3 2 110

Case 111 1 -1 111
110 -2
Overflow +) 101 +) -3
Case 1011 -5
011 3

Negative Overflow
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Two’s Complement Addition

e Has identical bit-level behavior as Signed
unsigned addition (a big advantage ?
over sign-magnitude) 5

* Overflow can also occur 3

Min —% -4
010 2 -3
Normal +) 101 +) -3 2
Case 111 -1 3
110 -2 011
Overflow 4+ 101 +) -3 +) 001
Case 1011 -5 0100
011 3

Negative Overflow

Binary
000
001
010
011
100
101
110
111

R W
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Two’s Complement Addition

e Has identical bit-level behavior as Signed
unsigned addition (a big advantage ?
over sign-magnitude) 5

* Overflow can also occur 3

Min —% -4

010 2 -3

Normal +) 101 +) -3 2

Case 111 -1 3
110 -2 011
Overflow 4+ 101 +) -3 +) 001
Case 1011 -5 0100
011 3 100

Negative Overflow

+)

Binary
000
001
010
011
100
101
110
111

> b R W

26



Two’s Complement Addition

* Has identical bit-level behavior as Signed  Binary
unsigned addition (a big advantage (1) 88?
over sign-magnitude) 5 010

* Overflow can also occur Max —#% 3 011

Min —# -4 100

010 2 -3 101

Normal — +) 101+ -3 2 110
Case 111 1 -1 111
110 -2 011 3

Overflow 1) 101 +) -3 +) 001 +) 1
Case 1011 -5 0100 4
011 3 100 -4

Negative Overflow Positive Overflow



Two’s Complement Addition in C

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits

u
v

u-+yv

TAdd, (u ,v)

27



Is This Signed Addition an Overflow?

111
+) 110

1101

Signed
0

]
2
3

L b A

Binary
000
001
010
011
100
101
110
111
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Is This Signed Addition an Overflow?

111
+) 110

(1101

Signed
0

]
2
3

L b A

Binary
000
001
010
011
100
101
110
111
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Is This Signed Addition an Overflow?

Signed Binary

0 000

1 001
+) 110 3 011

100
(1101 »

101
Truncate 110

111

L b A

28



Is This Signed Addition an Overflow?

Signed Binary
0 000
1 001
+) 110 +) -2 3 011
100
[1101 > -3 101
Truncate 110
111

L b A
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Is This Signed Addition an Overflow?

Signed Binary

0 000
1 001

+) 110 +) -2 3 011
-4 100

101 > -3 3 101
Truncate 2 110

1 111

* This is not an overflow by definition
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Is This Signed Addition an Overflow?

Signed Binary

0 000
1 001

+) 110 +) -2 3 011
-4 100

101 > -3 3 101
Truncate 2 110

1 111

* This is not an overflow by definition

* Because the actual result can be represented using
the bit width of the datatype (3 bits here)
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Inverter (NOT Gate)

— +1.2V
—c|
In — — Out
-
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Inverter (NOT Gate)

N +0.0V
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Inverter (NOT Gate)
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Inverter (NOT Gate)
— +1.2V

d

In —¢

_I

— Out

In Out
0 1
1 0

N +0.0V
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Inverter (NOT Gate)

d

In —¢

— +1.2V

— OQut

In Out
0 1
1 0
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Basic Logic Gates
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Basic Logic Gates

A—Do—ﬂ
j> DHAIB)

The little
circle
means NOT

g:}A 8B g:}~(A 8 B)

AND NAND
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Full (1-bit) Adder

Add two bits and carry-in,
produce one-bit sum and carry-out.

ABC,sSc,

t
00 0[0 O
00 1|1 0
01 0/[1 0
01 1[0 1
10 0|1 0
10 1|0 1
11 0|0 1
11 1]1 1
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Full (1-bit) Adder

Add two bits and carry-in,
produce one-bit sum and carry-out.

Truth Table
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Full (1-bit) Adder

Add two bits and carry-in,

produce one-bit sum and carry-out.

S = (""A&"'B &Cin)

Truth Table

A

w
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Full (1-bit) Adder

Add two bits and carry-in,

produce one-bit sum and carry-out.

S = (""A & ~B & Cin)
| ("'A & B & "'Cin)

Truth Table

A

w
0O
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Full (1-bit) Adder

Add two bits and carry-in,

produce one-bit sum and carry-out.

S = (""A & ~B & Cin)
| ("'A & B & "'Cin)
| (A & ~B & ~Cin)

Truth Table
ABC,S c,

t
00 0|0 O
00 1[1 o
01 0|1 0
0.1 1]0 1
10 oT@o
10 1|0 1
11 0/0 1
11 1(1 1

9



Full (1-bit) Adder

Add two bits and carry-in,

produce one-bit sum and carry-out.

S=(~A&~B &Cin

= ( )
| (~A & B & ~Cin)
| (A & ~B & ~Cin)

(A& B& Ci)

Truth Table
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Full (1-bit) Adder

Add two bits and carry-in,

produce one-bit sum and carry-out.

S:(""A& B&Cln)
|(~A&B& Cln)
| (A & ~B & ~Cin)

)

| (A& B & Ci

- (~A & B & Cir)
(A & ~B & Cin)
(A & B & ~Cin)
(A& B& Cin)

Truth Table
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Full (1-bit) Adder

Add two bits and carry-in,
produce one-bit sum and carry-out.

Cou = (~A & B & Cin)
(A & ~B & Cin)
(A & B & ~Cin)
(A& B& Cin)

21



Full (1-bit) Adder

Add two bits and carry-in,

produce one-bit sum and carry-out.

A B
I I

Cou = (~A & B & Cin

out

)
(A & ~B & Cin)
(A & B & "'Cin)
(A& B& Cin)
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Full (1-bit) Adder Cou = (~A & B & Cin)
(A & ~B & Cin)

Add two bits and carry-in, A
produce one-bit sum and carry-out. (A &B &~Cin)
A g (A& B & Cin)

] ¢ 1 1 I \ 4 ] \ 4 1 @
@ JUYUOL
C.. S
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Full (1-bit) Adder Cou = (~A & B & Cin)
(A & ~B & Cin)
Add two bits and carry-in, A
produce one-bit sum and carry-out. (A &B &~Cin)
A g (A& B & Cin)
[ r .
w u k{j 4—— AND Gates
4—— OR Gates
Cout S
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Full (1-bit) Adder

)
Add two bits and carry-in, -
produce one-bit sum and carry-out. (A &B & ~Cin)

4-—— OR Gates

out
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Full (1-bit) Adder Cou = (~A & B & Ci)

Add two bits and carry-in,
produce one-bit sum and carry-out.

A B

4—— OR Gates
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Full (1-bit) Adder Cou = (*A&B & Cn)

Add two bits and carry-in,
produce one-bit sum and carry-out.

A B

(A& B & ~Ci)

4—— OR Gates
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Full (1-bit) Adder Cou = (~A & B & Cin)

(A & ~B & Gin)
Add two bits and carry-in, (A&B & ~C;
produce one-bit sum and carry-out. A &D & ~lin)

@A\ & B & Cin)

A B

\ 4 35 B

i i C.
W u | @ @ 4—— AND Gates

4—— OR Gates

out
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Four-bit Adder
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Four-bit Adder

A3 83 A2 BQ
| |
A B A B
Full ©C. Full
Adder Adder
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Four-bit Adder

* Ripple-carry Adder
* Simple, but performance linear to bit width

A, B, A, B, A, B
| | ]

A B A B A B
Full € Full € Full €

Adder Adder Adder

C.. S Cw S C S

Cout SS SQ S1

A



Four-bit Adder

* Ripple-carry Adder

* Simple, but performance linear to bit width
e Carry look-ahead adder (CLA)
* Generate all carriers simultaneously

A, B, A, B, A, B,
| | ]

A B A B A B
Full © Full ¢ Full C.

Adder Adder Adder

C.. S Gl S C. S

Cout SS SQ S1

A



Logic Design

* Design digital components from basic logic gates
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Logic Design

* Design digital components from basic logic gates
* Key idea: use the truth table!

* Example: how to design a piece of circuit that does
majority vote?
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Logic Design

* Design digital components from basic logic gates

* Key idea: use the truth table!

* Example: how to design a piece of circuit that does

majority vote?

F=(A&B&C)
(A & ~B & C)
(A & B & ~C)
(~A & B & C)

_L_L_L_LOOOO>

4T 0O 020200

- - = O = 000 M
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Logic Design

* Design digital components from basic logic gates
* Key idea: use the truth table!

* Example: how to design a piece of circuit that does
majority vote?

F=(A&B&C) F=(A&B)
(A& ~B & C) | (A&C)
e e
(A & B & ~C) | (B & C)
(~A & B & C)

4 a4 a4 00000 >D
4. Ao 002 200w
4T 0O 020200
- a a0 000MT
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Logic Design

* Design digital components from basic logic gates

* Key idea: use the truth table!

* Example: how to design a piece of circuit that does
majority vote?

A B C

4 a4 a4 00000 >D
4. Ao 002 200w
4T 0O 020200
- a a0 000MT

L1y
Y
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